Cellulose chemistry

Course information

Prof. Eero Kontturi 6th June 2023

Learning outcomes

After the course, the student will be able to:

- Distinguish the common pathways of cellulose modification
- Identify the main challenges and bottlenecks in cellulose modification
- Identify the main pathways, motivation, and challenges in cellulose degradation
- Choose a correct approach to attach a certain functional group on cellulose / nanocellulose
- Select a suitable analytical approach to analyze the modification and quantify its extent

How the course proceeds

- 8 lectures given on 6th 9th June 2023
- Group work: literature review related to the topic of cellulose modification
- Group work commences on the lecture week (6th 9th June)
- Deadline to submit the group work: 15th August

Lecture schedule

Time / Date	Tue 6th June	Wed 7th June	Thu 8th June	Fri 9th June
10-12	Cellulose chemistry: Introduction Eero Kontturi	Cellulose dissolution Alistair King (VTT)	Modification of nanocellulose Wim Thielemans (KU Leuven, Belgium)	Shaping of cellulose through dissolution and regeneration Michael Hummel
12-13				
13-15	Cellulose degradation Eero Kontturi	Modification of cellulose, Part I Alistair King (VTT)	Modification of nanocellulose during isolation Eero Kontturi	GROUP WORK
15-16	GROUP WORK	Modification of cellulose, Part II Alistair King (VTT)	GROUP WORK	GROUP WORK

Group work

- Performed in groups of 2 students
- Consists of a literature review, written in a style of a critical review article
- Must encompass at least 40 references
- 4 slots are dedicated to getting started with the group work this week: I will be there to help you with it
- Submit through a Turnitin link on MyCourses homepage
- Deadline: 15th August

Group work – remarks on grading

- Be clear of the motivation: Why has the review been written?
 What is the target audience? What other reviews exist on a similar topic and how are they different from yours?
- Be critical of the sources do not just descriptively list what has been done
- Besides qualitative comparison, try to include also quantitative comparison of the sources with each other – compile data into tables (or even figures) if possible

Group work – getting started

We will start on Tuesday afternoon (6th June)

- (1) Form the groups, that is, find a pair with whom you will do the group work
- (2) Choose a topic or identify an area of research: I can help you to find a more explicit topic
- (3) All groups should come up with the exact topic on Thursday afternoon (8th June) at the latest
- (4) Get started; I will be here this week to help you find literature and make other recommendations

Possible topics / research areas

- Regioselective modification of cellulose
- Analyzing the chemical modification of nanocellulose
- Modification of cellulose by inorganic groups
- Carboxymethylation/acetylation/methylation pathways for cellulose
- Heterogeneous vs. homogeneous modification of cellulose
- Modification of cellulose/nanocellulose for a certain functionality (materials purpose)
- Modification of cellulose nanocrystals vs. cellulose nanofibres

Possible topics / research areas

- Industrial usage of a common cellulose derivative: carboxymethyl cellulose, methyl cellulose, cellulose acetate
- Acid hydrolysis vs. enzymatic hydrolysis of cellulose
- Aqueous pathways for nanocellulose modification
- How the supramolecular structure of cellulose influences its degradation behaviour
- Modification of cellulose with the aim to regenerate films/fibres

