Module B2: Material Substitution

AAE-E3120 Circular Economy for Energy Storage

Prof. Annukka Santasalo-Aarnio

Learning outcomes

- Recognize the material choice effect to degradation mechanisms of the system
 - What are the frame of active materials we can select?
- Develop new design for recycling approach for energy storage application and justify with scientific argumentation
 - High activity (how to ensure that with active material selection?)

Active materials - In electrochemical systems

Why have we selected problematic materials for the active materials?

Challenged with active materials

Electrochemical cell

When voltage is applied

Ions in the electrolyte
(if liquid) will organize
to the electrode
surface and create a
Double Layer

Diffusion vicinity of the electrode

Adsorption to the electrode

Reaction: electron transfer

Desorption
From the electrode

Diffusion
Back to the bulk

Active materials - Requirement for catalyst materials

Why have we selected problematic materials for the active materials?

Active materials

Lecture Journal What is a catalyst? Electrocatalyst?

Active materials

Lecture Journal What is a catalyst? Electrocatalyst?

Electrocatalyst

A material working a catalyst in a reaction involving an electron transfer.

Metal atoms

Metal atoms

If there are more electrons on the bonding orbital – the bond is stable

Formed of many metal atoms
- > Orbitals incorporate to
continuous energy bands

Conduction band

Fermi level

Valence band

$$E_F^M = -\Phi^M = \tilde{\mu}_e^M$$

Formed of many metal atoms
- > Orbitals incorporate to
continuous energy bands

Conduction band

Fermi level

Valence band

Work function of a uncharged metal: The electrical work needed to remove an electron from the Fermi level of the metal to vacuum

Electrode potential

$$E_F^M = -\Phi^M = \widetilde{\mu}_e^M$$

Work function of uncharged electrode is?

$$\Phi^M =$$

Uncharged electrode

$$\widetilde{\mu}_e^M = \mu_e^M - F \chi^M$$

$$E_F^M = -\Phi^M = \widetilde{\mu}_e^M$$

Work function of uncharged electrode is?

$$\Phi^{M} = F\chi^{M} - \mu_{e}^{M}$$

Uncharged electrode

$$\widetilde{\mu}_e^M = \mu_e^M - F \chi^M$$

$$E_F^M = -\Phi^M = \widetilde{\mu}_e^M$$

Work function of uncharged electrode is?

$$\Phi^{M} = F\chi^{M} - \mu_{e}^{M}$$

Uncharged electrode

$$\widetilde{\mu}_e^M = \mu_e^M - F \chi^M$$

Work function of a metal effects

- Surface potential -> Adsoprtion of molecules on the electrode

Work Function

Work function of a metal effects

- Surface potential -> Adsoprtion of molecules on the electrode

$$\Phi^{M} = F\chi^{M} - \mu_{e}^{M}$$

Different metals

	Ф(eV)
Pt	6.35 ¹
Au	5.10 ¹
Zn	4.3 ¹

Work Function – how that effects performance?

Current density / m.A. cm				-	Pt Pd Pd/Pt Pd/At		
-5	-0.6	-0.4	-0.2 E/V (v	0.0 vs.SCE)	0.2	0.4	_

J. Zhang et al. Electrochem. Commun. 9 (2007) 1298.

5.0

6.35

Pd

Pt

Surface orientation

Crystalline structures

	Φ (eV)
Pt(100)	5.82 ¹
Pt(110)	5.85^{2}
Pt(111)	6.07 ¹

- 1) M. Salmerón et al. Phys. Ref. B 28 (1983) 6758.
- D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 80th ed., CRC Press, Boca Raton 1999/2000.

E. Sairanen et al. / Applied Catalysis B: Environmental 148–149 (2014) 11

Methanol (solid line), 2-Propanol (dashed line) and 50/50 mixture (thin line) oxidation in 0.1 M HClO₄ electrolyte on different surface orientations.

A. Santasalo et al. Electrochem. Acta 54 (2009) 6576.

Work Function – how to modify?

Alloying metals effects the work function of the electrode

FIGURE 2: Schematic illustration of bimetallic NPs with different structures (a) alloy, (b) heterostructure, (c) core-shell, and (d) multishell structure.

Work Function – performance?

Ethanol oxidation in alkaline media (1 M KOH) on different catalyst. Au/C is gold nanoparticle catalyst on carbon support.

Lecture Journal

What would be the best catalyst for this particular reaction?

A. Geraldes et al. Electrochimica Acta 111 (2013) 455.

How to interpret the catalyst

material data?

