Detailed Contents

Chapter 1 Cells and Genomes	1	The Frog and the Zebrafish Provide Accessible Models for	0.1
THE UNIVERSAL FEATURES OF CELLS ON EARTH	2	Vertebrate Development	35
All Cells Store Their Hereditary Information in the Same Linear	2	The Mouse Is the Predominant Mammalian Model Organism	3
Chemical Code: DNA	2	Humans Report on Their Own Peculiarities We Are All Different in Detail	36 38
All Cells Replicate Their Hereditary Information by Templated	2		30
Polymerization	3	To Understand Cells and Organisms Will Require Mathematics, Computers, and Quantitative Information	38
All Cells Transcribe Portions of Their Hereditary Information into		Summary	39
the Same Intermediary Form: RNA	4	Problems	39
All Cells Use Proteins as Catalysts	5	References	4
All Cells Translate RNA into Protein in the Same Way	6		
Each Protein Is Encoded by a Specific Gene	7	Chapter 2 Cell Chemistry and Bioenergetics	43
Life Requires Free Energy	8	THE CHEMICAL COMPONENTS OF A CELL	11
All Cells Function as Biochemical Factories Dealing with the Same	_	Water Is Held Together by Hydrogen Bonds	4; 4
Basic Molecular Building Blocks	8	Four Types of Noncovalent Attractions Help Bring Molecules	44
All Cells Are Enclosed in a Plasma Membrane Across Which		Together in Cells	4
Nutrients and Waste Materials Must Pass	8	Some Polar Molecules Form Acids and Bases in Water	4
A Living Cell Can Exist with Fewer Than 500 Genes	9	A Cell Is Formed from Carbon Compounds	4
Summary	10	Cells Contain Four Major Families of Small Organic Molecules	4
THE DIVERSITY OF GENOMES AND THE TREE OF LIFE	10	The Chemistry of Cells Is Dominated by Macromolecules with	
Cells Can Be Powered by a Variety of Free-Energy Sources	10	Remarkable Properties	4
Some Cells Fix Nitrogen and Carbon Dioxide for Others	12	Noncovalent Bonds Specify Both the Precise Shape of a	
The Greatest Biochemical Diversity Exists Among Prokaryotic Cells	12	Macromolecule and Its Binding to Other Molecules	49
The Tree of Life Has Three Primary Branches: Bacteria, Archaea,		Summary	50
and Eukaryotes	14	CATALYSIS AND THE USE OF ENERGY BY CELLS	5
Some Genes Evolve Rapidly; Others Are Highly Conserved	15	Cell Metabolism Is Organized by Enzymes	5
Most Bacteria and Archaea Have 1000-6000 Genes	16	Biological Order Is Made Possible by the Release of Heat Energy	Ŭ
New Genes Are Generated from Preexisting Genes	16	from Cells	52
Gene Duplications Give Rise to Families of Related Genes Within		Cells Obtain Energy by the Oxidation of Organic Molecules	54
a Single Cell	17	Oxidation and Reduction Involve Electron Transfers	5
Genes Can Be Transferred Between Organisms, Both in the		Enzymes Lower the Activation-Energy Barriers That Block	
Laboratory and in Nature	18	Chemical Reactions	5
Sex Results in Horizontal Exchanges of Genetic Information		Enzymes Can Drive Substrate Molecules Along Specific Reaction	
Within a Species	19	Pathways	58
The Function of a Gene Can Often Be Deduced from Its Sequence	20	How Enzymes Find Their Substrates: The Enormous Rapidity of	
More Than 200 Gene Families Are Common to All Three Primary		Molecular Motions	59
Branches of the Tree of Life	20	The Free-Energy Change for a Reaction, ΔG , Determines Whether	
Mutations Reveal the Functions of Genes	21	It Can Occur Spontaneously	60
Molecular Biology Began with a Spotlight on E. coli	22	The Concentration of Reactants Influences the Free-Energy	_
Summary	22	Change and a Reaction's Direction	6
GENETIC INFORMATION IN EUKARYOTES	23	The Standard Free-Energy Change, \deltaG°, Makes It Possible	e.
Eukaryotic Cells May Have Originated as Predators	24	to Compare the Energetics of Different Reactions The Equilibrium Constant and ΔG° Are Readily Derived from	6
Modern Eukaryotic Cells Evolved from a Symbiosis	25	Each Other	62
Eukaryotes Have Hybrid Genomes	27	The Free-Energy Changes of Coupled Reactions Are Additive	6
Eukaryotic Genomes Are Big	28	Activated Carrier Molecules Are Essential for Biosynthesis	6
Eukaryotic Genomes Are Rich in Regulatory DNA	29	The Formation of an Activated Carrier Is Coupled to an	0.
The Genome Defines the Program of Multicellular Development	29	Energetically Favorable Reaction	64
Many Eukaryotes Live as Solitary Cells	30	ATP Is the Most Widely Used Activated Carrier Molecule	6
A Yeast Serves as a Minimal Model Eukaryote	30	Energy Stored in ATP is Often Harnessed to Join Two Molecules	
The Expression Levels of All the Genes of An Organism		Together	6
Can Be Monitored Simultaneously	32	NADH and NADPH Are Important Electron Carriers	6
Arabidopsis Has Been Chosen Out of 300,000 Species		There Are Many Other Activated Carrier Molecules in Cells	68
As a Model Plant	32	The Synthesis of Biological Polymers Is Driven by ATP Hydrolysis	70
The World of Animal Cells Is Represented By a Worm, a Fly,		Summary	73
a Fish, a Mouse, and a Human	33	HOW CELLS OBTAIN ENERGY FROM FOOD	73
Studies in <i>Drosophila</i> Provide a Key to Vertebrate Development	33	Glycolysis Is a Central ATP-Producing Pathway	7
The Vertebrate Genome Is a Product of Repeated Duplications	34	Fermentations Produce ATP in the Absence of Oxygen	7

xxii

DETAILED CONTENTS xxiii

Experiments with Frog Embryos Suggest that both Activating		The Proteins at a Replication Fork Cooperate to Form a	
and Repressive Chromatin Structures Can Be Inherited		Replication Machine	249
Epigenetically	205	A Strand-Directed Mismatch Repair System Removes Replication	
Chromatin Structures Are Important for Eukaryotic Chromosome	000	Errors That Escape from the Replication Machine	250
Function Summary	206 207	DNA Topoisomerases Prevent DNA Tangling During Replication DNA Replication Is Fundamentally Similar in Eukaryotes and	251
		Bacteria	253
THE GLOBAL STRUCTURE OF CHROMOSOMES Chromosomes Are Folded into Large Loops of Chromatin	207 207	Summary	254
Polytene Chromosomes Are Uniquely Useful for Visualizing	201	THE INITIATION AND COMPLETION OF DNA REPLICATION	
Chromatin Structures	208	IN CHROMOSOMES	254
There Are Multiple Forms of Chromatin	210	DNA Synthesis Begins at Replication Origins	254
Chromatin Loops Decondense When the Genes Within Them		Bacterial Chromosomes Typically Have a Single Origin of DNA	
Are Expressed	211	Replication	255
Chromatin Can Move to Specific Sites Within the Nucleus to	010	Eukaryotic Chromosomes Contain Multiple Origins of Replication	256
Alter Gene Expression Networks of Macromolecules Form a Set of Distinct Biochemical	212	In Eukaryotes, DNA Replication Takes Place During Only One Part of the Cell Cycle	258
