
Paranoid Quicksort

Here we prove that the runtime of paranoid quicksort isO(n log2 n) with high probability. Let us recap
what paranoid quicksort does:

Algorithm 1: ParanoidQuicksort(A)

if |A| ≤ 1 then
return A;

repeat
Select a pivot p ∈ A uniformly at random;

L← elements smaller than p in A;

R← elements larger than p in A;

until |L| ≥ |A|/3 and |R| ≥ |A|/3;
return ParanoidQuicksort(L) + p+ ParanoidQuicksort(R)

It is easy to see that the recursion depth in the algorithm is O(log n) (where n = |A|) since at each

level, the input list size decreases by a factor of 2/3 (i.e. |L| ≤ 2|A|/3 and |R| ≤ 2|A|/3).

Therefore, we only need to bound the number of iterations where we pick a pivot uniformly at random.

Assume for simplicity that |A| is a multiple of three
1
. For sake of analysis let Y be the sorted version

of A. We partition Y into three equal parts (Y1, Y2, Y3).

We say a pivot is good if it belongs to Y2. Since we pick a pivot uniformly at random, the event that a

pivot is good happens with probability 1/3. Note that if we pick a good pivot, we immediately exit the

loop, and go to the next recursion level.

Thus, the probability of choosing a bad pivot is 2/3. If we have t + 1 iterations, one must pick a bad

pivot t times in a row. This occurs with probability

= P[(1stpivot bad) ∩ (2ndpivot bad) ∩ · · · ∩ (tthpivot bad)] = (2/3)t

Observe that the recursion tree is a binary tree of depth log3/2 n, so there are at most 2log3/2 n = O(n)
nodes in the recursion tree. Therefore we can use the union bound to show that

P[∃ a bad node in the recursion tree] ≤ O(n) · (2/3)t.

Setting t = 3 log3/2 n = O(log n) makes this probability at most 1/n.

Therefore, we have that with probability 1−1/n, t = O(log n) for each recursive call. This implies that

the time required to pick a good pivot in single recursive call isO(n log n). Therefore, with probability

1− 1/n, the running time of ParanoidQuicksort is given by the following recursive relation:

T (n) ≤ 2 · T (2n/3) +O(n log n)

And by solving this relation, we get that the total running time is O(n log2 n) with high probability
2
.

1

We can remove this assumption at the expense of making the analysis a bit uglier. We can also satisfy this assumption

by adding some dummy elements with value∞ to A and delete them later

2

by setting t = (c+ 2) log3/2 n for some constant c ≥ 1, we can increase the success probability to 1− 1/nc

1

