Lovasz Local Lemma (LLL)
Bad Events: $E_{1}, E_{2}, \ldots, E_{n}$

$$
\operatorname{Pr}\left[E_{i}\right] \leqslant p \quad \forall i=1 \ldots n
$$

What is probability of avoiding them all?

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \bar{E}_{i}\right]=?
$$

Say E_{i} 's are mutually independent

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \bar{E}_{i}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[\bar{E}_{i}\right] \geqslant(1-P)^{n}
$$

But what if we have dependencies?

$$
\begin{aligned}
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \bar{E}_{i}\right] & =1-\operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \\
& \geqslant 1-\sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right] \\
& \geqslant 1-n \cdot \operatorname{P}
\end{aligned}
$$

If we only have "few" dependencies can we inter polate between the two?

Dependency Graph: Nodes are $\{1, \ldots n\}$ corresponding to the bad events E_{1}, \ldots, E_{n}. dependent.

More formally: $E:$ is mutually independent of the events

$$
\bar{N}(i)=\left\{E_{j} \mid(i, j) \notin E\right\}
$$

Degree of the dependency graph is the maximum degree of any vertex.

LLL (symmetric version)
Let $E_{1}, E_{2}, \ldots E_{n}$ be bad events such that
(1) for all $i, \operatorname{Pr}\left[E_{i}\right] \leqslant p$
(2) degree of dependency graph $\leqslant d$
(3) $4 p d \leqslant 1$

Then $P_{\gamma}\left[\bigcap_{i=1}^{n} \bar{E}_{i}\right]>0$

Application: Edge - Disjoint Paths
n pairs of users that want to communicate with each other

Underlying communication network connects each pair using a set of paths.

Pair i can choose one path from set F_{i} of m paths.

Catch: paths in F_{i} can share edges with paths in F_{j} (at most k)

We want to find the condition where it is possible for each pair to choose edge disjoint paths.

Say each pair chooses a path in F_{j} uniformly at random.

Bad events: $E_{i, j}$ where pairs i\& j choose a path with common edges.

$$
\operatorname{Pr}\left[E_{i, j}\right] \leq \frac{k}{m}(=p)
$$

Dependency Graph: $E_{i, j}$ is mutually independent of all events $E_{p, q}$ such that $p \notin\{i, j\}$ $q \notin\{i, j\}$
$E_{i, j}$ has an edge to $E_{p, q}$ iff either

$$
p=i, j \text { or } q=i, j
$$

Degree of dependency graph is $\leq 2 n$

$$
(=d)
$$

LLL condition:

$$
\begin{aligned}
& 4 d p \leq 1 \\
& \frac{8 n k}{m} \leq 1 \Rightarrow m \geq 8 n k \\
& \text { \& paths } \\
& \begin{array}{l}
\text { between pair } i
\end{array} \quad \Rightarrow \text { pairs \# of } \\
& \text { paths } \\
& \text { infin } \\
& \text { not } \\
& \text { disjoint } \\
& \text { with } F_{j}
\end{aligned}
$$

So if there are at least 8 nR paths between each pair, we can tolerate k "shared" paths between each pair i, j.

Depressing news: $m>n k$ suffices by a simple counting argument.

Application: Sinkless Orientations
Want to orient edges of a d-reg. graph such that we do not have sinks (ie. nodes with no outgoing edges)

Probabilistic experiment: Orient each edge independently in one of the two directions

Bad Events: a node v has all edges incoming...

$$
\operatorname{Pr}\left[E_{V}\right]=\left(\frac{1}{2}\right)^{d}=P
$$

Dependency Graph: input graph...

LLL condition: $4 p d \leq 1$

$$
\begin{aligned}
& \quad 4 \cdot \frac{1}{2^{d}} \cdot d \leq 1 \\
& d=1: 4 p d=2 \\
& d=2: 4 p d=2 \\
& d=3: 4 p d=3 / 2 \\
& d=4: 4 p d=1 \\
& d=5: 4 p d=1
\end{aligned}
$$

So if $d \geqslant 4$ then a sinkless orientation always exists!
We will see other applications in tutorial 4 and in week 5 .

Next we prove the LLL. See Section 6.7 of the MU textbook.