Environments inside the Nucleus	213	Different Regions on the Same Chromosome Replicate at Distinct	200
Mitotic Chromosomes Are Especially Highly Condensed	214	Times in S Phase	258
Summary	216	A Large Multisubunit Complex Binds to Eukaryotic Origins of	
HOW GENOMES EVOLVE	216	Replication	250
Genome Comparisons Reveal Functional DNA Sequences by		Features of the Human Genome That Specify Origins of	000
their Conservation Throughout Evolution	217	Replication Remain to Be Discovered	260
Genome Alterations Are Caused by Failures of the Normal		New Nucleosomes Are Assembled Behind the Replication Fork Telomerase Replicates the Ends of Chromosomes	261 262
Mechanisms for Copying and Maintaining DNA, as well as	017	Telomeres Are Packaged Into Specialized Structures That	202
by Transposable DNA Elements The Genome Sequences of Two Species Differ in Proportion to	217	Protect the Ends of Chromosomes	263
the Length of Time Since They Have Separately Evolved	218	Telomere Length Is Regulated by Cells and Organisms	264
Phylogenetic Trees Constructed from a Comparison of DNA	210	Summary	265
Sequences Trace the Relationships of All Organisms	219	DNA REPAIR	266
A Comparison of Human and Mouse Chromosomes Shows		Without DNA Repair, Spontaneous DNA Damage Would Rapidly	
How the Structures of Genomes Diverge	221	Change DNA Sequences	267
The Size of a Vertebrate Genome Reflects the Relative Rates	000	The DNA Double Helix Is Readily Repaired	268
of DNA Addition and DNA Loss in a Lineage We Can Infer the Sequence of Some Ancient Genomes	222 223	DNA Damage Can Be Removed by More Than One Pathway Coupling Nucleotide Excision Repair to Transcription Ensures	269
Multispecies Sequence Comparisons Identify Conserved DNA	220	That the Cell's Most Important DNA is Efficiently Repaired	271
Sequences of Unknown Function	224	The Chemistry of the DNA Bases Facilitates Damage Detection	271
Changes in Previously Conserved Sequences Can Help		Special Translesion DNA Polymerases Are Used in Emergencies	273
Decipher Critical Steps in Evolution	226	Double-Strand Breaks Are Efficiently Repaired	273
Mutations in the DNA Sequences That Control Gene Expression		DNA Damage Delays Progression of the Cell Cycle	276
Have Driven Many of the Evolutionary Changes in Vertebrates	227	Summary	276
Gene Duplication Also Provides an Important Source of Genetic Novelty During Evolution	227	HOMOLOGOUS RECOMBINATION	276
Duplicated Genes Diverge	228	Homologous Recombination Has Common Features in All Cells DNA Base-Pairing Guides Homologous Recombination	277 277
The Evolution of the Globin Gene Family Shows How DNA		Homologous Recombination Can Flawlessly Repair Double-	211
Duplications Contribute to the Evolution of Organisms	229	Strand Breaks in DNA	278
Genes Encoding New Proteins Can Be Created by the		Strand Exchange Is Carried Out by the RecA/Rad51 Protein	279
Recombination of Exons	230	Homologous Recombination Can Rescue Broken DNA	
Neutral Mutations Often Spread to Become Fixed in a Population, with a Probability That Depends on Population Size	230	Replication Forks	280
A Great Deal Can Be Learned from Analyses of the Variation	200	Cells Carefully Regulate the Use of Homologous Recombination in DNA Repair	280
Among Humans	23 2	Homologous Recombination Is Crucial for Meiosis	282
Summary	234	Meiotic Recombination Begins with a Programmed Double-Strand-	
Problems	234	Break	282
References	236	Holliday Junctions Are Formed During Meiosis	284
		Homologous Recombination Produces Both Crossovers and	00
Chapter 5 DNA Replication, Repair, and		Non-Crossovers During Meiosis	284
Recombination	237	Homologous Recombination Often Results in Gene Conversion Summary	286 286
THE MAINTENANCE OF DNA SEQUENCES	237		200
Mutation Rates Are Extremely Low	237	TRANSPOSITION AND CONSERVATIVE SITE-SPECIFIC RECOMBINATION	287
Low Mutation Rates Are Necessary for Life as We Know It	238	Through Transposition, Mobile Genetic Elements Can Insert	201
Summary	239	Into Any DNA Sequence	288
DNA REPLICATION MECHANISMS	239	DNA-Only Transposons Can Move by a Cut-and-Paste	
Base-Pairing Underlies DNA Replication and DNA Repair	239	Mechanism	288
The DNA Replication Fork Is Asymmetrical	240	Some Viruses Use a Transposition Mechanism to Move	000
The High Fidelity of DNA Replication Requires Several	242	Themselves Into Host-Cell Chromosomes	290
Proofreading Mechanisms Only DNA Replication in the 5'-to-3' Direction Allows Efficient	<u> </u>	Retroviral-like Retrotransposons Resemble Retroviruses, but Lack a Protein Coat	29 1
Error Correction	244	A Large Fraction of the Human Genome Is Composed of	
A Special Nucleotide-Polymerizing Enzyme Synthesizes Short		Nonretroviral Retrotransposons	291
RNA Primer Molecules on the Lagging Strand	245	Different Transposable Elements Predominate in Different	
Special Proteins Help to Open Up the DNA Double Helix in Front	0.40	Organisms	292
of the Replication Fork	246	Genome Sequences Reveal the Approximate Times at Which	000
A Sliding Ring Holds a Moving DNA Polymerase Onto the DNA	246	Transposable Elements Have Moved	292

		B	
Conservative Site-Specific Recombination Can Reversibly		Proteins Are Made on Polyribosomes	349
Rearrange DNA	292	There Are Minor Variations in the Standard Genetic Code	349
Conservative Site-Specific Recombination Can Be Used to		Inhibitors of Prokaryotic Protein Synthesis Are Useful as	
Turn Genes On or Off	294	Antibiotics	351
Bacterial Conservative Site-Specific Recombinases Have Become		Quality Control Mechanisms Act to Prevent Translation of	
Powerful Tools for Cell and Developmental Biologists	294	Damaged mRNAs	351
Summary	295	Some Proteins Begin to Fold While Still Being Synthesized	353
Problems	296	Molecular Chaperones Help Guide the Folding of Most Proteins	354
References	298	Cells Utilize Several Types of Chaperones	355
		Exposed Hydrophobic Regions Provide Critical Signals for	
Chapter 6 How Cells Read the Genome:		Protein Quality Control	357
·	000	The Proteasome Is a Compartmentalized Protease with	
From DNA to Protein	299	Sequestered Active Sites	357
FROM DNA TO RNA	301	Many Proteins Are Controlled by Regulated Destruction	359
RNA Molecules Are Single-Stranded	302	There Are Many Steps From DNA to Protein	361
Transcription Produces RNA Complementary to One Strand	002	Summary	362
of DNA	302	THE RNA WORLD AND THE ORIGINS OF LIFE	362
RNA Polymerases Carry Out Transcription	303	Single Stranded RNA Molecules Can Fold into Highly Elaborate	002
Cells Produce Different Categories of RNA Molecules	305	Structures	363
	300	RNA Can Both Store Information and Catalyze Chemical	000
