### **Cellulose degradation**



Prof. Eero Kontturi 6<sup>th</sup> June 2023

### Learning outcomes

After this lecture, the student should be able to:

 Describe how the supramolecular features of native cellulose influence its hydrolytic degradation behaviour by acid and enzymes



### Outline

#### (1) Acid hydrolysis

- Basics on how supramolecular structure of cellulose influences acid hydrolysis
- Special case for research: hydrolysis with HCl gas
- (2) Enzymatic hydrolysis



### Acid hydrolysis



### Acid hydrolysis of cellulose

- Acid hydrolysis involves the breakage of glycosidic bond by addition of water, catalyzed by acid
- High concentrations are required for complete degradation (e.g., 72% (w/w) H<sub>2</sub>SO<sub>4</sub>)



Aalto University School of Chemical Engineering

### Mechanism of acid hydrolysis

Cellulose hydrolysis is the reaction between water and cellulose



Acid is just a catalyst

Adapted from: Klemm et al. *Comprehensive Cellulose Chemistry*, Vol. 1; Wiley-VCH, 1998.

Aalto University School of Chemical Engineering

### Kinetics of acid hydrolysis of cellulose



School of Chemical Engineering

- When milder acid concentrations are used, DP first drops fast, after which it almost halts, hitting the LODP
- Traditionally LODP is determined with 2-3 M HCl at around 100°C
- Common explanation for LODP: "amorphous" regions are hydrolysed and crystallites are left intact
- LODP: Levelling-off degree of polymerization

### LODP of different cellulose sources

| Material       | LODP    |
|----------------|---------|
| Wood pulp      | 100-250 |
| Cotton linters | 100-250 |
| Ramie          | 200-350 |
| Valonia        | 7000    |

Notice the large variation in numbers for the same source



**School of Chemical** 

### **Discrepancies within LODP**

| Cellulose      | LODP | Yield loss | Conditions for                                 |
|----------------|------|------------|------------------------------------------------|
| substrate and  |      | (%)        | determining LODP                               |
| reference      |      |            |                                                |
| Cotton linters | 200- | n.a.       | 2.5 N HCI, 105°C, 15                           |
|                | 250  |            | min                                            |
| Cotton linters | 187  | 7          | 2.5 N H <sub>2</sub> SO <sub>4</sub> , 96°C, 6 |
|                |      |            | h                                              |
| Cotton linters | 253  | 2          | 2.5 N H <sub>2</sub> SO <sub>4</sub> , 100°C,  |
|                |      |            | 30 min                                         |
| Cotton linters | 190  | 4.4        | 2.4 N HCl, 100°C, 1 h                          |
| Cotton linters | 100  | 6          | 6.5 N HCI, 108°C                               |
| Cotton linters | 200  | 3.5        | 2.5 N HCI, 100°C, 30                           |
|                |      |            | min                                            |
| Cotton linters | 162  | 5          | 5% HCl, 95°C, 1 h                              |

- No standard method to measure LODP exists
- Many different values for similar cellulose grades have been reported
- Amount of material lost during hydrolysis (yield loss) also varies a great deal



Aalto University School of Chemical Engineering

### Crystallite length vs. LODP

| Material       | LODP    | Crystal<br>length by<br>XRD* |
|----------------|---------|------------------------------|
| Wood pulp      | 100-250 | 23 nm                        |
| Cotton linters | 100-250 | 35 nm                        |

\* X-ray diffraction

- Crystal length determined from CMFs does not correlate with LODP
- Possible reason: diffraction and/or spectroscopy cannot detect the CMF twist and interprets it for a shorter crystallite



# Modern comparison between LODP and crystallite length



Nishiyama et al. *Biomacromolecules* 2003, 4, 1013.

### Modern comparison between LODP and crystallite length





chool of Chemical

- The yield loss upon controlled acid hydrolysis is very small (~1%)
- This implies a very short disordered • region (4-5 anhydroglucose units)
- **Disordered not amorphous** •



Nishiyama et al. *Biomacromolecules* 2003, 4, 1013.

