

Nanocellulose: modification during preparation

CHEM-L2010 Cellulose chemistry Eero Kontturi

8th June 2023

Learning objectives

After this lecture, you should be able to:

- \bullet Explain why nanocellulose is important
- •Distinguish cellulose nanofibres (CNFs) and cellulose nanocrystals (CNCs)
- \bullet List the main preparation routes to CNFs and CNCs
- \bullet List the main routes to modification during the preparation of nanocellulose

Outline

(1) Different types of nanocellulose: Terminological issues (2) Preparation of nanocellulose:

- -Cellulose nanofibres (CNF) (including bacterial cellulose)
- Cellulose nanocrystals (CNC)

(3) Modification of CNF

(4) Modification of CNC

Types of nanocellulose

(1) Cellulose nanofibres

- mechanically isolated microfibrils
- chemically isolated microfibrils (TEMPO-oxidation)
- bacterial cellulose

(2) Cellulose nanocrystals

rods of highly crystalline cellulose, isolated by acid hydrolysis

Types of nanocellulose: terminological issues

(1) Cellulose nanofibres

Synonyms (used in literature) for mechanically isolated nanofibrillar cellulose:

- microfibrillar cellulose
- cellulose nanofibrils
- cellulose microfibrils

(2) Cellulose nanocrystals

Synonyms used in literature:

- cellulose whiskers
- cellulose nanowhiskers
- cellulose microfibrils
- **microcrystalline cellulose**
- nanocrystalline cellulose

Note: microcrystalline cellulose is in its more common use acompletely different material (micron-sized cellulose crystals).

Cellulose nanofibres: preparation

Ultrastructure of native cellulose

Aalto University School of Chemical Technology

Ultrastructure: cellulose microfibrils

Aggregates: 12-20 nm

AFM image of a surface of bleached birch kraft pulp; sample untreated.

 $\frac{2-20}{10}$ Individual microfibrils: ~3.5 nm

TEM image of longitudinal cross-section of chlorite delignified pine cell wall; freeze-dried and stained.

Imaged by M. Suchy 2008. A. Heyn *J. Ultrastructure Res.* **1969**, 26, 52.

Cellulose nanofibres

Preparation of nanofibrillar cellulose aims at isolating the individual microfibrils (nanofibrils) from the cell wall structure.

Seminal challenges in isolation:

- **tight, hierarchical structure of the plant cell wall**
- **inherent tendency of cellulose to aggregate**

EARLY EXAMPLES OF INDIVIDUALIZATION OF MICROFIBRILSMETHOD: ULTRASONICATION

Gardner and Blackwell*J. Polym. Sci. C* **1971**, *36*, 327.

From aspen holocellulose From valonia alga

S.K. Asunmaa

Tappi **1967**, *49*, 319.

First attempt to isolate microfibrils for materials science purposes.

Turbak et al. *J. Appl. Polym. Sci. Appl. Polym. Symp.* **1983**, *37*, 815.

Enzymatic pretreatment to bleached sulphite pulp.

Microfibrils and microfibril aggregates, ca. 5-10 nm in size.

Pääkkö et al. *Biomacromolecules* **2007**, *8*, 1934.

Aalto University School of Chemical Technology

Wood powder, delignified by chlorite, hemicellulose matrix leached out by alkaline treatment \rightarrow 1 pass through Masuko grinder

Highly monodisperse 15 nm wide microfibril aggregates

Aalto Universitv **School of Chemical Technology**

Abe et al. *Biomacromolecules* **2007**, *8*, 3276.

TEMPO-mediated oxidation

- - 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) is an oxidation catalyst
- TEMPO-NaBr-NaClO –system selectively oxidized **primary alcohols** in polysaccharides, i.e., C6 position in cellulose

Pioneered for polysaccharides: de Nooy et al. *Carbohydr. Res.* **1995**, *269*, 89.

Pioneered for cellulose:Isogai and Kato *Cellulose* **1998**, *5*, 153.

RESULT: highly monodisperse microfibrils (3-4 nm width)

Saito et al. *Biomacromolecules* **2006**, *7*, 1687. Saito et al. *Biomacromolecules* **2007**, *8*, 2485.

Why do we get individual microfibrils from TEMPO-oxidation?

Only the surface of the microfibrils is oxidized \rightarrow electrostatic repulsion.

Image from: Okita et al. *Biomacromolecules* **2010**, *11*, 1696.

Effect of starting material

Aalto University School of Chemical Technoloav

Saito et al. *Biomacromolecules* **2006**, *7*, 1687.