Signals Encoded in DNA Tell RNA Polymerase Where to Start and Stop	306	Reactions	364
Transcription Start and Stop Signals Are Heterogeneous in	300	How Did Protein Synthesis Evolve?	365
	207		365
Nucleotide Sequence	307	All Present Day Cells Use DNA as Their Hereditary Material	
Transcription Initiation in Eukaryotes Requires Many Proteins	309	Summary	366
RNA Polymerase II Requires a Set of General Transcription	040	Problems	366
Factors	310	References	368
Polymerase II Also Requires Activator, Mediator, and Chromatin-	0.4.0		
Modifying Proteins	312	Chapter 7 Control of Gene Expression	369
Transcription Elongation in Eukaryotes Requires Accessory			
Proteins	313	AN OVERVIEW OF GENE CONTROL	369
Transcription Creates Superhelical Tension	314	The Different Cell Types of a Multicellular Organism Contain	
Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA		the Same DNA	369
Processing	315	Different Cell Types Synthesize Different Sets of RNAs and	
RNA Capping Is the First Modification of Eukaryotic Pre-mRNAs	316	Proteins	370
RNA Splicing Removes Intron Sequences from Newly		External Signals Can Cause a Cell to Change the Expression	
Transcribed Pre-mRNAs	317	of Its Genes	372
Nucleotide Sequences Signal Where Splicing Occurs	319	Gene Expression Can Be Regulated at Many of the Steps	
RNA Splicing Is Performed by the Spliceosome	319	in the Pathway from DNA to RNA to Protein	372
The Spliceosome Uses ATP Hydrolysis to Produce a Complex		Summary	373
Series of RNA–RNA Rearrangements	321		
Other Properties of Pre-mRNA and Its Synthesis Help to Explain		CONTROL OF TRANSCRIPTION BY SEQUENCE-SPECIFIC	070
the Choice of Proper Splice Sites	321	DNA-BINDING PROTEINS	373
Chromatin Structure Affects RNA Splicing	323	The Sequence of Nucleotides in the DNA Double Helix Can Be	070
RNA Splicing Shows Remarkable Plasticity	323	Read by Proteins	373
Spliceosome-Catalyzed RNA Splicing Probably Evolved from		Transcription Regulators Contain Structural Motifs That Can	
Self-splicing Mechanisms	324	Read DNA Sequences	374
RNA-Processing Enzymes Generate the 3' End of Eukaryotic		Dimerization of Transcription Regulators Increases Their Affinity	
mRNAs	324	and Specificity for DNA	375
Mature Eukaryotic mRNAs Are Selectively Exported from the		Transcription Regulators Bind Cooperatively to DNA	378
Nucleus	325	Nucleosome Structure Promotes Cooperative Binding of	
Noncoding RNAs Are Also Synthesized and Processed in the		Transcription Regulators	379
Nucleus	327	Summary	380
The Nucleolus Is a Ribosome-Producing Factory	329	TRANSCRIPTION REGULATORS SWITCH GENES ON	
The Nucleus Contains a Variety of Subnuclear Aggregates	331	AND OFF	380
Summary	333	The Tryptophan Repressor Switches Genes Off	380
FROM RNA TO PROTEIN	333	Repressors Turn Genes Off and Activators Turn Them On	381
		An Activator and a Repressor Control the Lac Operon	382
An mRNA Sequence Is Decoded in Sets of Three Nucleotides	334		383
tRNA Molecules Match Amino Acids to Codons in mRNA	334	DNA Looping Can Occur During Bacterial Gene Regulation	384
tRNAs Are Covalently Modified Before They Exit from the Nucleus	336	Complex Switches Control Gene Transcription in Eukaryotes	304
Specific Enzymes Couple Each Amino Acid to Its Appropriate	000	A Eukaryotic Gene Control Region Consists of a Promoter	004
tRNA Molecule	336	Plus Many <i>cis</i> -Regulatory Sequences	384
Editing by tRNA Synthetases Ensures Accuracy	338	Eukaryotic Transcription Regulators Work in Groups	385
Amino Acids Are Added to the C-terminal End of a Growing		Activator Proteins Promote the Assembly of RNA Polymerase	000
Polypeptide Chain	339	at the Start Point of Transcription	386
The RNA Message Is Decoded in Ribosomes	340	Eukaryotic Transcription Activators Direct the Modification of	000
Elongation Factors Drive Translation Forward and Improve Its		Local Chromatin Structure	386
Accuracy	343	Transcription Activators Can Promote Transcription by Releasing	
Many Biological Processes Overcome the Inherent Limitations of		RNA Polymerase from Promoters	388
Complementary Base-Pairing	345	Transcription Activators Work Synergistically	388
Accuracy in Translation Requires an Expenditure of Free Energy	345	Eukaryotic Transcription Repressors Can Inhibit Transcription	
The Ribosome Is a Ribozyme	346	in Several Ways	389
Nucleotide Sequences in mRNA Signal Where to Start Protein		Insulator DNA Sequences Prevent Eukaryotic Transcription	
Synthesis	347	Regulators from Influencing Distant Genes	391
Stop Codons Mark the End of Translation	348	Summary	392

DETAILED CONTENTS xxv

MOLECULAR GENETIC MECHANISMS THAT CREATE AND		Hybridoma Cell Lines Are Factories That Produce Monoclonal	
MAINTAIN SPECIALIZED CELL TYPES	392	Antibodies	44
Complex Genetic Switches That Regulate Drosophila	000	Summary	44
Development Are Built Up from Smaller Molecules The Presential Fire Console Regulated by Combinatorial Controls	392	PURIFYING PROTEINS	44
The Drosophila Eve Gene Is Regulated by Combinatorial Controls Transcription Regulators Are Brought Into Play by Extracellular	394	Cells Can Be Separated into Their Component Fractions	44
Signals	395	Cell Extracts Provide Accessible Systems to Study Cell Functions	44
Combinatorial Gene Control Creates Many Different Cell Types	396	Proteins Can Be Separated by Chromatography Immunoprecipitation Is a Rapid Affinity Purification Method	449
Specialized Cell Types Can Be Experimentally Reprogrammed		Genetically Engineered Tags Provide an Easy Way to Purify	443
to Become Pluripotent Stem Cells	398	Proteins	450
Combinations of Master Transcription Regulators Specify Cell		Purified Cell-free Systems Are Required for the Precise	
Types by Controlling the Expression of Many Genes	398	Dissection of Molecular Functions	45
Specialized Cells Must Rapidly Turn Sets of Genes On and Off	399 400	Summary	45
Differentiated Cells Maintain Their Identity Transcription Circuits Allow the Cell to Carry Out Logic Operations	400 402	ANALYZING PROTEINS	45
Summary	404	Proteins Can Be Separated by SDS Polyacrylamide-Gel	
MECHANISMS THAT REINFORCE CELL MEMORY IN		Electrophoresis	45
PLANTS AND ANIMALS	404	Two-Dimensional Gel Electrophoresis Provides Greater Protein	45
Patterns of DNA Methylation Can Be Inherited When Vertebrate	101	Separation Specific Proteins Con Re Detected by Pletting with Antibodics	45; 45;
Cells Divide	404	Specific Proteins Can Be Detected by Blotting with Antibodies Hydrodynamic Measurements Reveal the Size and Shape of	45
CG-Rich Islands Are Associated with Many Genes in Mammals	405	a Protein Complex	45