3 Electrode set up: To study individual electrode reaction

How to interpret the catalyst

materia 3 Electrode system

In electrochemical cell: 25 °C 0.1 M HClO₄ + 1 M MeOH

Single cell fuel cell: 70 °C 1 M MeOH

Catalyst example: Direct Methanol Fuel Cell

Example: Direct Methanol Fuel

Cell

Total: $CH_3OH + 3/2 O_2 \longrightarrow CO_2 + 2 H_2O$

Electro-oxidation of methanol

Electro-oxidation of methanol

Electro-oxidation of methanol

Electro-oxidation of methanol

Electro-oxidation of methanol

Energy Levels - Batteries

Different voltages and chemistries Lithium ion battery (LIB)

Positive electrode

Discharge ->

$$CoO_2 + Li^+ + e^- <-> LiCoO_2$$

 $E^0 \sim 3.8 \text{ V}$

Negative electrode

$$LiC_6 + <-> C_6 + Li^+ + e^-$$

 $E^0 \sim 0.1 \text{ V}$

Full reaction

$$CoO_2 + LiC_6 < -> LiCoO_2 + C_6$$

$$E^0 \sim 3.7 \text{ V}$$

Different voltages and chemistries Lead (Pb) acid battery

Positive electrode

Discharge ->

$$PbO_2 + 3H^+ + HSO_4^- + 2 e^- <-> PbSO_4 + 2 H_2O$$
 $E^0 \sim 1.7 V$

Negative electrode

$$Pb + HSO_4^- < -> PbSO_4 + H^+ + 2e^-$$

 $E^0 \sim 0.4 \text{ V}$

Full reaction

$$PbO_2 + Pb + 2H_2SO_4 < -> 2 PbSO_4 + H_2O$$

 $E^0 \sim 2.1 \text{ V}$

How different electrode materials effect on battery voltage

Similarly, the materials of the positive and negative electrodes ->

effect on the battery voltage

A. Manthiram, An Outlook on Lithium Ion Battery Technology – ASC Central Science DOI: 10.1021/acscentsci.7b00288

Take a home message

From active materials to achieve
HIGH performance,
we must understand their impact on the electrode reaction.

This possess limitations to entirely change the materials.

Energy Material – Electrochemical Potential (how to derive)

Electrochemical potential (in general)

$$\widetilde{\mu}_i^a = \mu_i^a + z_i F \phi^a$$

For an electron in a metal phase?

Electrochemical potential (in general)

$$\widetilde{\mu}_i^a = \mu_i^a + z_i F \phi^a$$

For an electron in a metal phase

$$\widetilde{\mu}_e^M = \mu_e^M - F\phi^M$$

Electrochemical potential (in general)

$$\widetilde{\mu}_i^a = \mu_i^a + z_i F \phi^a$$

For an electron in a metal phase

$$\widetilde{\mu}_e^M = \mu_e^M - F\phi^M$$

Surface and outer potential?

Electrochemical potential (in general)

$$\widetilde{\mu}_i^a = \mu_i^a + z_i F \phi^a$$

For an electron in a metal phase

$$\widetilde{\mu}_{\scriptscriptstyle \rho}^{\scriptscriptstyle M} = \mu_{\scriptscriptstyle \rho}^{\scriptscriptstyle M} - F\phi^{\scriptscriptstyle M}$$

Surface and outer potential?

$$\widetilde{\mu}_e^M = \mu_e^M - F \chi^M - F \psi^M$$

Electrochemical potential (in general)

$$\widetilde{\mu}_i^a = \mu_i^a + z_i F \phi^a$$

For an electron in a metal phase

$$\widetilde{\mu}_e^M = \mu_e^M - F\phi^M$$

Surface and outer potential?

$$\widetilde{\mu}_{e}^{M} = \mu_{e}^{M} - F\chi^{M} - F\psi^{M}$$

If the electrode is not charged, outer potential of the metal is 0

Electrochemical potential (in general)

$$\widetilde{\mu}_i^a = \mu_i^a + z_i F \phi^a$$

For an electron in a metal phase

$$\widetilde{\mu}_e^M = \mu_e^M - F\phi^M$$

Surface and outer potential?

$$\widetilde{\mu}_{e}^{M} = \mu_{e}^{M} - F\chi^{M} - F\psi^{M}$$

If the electrode is not charged, outer potential of the metal is 0

$$\widetilde{\mu}_e^M = \mu_e^M - F \chi^M$$