# Parameters affecting kinetics of acid hydrolysis



Obvious parameters: *acid concentration and temperature* 

NOTE: the acid concentrations are huge, far beyond the catalytic amounts

NOTE: very large concentrations are required to fully degrade cellulose (e.g., 72 wt% sulphuric acid)

Battista Ind. Eng. Chem. 1950, 42, 502.

### Accessibility effect



 $\rightarrow$  Acid hydrolysis is known to proceed faster with dried fibres  $\rightarrow$  More tension dissipated by the disordered regions

Aalto University School of Chemical Engineering

### Presemo

#### Take out your smartphones or laptops:

https://presemo.aalto.fi/l2010degradation



### Acid hydrolysis of dry fibres: use of HCl gas



### **Basic concept**

School of Chemical Engineering

- Gaseous HCI molecules adsorb on water-covered fibers
- Adsorbed HCI dissociates and catalyzes cellulose hydrolysis to LODP
- CNCs can be dispersed from hydrolyzed fibres



### DP reduction with HCl (g)



Aalto University School of Chemical Engineering  $\rightarrow$  LODP value is exactly the same with HCI (g) and HCI (aq)

### HCI (g) adsorption



- Monolayer (Langmuir) adsorption
- When scaled to the amount of water, the amount of HCl adsorbed exceeds the solubility limit (~ 40 w-%)
- → Concentration of HCl (aq) on the surface is ~40 w-%

Aalto University School of Chemical Engineering

### **Crystallinity development**



- Acid hydrolysis of cellulose usually results in formation of extractable sugars
- Hot water extraction of the hydrolyzed filter paper failed to extract *anything*

REASON: vapour phase acid causes crystallization of cellulose simultaneously with its degradation.

NOTE: No change in morphology of the fibres NOTE: No mass transfer out of the fibres

Aalto University School of Chemical Engineering

### Preparation of cellulose nanocrystals – proof of concept

(1) Hydrolysis down to LODP with HCl vapor
(2) Dispersion in formic acid (72 h sonication)
→ Over 97% yield of CNCs



Aalto University School of Chemical Engineering cryo TEM

The challenge is in the dispersion.

 $5 \times 5 \ \mu m^2 \ AFM$ 



### Upscale of HCI (g) hydrolysis



- Custom built reactor enables upscaling from gram scale to hundreds of grams
- HCl (g) pressure can be rised to several bars instead of vapor pressure (<0.1 bar at most)

Pääkkönen et al. React. Chem. Eng. 2018, 3, 312.

# Recent development with HCI (g) hydrolysis

- Coupled with TEMPO-oxidation or other suitable charge addition method leads to good dispersion of eventual CNCs
- Higher moisture contents lead to DP reductions below LODP
- Other polymorphs (cellulose II and cellulose III) result in high glucose yields
- Building of a reactor for kg scale is underway (Business Finland R2B project H-Cel)



### Note: visualization of LODP



Unlike liquid, HCl gas does not induce any morphological changes on a cellulose substrate

 $\rightarrow$  Hydrolysis by HCl gas enables visualization of the LODP phenomenon



chool of Chemical

Spiliopoulos et al. *Biomacromolecules* **2021**, *22*, 1399.

### Visualization of LODP

Control reference

0.6 bar HCl 30 min

1.0 bar HCl 30 min



Aalto University School of Chemical Engineering





Spiliopoulos et al. *Biomacromolecules* **2021**, *22*, 1399.