Genomic Imprinting Is Based on DNA Methylation	407	Mass Spectrometry Provides a Highly Sensitive Method for	
Chromosome Wide Alterations in Chromatin Structure Can Be Inherited	400	Identifying Unknown Proteins	45
Epigenetic Mechanisms Ensure That Stable Patterns of Gene	409	Sets of Interacting Proteins Can Be Identified by Biochemical	
Expression Can Be Transmitted to Daughter Cells	411	Methods	45
Summary	413	Optical Methods Can Monitor Protein Interactions	45
POST-TRANSCRIPTIONAL CONTROLS	413	Protein Function Can Be Selectively Disrupted With Small Molecules	459
Transcription Attenuation Causes the Premature Termination of		Protein Structure Can Be Determined Using X-Ray Diffraction	46
Some RNA Molecules	414	NMR Can Be Used to Determine Protein Structure in Solution	46
Riboswitches Probably Represent Ancient Forms of Gene Control	414	Protein Sequence and Structure Provide Clues About Protein	
Alternative RNA Splicing Can Produce Different Forms of a Protein from the Same Gene	415	Function	462
The Definition of a Gene Has Been Modified Since the Discovery	415	Summary	460
of Alternative RNA Splicing	416	ANALYZING AND MANIPULATING DNA	46
A Change in the Site of RNA Transcript Cleavage and Poly-A		Restriction Nucleases Cut Large DNA Molecules into Specific	
Addition Can Change the C-terminus of a Protein	417	Fragments	464
RNA Editing Can Change the Meaning of the RNA Message	418	Gel Electrophoresis Separates DNA Molecules of Different Sizes	46
RNA Transport from the Nucleus Can Be Regulated	419	Purified DNA Molecules Can Be Specifically Labeled with Radioisotopes or Chemical Markers in vitro	46
Some mRNAs Are Localized to Specific Regions of the Cytosol The 5' and 3' Untranslated Regions of mRNAs Control Their	421	Genes Can Be Cloned Using Bacteria	46
Translation	422	An Entire Genome Can Be Represented in a DNA Library	469
The Phosphorylation of an Initiation Factor Regulates Protein		Genomic and cDNA Libraries Have Different Advantages and	
Synthesis Globally	423	Drawbacks	47
Initiation at AUG Codons Upstream of the Translation Start Can	10.1	Hybridization Provides a Powerful, But Simple Way to Detect	
Regulate Eukaryotic Translation Initiation Internal Ribosome Entry Sites Provide Opportunities for	424	Specific Nucleotide Sequences Genes Can Be Cloned in vitro Using PCR	47
Translational Control	425	PCR Is Also Used for Diagnostic and Forensic Applications	47; 47;
Changes in mRNA Stability Can Regulate Gene Expression	426	Both DNA and RNA Can Be Rapidly Sequenced	47
Regulation of mRNA Stability Involves P-bodies and Stress		To Be Useful, Genome Sequences Must Be Annotated	47
Granules	427	DNA Cloning Allows Any Protein to be Produced in Large	
Summary	428	Amounts	483
REGULATION OF GENE EXPRESSION BY NONCODING RNAs	429	Summary	484
Small Noncoding RNA Transcripts Regulate Many Animal and	100	STUDYING GENE EXPRESSION AND FUNCTION	48
Plant Genes Through RNA Interference miRNAs Regulate mRNA Translation and Stability	429 429	Classical Genetics Begins by Disrupting a Cell Process by	
RNA Interference Is Also Used as a Cell Defense Mechanism	431	Random Mutagenesis	48
RNA Interference Can Direct Heterochromatin Formation	432	Genetic Screens Identify Mutants with Specific Abnormalities Mutations Can Cause Loss or Gain of Protein Function	489 489
piRNAs Protect the Germ Line from Transposable Elements	433	Complementation Tests Reveal Whether Two Mutations Are in the	40
RNA Interference Has Become a Powerful Experimental Tool	433	Same Gene or Different Genes	490
Bacteria Use Small Noncoding RNAs to Protect Themselves	100	Gene Products Can Be Ordered in Pathways by Epistasis	
from Viruses Long Noncoding RNAs Have Diverse Functions in the Cell	433 435	Analysis	490
Summary	436	Mutations Responsible for a Phenotype Can Be Identified	
Problems	436	Through DNA Analysis	49
References	438	Rapid and Cheap DNA Sequencing Has Revolutionized Human Genetic Studies	49
		Linked Blocks of Polymorphisms Have Been Passed Down	43
Chapter 8 Analyzing Cells, Molecules, and		from Our Ancestors	49
Systems	439	Polymorphisms Can Aid the Search for Mutations Associated	
		with Disease	49
ISOLATING CELLS AND GROWING THEM IN CULTURE	440	Genomics Is Accelerating the Discovery of Rare Mutations That	40
Cells Can Be Isolated from Tissues	440	Predispose Us to Serious Disease Reverse Constinct Regime with a Known Constant Determines	493
Cells Can Be Grown in Culture Eukaryotic Cell Lines Are a Widely Used Source of	440	Reverse Genetics Begins with a Known Gene and Determines Which Cell Processes Require Its Function	494
Homogeneous Cells	442	Animals and Plants Can Be Genetically Altered	49
-		·	

The Bacterial CRISPR System Has Been Adapted to Edit Genomes in a Wide Variety of Species	497	Superresolution Fluorescence Techniques Can Overcome Diffraction-Limited Resolution	549
Large Collections of Engineered Mutations Provide a Tool for		Superresolution Can Also be Achieved Using Single-Molecule	
Examining the Function of Every Gene in an Organism RNA Interference Is a Simple and Rapid Way to Test Gene	498	Localization Methods Summary	551 554
Function Reporter Genes Reveal When and Where a Gene Is Expressed	499 501	LOOKING AT CELLS AND MOLECULES IN THE ELECTRON MICROSCOPE	554
In situ Hybridization Can Reveal the Location of mRNAs and Noncoding RNAs	502	The Electron Microscope Resolves the Fine Structure of the Cell Biological Specimens Require Special Preparation for Electron	554
Expression of Individual Genes Can Be Measured Using Quantitative RT-PCR	502	Microscopy Specific Macromolecules Can Be Localized by Immunogold	555
Analysis of mRNAs by Microarray or RNA-seq Provides a Snapshot of Gene Expression	503	Electron Microscopy	556
Genome-wide Chromatin Immunoprecipitation Identifies Sites on the Genome Occupied by Transcription Regulators	505	Different Views of a Single Object Can Be Combined to Give a Three-Dimensional Reconstruction	557
Ribosome Profiling Reveals Which mRNAs Are Being Translated in the Cell	505	Images of Surfaces Can Be Obtained by Scanning Electron Microscopy	558
Recombinant DNA Methods Have Revolutionized Human Health	506	Negative Staining and Cryoelectron Microscopy Both Allow	
Transgenic Plants Are Important for Agriculture	507	Macromolecules to Be Viewed at High Resolution Multiple Images Can Be Combined to Increase Resolution	559 561
Summary	508	Summary	562
MATHEMATICAL ANALYSIS OF CELL FUNCTIONS	509	Problems	563
Regulatory Networks Depend on Molecular Interactions	509	References	564
