Project Proposal - Github Repo Integration Security Scanner

1. Introduction

A typical company has 100+ Saa$S services in use on top of their cloud workloads and
on-prem systems. Many of these systems and services are connected and share
company data from one system to another. Some of the shared data is sensitive and
companies should know where the data is flowing and how the integration is protected.

While not all companies identify as software companies, many of them at least have
some IT integration infrastructure code in Github or Gitlab. This code may be built by
in-house engineers, but even more commonly it’s built by contractors who come in to
build a point-to-point integration and then leave.

Finding out which integrations a company has is currently a daunting task. Even more
challenging is to know if the integrations have been built securely or not.

2. Project goals

Goal is to build a scanner which, when granted access to a Github repository, can
produce a list of likely integrations in the repo. Here an integration is referring to network
connections to third party services: Either the source code connects to a 3rd party
(including webhooks) or it uses a 3rd party sdk that connects out. Typically both kinds of
integrations require some kind of an API key or token to be provided.

The deliverable itself should be code or a container that can live in a backend
environment and can be tasked by other backend services to scan particular repositories
and return a list of findings and related metadata.

3. Technologies
The scanner itself can be built with any modern backend technology, e.g. Python.

The team can select the best technology for detecting integrations, but some simpler or
more complex form of an Al is probably a good idea to include. You can find some ideas
for finding integrations in the appendix at the end of this document.

4. Requirements for the students

The team will require backend development and design skills. Previous experience with
software integrations and Git is a plus. This topic also allows the team to research
approaches to analysis and hence some creativity is a big plus.

The difficulty of the topic is from moderate to demanding depending how far the
automated analysis is taken.

5. Legal Issues
Intellectual Property Rights (IPR):

e A. All IPRs to all Results will be transferred to the Client.

Confidentiality:
e A. The client will share some confidential information with the students.

Any other legal issues, e.g. if the default contract template does not cover something
that needs to be agreed

6. Client

Valo Security is a startup established in 2023. The service hasn’t launched yet at the
start of the course. Valo team consists of cyber security industry experts with
backgrounds in companies such as F-Secure, Oura, Spotify, Google, Snap, Salesforce,
ServiceNow, and Nokia.

Representative of the client is Valo Security CTO Mika Stahlberg. The representative
has 25 years of experience in both security and software development, has been using
Scrum since 2004 and has been the client representative on this class before — and has
also taken the course in 1999-2000.

Valo team is prepared to help the project team as much as needed, but as a new startup
a working room or similar facilities are not available. But kickoffs with pizza and such will
certainly be provided.

Client representative:

}4 Valo Security

Product Owner

Mika Stahlberg

e-mail: mika@valosecurity.com
+358 50 518 9050

Appendix: Some ideas for features to use in detecting integrations

Search for Keywords

Search the codebase for common keywords or terms associated with SaaS integrations, such as "API| key," "
token," "endpoint," "webhook," "OAuth," and the names of specific SaaS providers (e.g., "Stripe," "Twilio,"
"Salesforce"). This can help identify potential integration points. Attention should be paid to the performance of the
string search algorithm chosen — e.g. Aho-Corasick is a lot better than basic search.

access

Configuration Files

Look for configuration files that might contain credentials or configuration details for external services. These files could
include API keys, tokens, URLs, and other relevant information.

Dependency Management

Examine the project's dependency management files (e.g., package.json, requirements.txt). Dependencies often
indicate the use of external libraries or SDKs that interact with SaaS services.

Network Requests

Scan the code for network requests, HTTP requests (GET, POST, etc.), and relevant libraries like Fetch, Requests, or
Axios. These could indicate interactions with external APls.

Webhooks and Callbacks

Check if there are any implementations of webhook endpoints or callback functions. These could be related to SaaS
services sending notifications or data to the application.

Integration Documentation

If the project has documentation, search for any mentions of external integrations. Developers often document the
integration points and how they're used.

Environment Variables

Look for references to environment variables, as these might contain sensitive information like API keys. Review any
scripts or configuration that sets up these environment variables.

Third-Party Libraries

Check the third-party libraries and frameworks used in the project. Some libraries might be specific to integrating with
certain SaasS services.

Code Scanning Logic

Consider using code scanning libraries that can automatically identify certain connections. These kinds of libraries are
typically used for vulnerability analysis (static code analysis), e.g. E.g. https://github.com/returntocorp/semgrep

Testing and Logging

If available, review the testing code and logging statements. They might reveal interactions with external services
during test scenarios or runtime.

Version Control History

Look at the commit history to identify any changes related to integrations or connections with external services.
Comments, commit messages, and diffs can provide insights.