Aalto University School of Chemical

- - TEMPO-mediated oxidation of cellulose reduces DP, especially with regenerated cellulose grades
- extensive survey on DP: Isogai et al. *Cellulose* **2009**, *16*, 117.
- however, recent research points out that at neutral conditions in a TEMPO/NaClO/NaClO $_2$ system, the DP reduction is minimized

Hirota et al. *Carbohydr. Polym.* **2009**, *78*, 330.

Neutral conditions (TEMPO/NaClO/NaClO 2) system result in straighter microfibrils (less defects).

Saito et al. *Biomacromolecules* **2009**, *10*, 1992.

Cellulose nanofibres: bacterial cellulose

- a species of bacteria (*acetobacteria xylinum*) is able to produce pure cellulose microfibrils from sugars
- individual microfibrils are formed on spot
- macroscopically, bacterial cellulose forms a gel like many other types of nanofibrillar cellulose

 the microfibrils from bacterial cellulose are larger than in plant cellulose: cross section $>$ 70-140 nm \times 7 nm

Aalto Universitv **School of Chemical** Iguchi et al. *J. Mater. Sci.* **2000**, *35*, 261.

Cellulose nanocrystals: preparation

Structure of cellulose microfibril

Crystallographic data presents evidence that cellulose within microfibrils is nottotally crystalline.

Proposition: cellulose runs through alternating crystalline and " amorphous" regions.

Aalto University School of Chemical Technoloav

Structure of cellulose microfibril

SANS* pattern of untreated ramie

Crystallite length (i.e. length of crystalline domains) by SANS agrees with the level-off degree of polymerization (LODP).

Nishiyama et al. *Biomacromolecules* **2003**, *4*, 1013.

Cellulose nanocrystals

Preparation of cellulose nanocrystals is based on the fringed fibrillar structure of the native cellulose microfibril.

Controlled acid hydrolysis leads to disruption of Disordered domains leaving crystalline cellulose intact.

Result: cellulose nanocrystals

Rånby *Discuss. Faraday Soc.* 1951, *11*, 158.

Cellulose nanocrystals – surface modification during preparation

When prepared with sulfuric acid, organic sulphate groups are introduced on the surface of the nanorods.

STABLE SUSPENSION IN WATER

Cellulose nanocrystals – liquid crystals

Cellulose nanocrystals spontaneously forms a liquid crystal phase in solution.

Photograph of rodlike nanocrystals in aqueous suspension.

The liquid crystal phase has been formed.

chiral nematic phase formed by cellulose crystallites

tight packing by the chiral interaction of screwlike rods

Revol et al. *Int. J. Biol. Macromol.* **1992**, *14*, 170. Fleming et al. *Chem. Eur. J.* **2001**, *7*, 1831. Habibi et al. *Chem. Rev.* **2010**, *110*, 3479.

Cellulose nanocrystals – new preparation method with acid vapour

Concept for preparation of cellulose nanocrystals with acid vapor

- •Hydrogren chloride (HCl) vapor adsorbs on fibre surface
- •Fibre surface is always covered by water in ambient conditions
- \rightarrow HCI dissociates in water, i.e., it becomes an acid
- \rightarrow Acid and water degrade cellulose until the LODP
- \rightarrow Nanocrystals can be isolated from the hydrolysed fibres

Degradation of cellulose by HCl vapour

Cotton linter fibres (Whatman 1 filter paper)

Aalto University School of Chemical Technology

HCl accumulation on fibres

Because HCl resides originally in vapour phase, it must reach the fibres by adsorption

Fibres are always covered by a thin layer of water (3-5%)

Practical CNC preparation with HCl vapour

Hydrolysis with HCl vapour: 35% HCl, 4 h, room temperature

Grinding the hydrolysed substrate in a Wiley mill

Dispersing the powder in formic acid (heavy sonication)

Note: hydrolysis with HCl(g) is easy, dispersion of CNCs is difficult

 5×5 µm²

 2×2 µm²

Angew. Chem. Int. Ed. **2016**, *55*, 14455.

CNCs by acid gas and TEMPO-oxidation

Pääkkönen et al. *ACS Sustainable Chem. Eng.* **2019**, *7*, 14384.

Phosphorylation of CNCs

Kröger et al. *Biomacromolecules* **2023**, *24*, 1318.

Phosphorylation of CNC

Kröger et al. *Biomacromolecules* **2023**, *24*, 1318.

• Preparation / isolation of nanocellulose does make a difference to its surface chemistry