Differential Equations Help Us Predict Transient Behavior Both Promoter Activity and Protein Degradation Affect the Rate	512		
of Change of Protein Concentration	513	Chapter 10 Membrane Structure	565
The Time Required to Reach Steady State Depends on Protein Lifetime	514	THE LIPID BILAYER	566
Quantitative Methods Are Similar for Transcription Repressors	314	Phosphoglycerides, Sphingolipids, and Sterols Are the Major Lipids in Cell Membranes	566
and Activators	514	Phospholipids Spontaneously Form Bilayers	568
Negative Feedback Is a Powerful Strategy in Cell Regulation	515	The Lipid Bilayer Is a Two-dimensional Fluid	569
Delayed Negative Feedback Can Induce Oscillations	516	The Fluidity of a Lipid Bilayer Depends on Its Composition	571
DNA Binding By a Repressor or an Activator Can Be Cooperative	516	Despite Their Fluidity, Lipid Bilayers Can Form Domains of	F70
Positive Feedback Is Important for Switchlike Responses and Bistability	518	Different Compositions Lipid Droplets Are Surrounded by a Phospholipid Monolayer	572 573
Robustness Is an Important Characteristic of Biological Networks	520	The Asymmetry of the Lipid Bilayer Is Functionally Important	573
Two Transcription Regulators That Bind to the Same Gene	020	Glycolipids Are Found on the Surface of All Eukaryotic Plasma	010
Promoter Can Exert Combinatorial Control	520	Membranes	575
An Incoherent Feed-forward Interaction Generates Pulses	522	Summary	576
A Coherent Feed-forward Interaction Detects Persistent Inputs	522	MEMBRANE PROTEINS	576
The Same Network Can Behave Differently in Different Cells Due	523	Membrane Proteins Can Be Associated with the Lipid Bilayer	-70
to Stochastic Effects Several Computational Approaches Can Be Used to Model the	523	in Various Ways Lipid Anchors Control the Membrane Localization of Some	576
Reactions in Cells	524	Signaling Proteins	577
Statistical Methods Are Critical For the Analysis of Biological Data	524	In Most Transmembrane Proteins, the Polypeptide Chain	011
Summary	525	Crosses the Lipid Bilayer in an α-Helical Conformation	579
Problems	525	Transmembrane α Helices Often Interact with One Another	580
References	528	Some β Barrels Form Large Channels	580
		Many Membrane Proteins Are Glycosylated	582
Chapter 9 Visualizing Cells	529	Membrane Proteins Can Be Solubilized and Purified in Detergents	583
LOOKING AT CELLS IN THE LIGHT MICROSCORE	529	Bacteriorhodopsin Is a Light-driven Proton (H+) Pump That Traverses the Lipid Bilayer as Seven α Helices	586
LOOKING AT CELLS IN THE LIGHT MICROSCOPE The Light Microscope Can Resolve Details 0.2 µm Apart	530	Membrane Proteins Often Function as Large Complexes	588
Photon Noise Creates Additional Limits to Resolution When	550	Many Membrane Proteins Diffuse in the Plane of the Membrane	588
Light Levels Are Low	532	Cells Can Confine Proteins and Lipids to Specific Domains	
Living Cells Are Seen Clearly in a Phase-Contrast or a		Within a Membrane	590
Differential-Interference-Contrast Microscope	533	The Cortical Cytoskeleton Gives Membranes Mechanical	504
Images Can Be Enhanced and Analyzed by Digital Techniques	534	Strength and Restricts Membrane Protein Diffusion	591
Intact Tissues Are Usually Fixed and Sectioned Before Microscopy	535	Membrane-bending Proteins Deform Bilayers Summary	593 594
Specific Molecules Can Be Located in Cells by Fluorescence	500	Problems	595
Microscopy Antibodica Can Ba Lland to Datast Specific Malaculas	536 539	References	596
Antibodies Can Be Used to Detect Specific Molecules Imaging of Complex Three-Dimensional Objects Is Possible with	559		
the Optical Microscope	540	Chapter 11 Membrane Transport of Small Molecule	es.
The Confocal Microscope Produces Optical Sections by	0.0	and the Electrical Properties of Membranes	597
Excluding Out-of-Focus Light	540	·	
Individual Proteins Can Be Fluorescently Tagged in Living Cells		PRINCIPLES OF MEMBRANE TRANSPORT	597
and Organisms	542	Protein-Free Lipid Bilayers Are Impermeable to lons	598
Protein Dynamics Can Be Followed in Living Cells	543	There Are Two Main Classes of Membrane Transport Proteins:	500
Light-Emitting Indicators Can Measure Rapidly Changing	E 40	Transporters and Channels Active Transport Is Mediated by Transporters Coupled to an	598
Intracellular Ion Concentrations	546	Energy Source	599
Single Molecules Can Be Visualized by Total Internal Reflection Fluorescence Microscopy	547	Summary	600
Individual Molecules Can Be Touched, Imaged, and Moved Using	0+1	TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT	600
Atomic Force Microscopy	548	Active Transport Can Be Driven by Ion-Concentration Gradients	601

DETAILED CONTENTS xxvii

Transporters in the Plasma Membrane Regulate Cytosolic pH An Asymmetric Distribution of Transporters in Epithelial Cells	604	Nuclear Import Receptors Bind to Both Nuclear Localization Signals and NPC Proteins	652
Underlies the Transcellular Transport of Solutes There Are Three Classes of ATP-Driven Pumps	605 606	Nuclear Export Works Like Nuclear Import, But in Reverse The Ran GTPase Imposes Directionality on Transport Through	652
A P-type ATPase Pumps Ca ²⁺ into the Sarcoplasmic Reticulum in Muscle Cells	606	NPCs Transport Through NPCs Can Be Regulated by Controlling	653
The Plasma Membrane Na ⁺ -K ⁺ Pump Establishes Na ⁺ and K ⁺ Gradients Across the Plasma Membrane	607	Access to the Transport Machinery During Mitosis the Nuclear Envelope Disassembles	654 656
ABC Transporters Constitute the Largest Family of Membrane Transport Proteins	609	Summary	657
Summary	611	THE TRANSPORT OF PROTEINS INTO MITOCHONDRIA AND CHLOROPLASTS	658
CHANNELS AND THE ELECTRICAL PROPERTIES OF		Translocation into Mitochondria Depends on Signal Sequences	
MEMBRANES	611	and Protein Translocators	659
Aquaporins Are Permeable to Water But Impermeable to Ions Ion Channels Are Ion-Selective and Fluctuate Between Open	612	Mitochondrial Precursor Proteins Are Imported as Unfolded Polypeptide Chains	660
and Closed States The Membrane Potential in Animal Cells Depends Mainly on K ⁺	613	ATP Hydrolysis and a Membrane Potential Drive Protein Import	661
Leak Channels and the K+ Gradient Across the Plasma		Into the Matrix Space Bacteria and Mitochondria Use Similar Mechanisms to Insert	661
Membrane The Resting Potential Decays Only Slowly When the Na+-K+	615	Porins into their Outer Membrane	662
Pump Is Stopped	615	Transport Into the Inner Mitochondrial Membrane and Intermembrane Space Occurs Via Several Routes	663
The Three-Dimensional Structure of a Bacterial K ⁺ Channel		Two Signal Sequences Direct Proteins to the Thylakoid Membrane	000