MACROMOLECULES

### Presemo

Take out your smartphones or laptops: <u>https://presemo.aalto.fi/l2010degradation</u>



### Case study: how HCI (g) hydrolysis influences accessibility / hydrolysis



### Water retention after HCI (g)



Hydrolysis of dry (~95%) cellulose fibres to levelling off degree of polymerization by HCI (g) •  $\rightarrow$  Hydrolysis leads to reduced water uptake

Engineering

Aalto University **School of Chemical** 

Substrate: cotton linters

### Further results on water uptake



- Hydrolysis of dry (~95%) cellulose fibres to levelling off degree of polymerization by HCI (g) •
- $\rightarrow$  Hydrolysis leads to reduced water uptake
- Reduced water uptake monitored by: WRV, D<sub>2</sub>O exchange, dynamic vapor sorption, and thermoporosimetry



School of Chemical

Solala et al. Macromol. Rapid Commun. 2021, 42, 2100092

### Reasoning reduced water uptake

Small angle X-ray scattering (SAXS) of centre-tocentre distance between cellulose microfibrils

| Hydrolysis time, min | d, nm |
|----------------------|-------|
| 0                    | 11.6  |
| 30                   | 9.9   |
| 120                  | 9.4   |
| 240                  | 9.1   |
| 360                  | 8.9   |
| 1440                 | 8.6   |

#### Hypothesis on rearrangement



Hydrophobic planes on cellulose crystals coalesce and the microfibrils move closer to each other.

 $\rightarrow$  Clear rearrangement on the mesoscale

Aalto University School of Chemical Engineering

Solala et al. Macromol. Rapid Commun. 2021, 42, 2100092

# Effect of ultrastructure and accessibility on enzymatic hydrolysis



### **Basics of enzymatic hydrolysis**

Cellulose degrading enzymes consist of: - cellulose binding module

- catalytic core



(1) The enzyme undergoes *specific adsorption* on cellulose via binding module
 (2) Cellulose is degraded by the catalytic core



### **Basics of enzymatic hydrolysis**



CBH I works from the reducing end of the cellulose chain.

CBH II works from the non-reducing end of the cellulose chain.

EG works on the amorphous segments of the microfibril.



NOTE: A mixture or CBH, EG and  $\beta$ -glucanase is always required to completely convert cellulose to glucose.

### Hornification and hydrolysis



Fluorescent labelling of cellulase enzymes

Imai et al. *Cellulose* **2019**, *26*, 7653.

> Aalto University School of Chemical Engineering

### Hornification and hydrolysis





Imai et al. *Cellulose* **2019**, *26*, 7653.

### **Enzymatic hydrolysis proceeding**

Contrary to what is commonly thought, crystallinity of cellulose stays constant throughout enzymatic hydrolysis with a cellulase mixture.



Amorphous segments are NOT hydrolysed first.

Hall et al. FEBS J. 2010, 277, 1571.

### **Enzymatic hydrolysis proceeding**

Hydrolysis rate depends on the crystallinity.



 $\rightarrow$  Decrease in crystallinity of cellulose  $\rightarrow$  increase in hydrolysis rate.

Aalto University School of Chemical Engineering

Hall et al. FEBS J. 2010, 277, 1571.

### **Enzymatic hydrolysis: visualization**

- Cellulose binding domains are not the selective components that, for example, recognize reducing or non-reducing chain ends
- Rather, the enzyme can adsorb at any point on the microfibril and the catalytic core causes the enzyme to move according to its selectivity.



Example: movement of CBH I sliding on crystalline cellulose towards the reducing end. (Visualized by high-speed AFM.)

Aalto University School of Chemical Engineering

Igarashi et al. J. Biol. Chem. 2009, 284, 36186.

### **Enzymatic hydrolysis: visualization**



Overcrowding or *traffic jams* hinder cellulase adsorption and activity on narrow microfibrils, such as cellulose I

Aalto University School of Chemical Engineering

Igarashi et al. Science 2011, 333, 1279

### Presemo

Take out your smartphones or laptops: <u>https://presemo.aalto.fi/l2010degradation</u>



### Summary

- Acid hydrolysis is an anomaly within cellulose reactions: reduced accessibility results in an increased hydrolysis rate
- Hydrolysis in solid/gas system (HCI (g)) is not governed by accessibility
- Enzymatic hydrolysis is governed by a complex interplay between crystallinity, crystallite size, and basic accessibility

