Tail Bounds

Chernoff
Let $x_{1}, x_{2}, \ldots x_{n}$ be independent Poisson trials with $\operatorname{Pr}\left[x_{i}=0\right]=1-p_{i} \& \operatorname{Pr}\left[x_{i}=1\right]=p_{i}$
Let $x=\sum_{i=1}^{n} x_{i}$ with $\mu=\mathbb{E}[x]$
(1) For any $\delta>0$

$$
\operatorname{Pr}[x \geqslant(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

(2) For $0<\delta<1$

$$
\operatorname{Pr}[|x-\mu| \geqslant \delta \mu] \leq 2 e^{-\delta^{2} \mu / 3}
$$

Application (1) Balls into Bins
n balls are thrown v.a.r. into n bins
$x_{i}=\#$ of balls in bin i

$$
x_{i}=\sum_{j=1}^{n} x_{i j}
$$

$x_{i j}= \begin{cases}1 & \text { if ball } j \text { lands in bin } i \\ 0 & \text { ole }\end{cases}$

$$
\begin{aligned}
& \mathbb{E}\left[x_{i j}\right]=\operatorname{Pr}\left[x_{i j}=1\right]=\frac{1}{n} \\
\Rightarrow & \mathbb{E}\left[x_{i}\right]=1
\end{aligned}
$$

By Chernoff bound (1)

$$
\begin{aligned}
& \operatorname{Pr}\left[x_{i} \geqslant(1+\delta)\right] \leq \frac{e^{\partial}}{(1+\delta)^{(1+\delta)}} \\
& \operatorname{Pr}_{\gamma}\left[x_{i} \geqslant \delta\right] \\
& \leq \frac{e^{\delta-1}}{\delta^{\delta}} \\
& \delta=c(\log n / \log \log n) \\
& \operatorname{Pr}\left[x_{i} \geqslant 0\left(\frac{\log n}{\log \log n}\right)\right] \leq e x p(c \log n) \\
&<c \log \delta) \\
& n^{c}
\end{aligned}
$$

Application (2) Coin tossing
(Section 4.2.2 of MU Book)

Proof of Chernoff bounds
(Sections $4.1 \& 4.2 .1$)

Hoeffding Bound
(Section 4.5)
Hoeffding's bound extends the Chernoff bound technique to general random variables with a bounded range.

Theorem 4.12 [Hoeffding Bound]: Let X_{1}, \ldots, X_{n} be independent random variables such that for all $1 \leq i \leq n, \mathbf{E}\left[X_{i}\right]=\mu$ and $\operatorname{Pr}\left(a \leq X_{i} \leq b\right)=1$. Then

$$
\operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \epsilon\right) \leq 2 \mathrm{e}^{-2 n \epsilon^{2} /(b-a)^{2}} .
$$

Application: Simple Random walk

$$
\begin{aligned}
& X=\sum_{i=1}^{n} x_{i} \text { where } x_{i}=\left\{\begin{array}{cc}
1 & w p \cdot 1 / 2 \\
-1 & w p \cdot 1 / 2
\end{array}\right. \\
& b=1 ; a=-1 ; r=0 \\
& \operatorname{Pr}\left[\left|\frac{x}{n}\right| \geqslant \varepsilon\right] \leq 2 \exp \left(\frac{-2 n \varepsilon^{2}}{4}\right) \\
& \varepsilon=\sqrt{\frac{2 \ln n}{n}} \\
& \operatorname{Pr}[|x| \geqslant \sqrt{2 n \ln n}] \leq 2 \exp (-\ln n) \\
&
\end{aligned}
$$

This can be interpreted as Gambler's Ruin where the Gambler has no options.

When the gambler can interact/ make choices based on past action, we get dependencies which Hoeffding bound cannot handle.

We can model this as a Martingale
See Section 13.1 of MU Book
Azuma - Hoeffding Bound
Theorem 13.6 [Azuma-Hoeffding Inequality]: Let X_{0}, \ldots, X_{n} be a martingale such that

$$
B_{k} \leq X_{k}-X_{k-1} \leq B_{k}+d_{k}
$$

for some constants d_{k} and for some random variables B_{k} that may be functions of $X_{0}, X_{1}, \ldots, X_{k-1}$. Then, for all $t \geq 0$ and any $\lambda>0$,

$$
\operatorname{Pr}\left(\left|X_{t}-X_{0}\right| \geq \lambda\right) \leq 2 \mathrm{e}^{-2 \lambda^{2} /\left(\sum_{k=1}^{t} d_{k}^{2}\right)}
$$

Finally, we discussed:
Sections (3.5.1, 13.5.3