Shows How an Ion Channel Can Work	617	in Chloroplasts	664
Mechanosensitive Channels Protect Bacterial Cells Against Extreme Osmotic Pressures	619	Summary	666
The Function of a Neuron Depends on Its Elongated Structure	620	PEROXISOMES	666
Voltage-Gated Cation Channels Generate Action Potentials in	004	Perexisemes Use Molecular Oxygen and Hydrogen Perexide to Perform Oxidation Reactions	666
Electrically Excitable Cells The Use of Channelrhodopsins Has Revolutionized the Study	621	A Short Signal Sequence Directs the Import of Proteins into	000
of Neural Circuits	623	Peroxisomes	667
Myelination Increases the Speed and Efficiency of Action Potential		Summary	669
Propagation in Nerve Cells	625	THE ENDOPLASMIC RETICULUM	669
Patch Clamp Recording Indicates That Individual Ion Channels Open in an All or Nothing Eachign	-626	The ER is Structurally and Functionally Diverse	670
Open in an All or Nothing Fashion Voltage Gated Cation Channels Are Evolutionarily and Structurally	-020	Signal Sequences Were First Discovered in Proteins Imported into the Rough ER	672
Related	-626	A Signal-Recognition Particle (SRP) Directs the ER Signal	0.2
Different Neuron Types Display Characteristic Stable Firing	627	Sequence to a Specific Receptor in the Rough ER Membrane	673
Properties Transmitter Gated Ion Channels Convert Chemical Signals into-	021	The Polypeptide Chain Passes Through an Aqueous Channel in the Translocator	675
Electrical Ones at Chemical Synapses	627	Translocation Across the ER Membrane Does Not Always	010
Chemical Synapses Can Be Excitatory or Inhibitory	629	Require Ongoing Polypeptide Chain Elongation	677
The Acetylcholine Receptors at the Neuromuscular Junction Are- Excitatory Transmitter Gated Cation Channels	630	In Single-Pass Transmembrane Proteins, a Single Internal ER	
Neurons Contain Many Types of Transmitter Gated Channels	-631	Signal Sequence Remains in the Lipid Bilayer as a Membrane- spanning α Helix	677
Many Psychoactive Drugs Act at Synapses	631	Combinations of Start-Transfer and Stop-Transfer Signals	011
Neuromuscular Transmission Involves the Sequential Activation	000	Determine the Topology of Multipass Transmembrane Proteins	679
of Five Different Sets of Ion Channels Single Neurons Are Complex Computation Devices	-632 - 633	ER Tail-anchored Proteins Are Integrated into the ER Membrane	
Neuronal Computation Requires a Combination of at Least Three	000	by a Special Mechanism Translocated Polypeptide Chains Fold and Assemble in the	682
Kinds of K+-Channels	634	Lumen of the Rough ER	682
Long Term Potentiation (LTP) in the Mammalian Hippocampus	606	Most Proteins Synthesized in the Rough ER Are Glycosylated by	
Depends on Ca ²⁺ Entry Through NMDA Receptor Channels Summary	-636 637	the Addition of a Common N-Linked Oligosaccharide	683
Problems	638	Oligosaccharides Are Used as Tags to Mark the State of Protein Folding	685
References	640	Improperly Folded Proteins Are Exported from the ER and	
Chapter 12 Intracellular Compartments and		Degraded in the Cytosol Misfolded Proteins in the ER Activate an Unfolded Protein	685
Protein Sorting	641	Response	686
THE COMPARTMENTALIZATION OF CELLS	641	Some Membrane Proteins Acquire a Covalently Attached	000
All Eukaryotic Cells Have the Same Basic Set of Membrane-	011	Glycosylphosphatidylinositol (GPI) Anchor The ER Assembles Most Lipid Bilayers	688 - 689
enclosed Organelles	641	Summary	691
Evolutionary Origins May Help Explain the Topological	0.40	Problems	692
Relationships of Organelles Proteins Can Move Between Compartments in Different Ways	643 645	References	694
Signal Sequences and Sorting Receptors Direct Proteins to the		Chapter 13 Intracellular Membrane Traffic	695
Correct Cell Address Most Organelles Cannot Be Constructed De Novo: They Require	647		UJU
Information in the Organelle Itself	648	THE MOLECULAR MECHANISMS OF MEMBRANE TRANSPORT AND THE MAINTENANCE OF	
Summary	649	COMPARTMENTAL DIVERSITY	697
THE TRANSPORT OF MOLECULES BETWEEN THE		There Are Various Types of Coated Vesicles	697
NUCLEUS AND THE CYTOSOL	649	The Assembly of a Clathrin Coat Drives Vesicle Formation	697
Nuclear Pore Complexes Perforate the Nuclear Envelope Nuclear Localization Signals Direct Nuclear Proteins to the Nucleus	649 650	Adaptor Proteins Select Cargo into Clathrin-Coated Vesicles Phosphoinositides Mark Organelles and Membrane Domains	698 700

Membrane-Bending Proteins Help Deform the Membrane During		Secretory Vesicle Membrane Components Are Quickly Removed	
Vesicle Formation	701	from the Plasma Membrane	746
Cytoplasmic Proteins Regulate the Pinching-Off and Uncoating	704	Some Regulated Exocytosis Events Serve to Enlarge the Plasma	740
of Coated Vesicles Monomeric GTPases Control Coat Assembly	701 703	Membrane Polarized Cells Direct Proteins from the <i>Trans</i> Golgi Network	748
Not All Transport Vesicles Are Spherical	704	to the Appropriate Domain of the Plasma Membrane	748
Rab Proteins Guide Transport Vesicles to Their Target Membrane	705	Summary	750
Rab Cascades Can Change the Identity of an Organelle	707	Problems	750
SNAREs Mediate Membrane Fusion Interacting SNAREs Need to Be Pried Apart Before They Can	708	References	752
Function Again	709	Chantar 14 Fragge Conversion: Mitachandria	
Summary	710	Chapter 14 Energy Conversion: Mitochondria	750
TRANSPORT FROM THE ER THROUGH THE GOLGI		and Chloroplasts	753
APPARATUS	710	THE MITOCHONDRION	755
Proteins Leave the ER in COPII-Coated Transport Vesicles	711	The Mitochondrion Has an Outer Membrane and an Inner	
Only Proteins That Are Properly Folded and Assembled Can Leave the ER	712	Membrane The Inner Membrane Cristae Centain the Machinery for Floatron	757
Vesicular Tubular Clusters Mediate Transport from the ER to	112	The Inner Membrane Cristae Contain the Machinery for Electron Transport and ATP Synthesis	758
the Golgi Apparatus	712	The Citric Acid Cycle in the Matrix Produces NADH	758
The Retrieval Pathway to the ER Uses Sorting Signals	713	Mitochondria Have Many Essential Roles in Cellular Metabolism	759
Many Proteins Are Selectively Retained in the Compartments	74.4	A Chemiosmotic Process Couples Oxidation Energy to ATP	704
in Which They Function The Golgi Apparatus Consists of an Ordered Series of	714	Production The Energy Derived from Oxidation Is Stored as an	761
Compartments	715	Electrochemical Gradient	762
Oligosaccharide Chains Are Processed in the Golgi Apparatus	716	Summary	763
Proteoglycans Are Assembled in the Golgi Apparatus	718	THE PROTON PUMPS OF THE ELECTRON-TRANSPORT	
What Is the Purpose of Glycosylation?	719	CHAIN	763
Transport Through the Golgi Apparatus May Occur by Cisternal Maturation	720	The Redox Potential Is a Measure of Electron Affinities	763
Golgi Matrix Proteins Help Organize the Stack	721	Electron Transfers Release Large Amounts of Energy	764
Summary	722	Transition Metal Ions and Quinones Accept and Release Electrons Readily	764
TRANSPORT FROM THE TRANS GOLGI NETWORK TO		NADH Transfers Its Electrons to Oxygen Through Three	70-
LYSOSOMES	722	Large Enzyme Complexes Embedded in the Inner	
Lysosomes Are the Principal Sites of Intracellular Digestion	722	Membrane	766
Lysosomes Are Heterogeneous Plant and Fungal Vasuales Are Remarkably Variatile Lygosomes	723 724	The NADH Dehydrogenase Complex Contains Separate	768
Plant and Fungal Vacuoles Are Remarkably Versatile Lysosomes Multiple Pathways Deliver Materials to Lysosomes	724 725	Modules for Electron Transport and Proton Pumping Cytochrome c Reductase Takes Up and Releases Protons on	700
Autophagy Degrades Unwanted Proteins and Organelles	726	the Opposite Side of the Crista Membrane, Thereby	
A Mannose 6-Phosphate Receptor Sorts Lysosomal Hydrolases		Pumping Protons	768
in the <i>Trans</i> Golgi Network	727	The Cytochrome <i>c</i> Oxidase Complex Pumps Protons and	770
Defects in the GlcNAc Phosphotransferase Cause a Lysosomal Storage Disease in Humans	728	Reduces O ₂ Using a Catalytic Iron–Copper Center The Respiratory Chain Forms a Supercomplex in the Crista	770
Some Lysosomes and Multivesicular Bodies Undergo	720	Membrane	772
Exocytosis	729	Protons Can Move Rapidly Through Proteins Along Predefined	
Summary	729	Pathways	773
TRANSPORT INTO THE CELL FROM THE PLASMA		Summary	774
MEMBRANE: ENDOCYTOSIS Dinas: tip Variables Form from Control Dita in the Diname	730	ATP PRODUCTION IN MITOCHONDRIA	774
Pinocytic Vesicles Form from Coated Pits in the Plasma Membrane	731	The Large Negative Value of ΔG for ATP Hydrolysis Makes ATP Useful to the Cell	774
Not All Pinocytic Vesicles Are Clathrin-Coated	731	The ATP Synthase Is a Nanomachine that Produces ATP by	//-
Cells Use Receptor-Mediated Endocytosis to Import Selected		Rotary Catalysis	776
Extracellular Macromolecules	732	Proton-driven Turbines Are of Ancient Origin	777
Specific Proteins Are Retrieved from Early Endosomes and Returned to the Plasma Membrane	734	Mitochondrial Cristae Help to Make ATP Synthesis Efficient Special Transport Proteins Exchange ATP and ADP Through	778
Plasma Membrane Signaling Receptors are Down-Regulated	704	the Inner Membrane	779
by Degradation in Lysosomes	735	Chemiosmotic Mechanisms First Arose in Bacteria	780
Early Endosomes Mature into Late Endosomes	735	Summary	782
ESCRT Protein Complexes Mediate the Formation of	706	CHLOROPLASTS AND PHOTOSYNTHESIS	782
Intralumenal Vesicles in Multivesicular Bodies Recycling Endosomes Regulate Plasma Membrane Composition	736 737	Chloroplasts Resemble Mitochondria But Have a Separate	700
Specialized Phagocytic Cells Can Ingest Large Particles	738	Thylakoid Compartment Chloroplasts Capture Energy from Sunlight and Use It to Fix	782
Summary	740	Carbon	783
TRANSPORT FROM THE TRANS GOLGI NETWORK TO		Carbon Fixation Uses ATP and NADPH to Convert CO ₂ into	
THE CELL EXTERIOR: EXOCYTOSIS	741	Sugars	784
Many Proteins and Lipids Are Carried Automatically from the	741	Sugars Generated by Carbon Fixation Can Be Stored as	705
Trans Golgi Network (TGN) to the Cell Surface Secretory Vesicles Bud from the Trans Golgi Network	741 742	Starch or Consumed to Produce ATP The Thylakoid Membranes of Chloroplasts Contain the Protein	785
Precursors of Secretory Proteins Are Proteolytically Processed		Complexes Required for Photosynthesis and ATP Generation	786
During the Formation of Secretory Vesicles	743	Chlorophyll-Protein Complexes Can Transfer Either Excitation	
Secretory Vesicles Wait Near the Plasma Membrane Until	711	Energy or Electrons A Photography Consists of an Antenna Complex and a Reaction	787
Signaled to Release Their Contents For Rapid Exocytosis, Synaptic Vesicles Are Primed at the	744	A Photosystem Consists of an Antenna Complex and a Reaction Center	788
Presynaptic Plasma Membrane	744	The Thylakoid Membrane Contains Two Different Photosystems	, 00
Synaptic Vesicles Can Form Directly from Endocytic Vesicles	746	Working in Series	789

DETAILED CONTENTS xxix

Photosystem II Uses a Manganese Cluster to Withdraw		Some G Proteins Signal Via Phospholipids	836
Electrons From Water The Cytochrome b ₆ -f Complex Connects Photosystem II to	790	Ca2+ Functions as a Ubiquitous Intracellular Mediator Feedback Generates Ca ²⁺ Waves and Oscillations	838 838
Photosystem I	791	Ca ²⁺ /Calmodulin-Dependent Protein Kinases Mediate	000
Photosystem I Carries Out the Second Charge-Separation		Many Responses to Ca ²⁺ Signals	840
Step in the Z Scheme	792	Some G Proteins Directly Regulate Ion Channels	843
The Chloroplast ATP Synthase Uses the Proton Gradient Generated by the Photosynthetic Light Reactions to		Smell and Vision Depend on GPCRs That Regulate Ion Channels Nitric Oxide Is a Gaseous Signaling Mediator That Passes	843
Produce ATP	793	Between Cells	846
All Photosynthetic Reaction Centers Have Evolved From		Second Messengers and Enzymatic Cascades Amplify Signals	848
a Common Ancestor	793	GPCR Desensitization Depends on Receptor Phosphorylation	848
The Proton-Motive Force for ATP Production in Mitochondria	794	Summary	849
and Chloroplasts Is Essentially the Same Chemiosmotic Mechanisms Evolved in Stages	794 794	SIGNALING THROUGH ENZYME-COUPLED RECEPTORS	850
By Providing an Inexhaustible Source of Reducing Power,		Activated Receptor Tyrosine Kinases (RTKs) Phosphorylate Themselves	850
Photosynthetic Bacteria Overcame a Major Evolutionary		Phosphorylated Tyrosines on RTKs Serve as Docking Sites for	000
Obstacle The Photographetic Floatron Transport Chains of Cyanahastaria	796	Intracellular Signaling Proteins	852
The Photosynthetic Electron-Transport Chains of Cyanobacteria Produced Atmospheric Oxygen and Permitted New		Proteins with SH2 Domains Bind to Phosphorylated Tyrosines	852
Life-Forms	796	The GTPase Ras Mediates Signaling by Most RTKs Ras Activates a MAP Kinase Signaling Module	854 855
Summary	798	Scaffold Proteins Help Prevent Cross-talk Between Parallel	000
THE GENETIC SYSTEMS OF MITOCHONDRIA AND		MAP Kinase Modules	857
CHLOROPLASTS	800	Rho Family GTPases Functionally Couple Cell-Surface Receptors	
The Genetic Systems of Mitochondria and Chloroplasts Resemble	900	to the Cytoskeleton	858
Those of Prokaryotes Over Time, Mitochondria and Chloroplasts Have Exported Most	800	PI 3-Kinase Produces Lipid Docking Sites in the Plasma Membrane	859
of Their Genes to the Nucleus by Gene Transfer	801	The PI-3-Kinase–Akt Signaling Pathway Stimulates Animal	000
The Fission and Fusion of Mitochondria Are Topologically		Cells to Survive and Grow	860
Complex Processes	802	RTKs and GPCRs Activate Overlapping Signaling Pathways	861
Animal Mitochondria Contain the Simplest Genetic Systems Known	803	Some Enzyme-Coupled Receptors Associate with Cytoplasmic Tyrosine Kinases	862
Mitochondria Have a Relaxed Codon Usage and Can Have a	003	Cytokine Receptors Activate the JAK–STAT Signaling Pathway	863
Variant Genetic Code	804	Protein Tyrosine Phosphatases Reverse Tyrosine Phosphorylations	
Chloroplasts and Bacteria Share Many Striking Similarities	806	Signal Proteins of the TGF β Superfamily Act Through Receptor	
Organelle Genes Are Maternally Inherited in Animals and Plants	807	Serine/Threonine Kinases and Smads	865
Mutations in Mitochondrial DNA Can Cause Severe Inherited Diseases	807	Summary	866
The Accumulation of Mitochondrial DNA Mutations Is a	001	ALTERNATIVE SIGNALING ROUTES IN GENE REGULATION The December Notes In a Latest Transportation Progulatory Protein	867 867
Contributor to Aging	808	The Receptor Notch Is a Latent Transcription Regulatory Protein Wnt Proteins Bind to Frizzled Receptors and Inhibit the	007
Why Do Mitochondria and Chloroplasts Maintain a Costly		Degradation of β-Catenin	868
Summan:	808 809	Hedgehog Proteins Bind to Patched, Relieving Its Inhibition of	
Summary Problems	809	Smoothened	871
References	811	Many Stressful and Inflammatory Stimuli Act Through an NFκB-Dependent Signaling Pathway	873
		Nuclear Receptors Are Ligand-Modulated Transcription	010
Chapter 15 Cell Signaling	813	Regulators	874
PRINCIPLES OF CELL SIGNALING	813	Circadian Clocks Contain Negative Feedback Loops That	070
Extracellular Signals Can Act Over Short or Long Distances	814	Control Gene Expression Three Proteins in a Test Tube Can Reconstitute a Cyanobacterial	876
Extracellular Signal Molecules Bind to Specific Receptors	815	Gircadian Clock	878
Each Cell Is Programmed to Respond to Specific Combinations		Summary	879
of Extracellular Signals	816	SIGNALING IN PLANTS	880
There Are Three Major Classes of Cell-Surface Receptor Proteins	818	Multicellularity and Cell Communication Evolved Independently	
Cell-Surface Receptors Relay Signals Via Intracellular Signaling Molecules	819	in Plants and Animals	880
Intracellular Signals Must Be Specific and Precise in a Noisy	010	Receptor Serine/Threenine Kinases Are the Largest Class of Cell Surface Receptors in Plants	881
Cytoplasm	820	Ethylene Blocks the Degradation of Specific Transcription	001
Intracellular Signaling Complexes Form at Activated Receptors	822	Regulatory Proteins in the Nucleus	881
Modular Interaction Domains Mediate Interactions Between Intracellular Signaling Proteins	822	Regulated Positioning of Auxin Transporters Patterns Plant	
The Relationship Between Signal and Response Varies in Different	022	Growth District Pod Light, and Crimtochyamas Datast	882
Signaling Pathways	824	Phytochromes Detect Red Light, and Cryptochromes Detect Blue Light	883
The Speed of a Response Depends on the Turnover of Signaling		Summary	885
Molecules	825	Problems	886
Cells Can Respond Abruptly to a Gradually Increasing Signal Positive Feedback Can Generate an All-or-None Response	827 828	References	888
Negative Feedback is a Common Motif in Signaling Systems	829	0	0.0-
Cells Can Adjust Their Sensitivity to a Signal	830	Chapter 16 The Cytoskeleton	889
Summary	831	FUNCTION AND ORIGIN OF THE CYTOSKELETON	889
SIGNALING THROUGH G-PROTEIN-COUPLED RECEPTORS	832	Cytoskeletal Filaments Adapt to Form Dynamic or Stable	
Trimeric G Proteins Relay Signals From GPCRs	832	Structures The Cottes Indiana Paternaines Callular Conscionation and Palarity	890
Some G Proteins Regulate the Production of Cyclic AMP Cyclic-AMP-Dependent Protein Kinase (PKA) Mediates Most	833	The Cytoskeleton Determines Cellular Organization and Polarity Filaments Assemble from Protein Subunits That Impart Specific	892
of the Effects of Cyclic AMP	834	Physical and Dynamic Properties	893

Accessory Proteins and Motors Regulate Cytoskeletal Filaments	894	Cell Polarization Is Controlled by Members of the Rho Protein	955
Bacterial Cell Organization and Division Depend on Homologs of Eukaryotic Cytoskeletal Proteins	896	Family Extracellular Signals Can Activate the Three Rho Protein Family	
Summary	898	Members	958
ACTIN AND ACTIN-BINDING PROTEINS Actin Subunits Assemble Head-to-Tail to Create Flexible, Polar	898	External Signals Can Dictate the Direction of Cell Migration Communication Among Cytoskeletal Elements Coordinates Whole-Cell Polarization and Locomotion	958
Filaments Nucleation Is the Rate-Limiting Step in the Formation of Actin	898	Summary	959 960
Filaments Actin Filaments Have Two Distinct Ends That Grow at Different	899	Problems References	960 962
Rates	900		
ATP Hydrolysis Within Actin Filaments Leads to Treadmilling at Steady State	901	Chapter 17 The Cell Cycle	963
The Functions of Actin Filaments Are Inhibited by Both Polymer-		OVERVIEW OF THE CELL CYCLE The Eukaryotic Cell Cycle Usually Consists of Four Phases	963 964
stabilizing and Polymer-destabilizing Chemicals Actin-Binding Proteins Influence Filament Dynamics and	904	Cell-Cycle Control Is Similar in All Eukaryotes	965
Organization	904	Cell-Cycle Progression Can Be Studied in Various Ways	966
Monomer Availability Controls Actin Filament Assembly	906	Summary	967
Actin-Nucleating Factors Accelerate Polymerization and		THE CELL-CYCLE CONTROL SYSTEM	967
Generate Branched or Straight Filaments	906	The Cell-Cycle Control System Triggers the Major Events of	
Actin-Filament-Binding Proteins Alter Filament Dynamics Severing Proteins Regulate Actin Filament Depolymerization	907 909	the Cell Cycle	967
Higher-Order Actin Filament Arrays Influence Cellular	909	The Cell-Cycle Control System Depends on Cyclically Activated Cyclin-Dependent Protein Kinases (Cdks)	968
Mechanical Properties and Signaling	911	Cdk Activity Can Be Suppressed By Inhibitory Phosphorylation	000
Bacteria Can Hijack the Host Actin Cytoskeleton	913	and Cdk Inhibitor Proteins (CKIs)	970
Summary	914	Regulated Proteolysis Triggers the Metaphase-to-Anaphase	
MYOSIN AND ACTIN	915	Transition	970
Actin-Based Motor Proteins Are Members of the Myosin	0.1=	Cell-Cycle Control Also Depends on Transcriptional Regulation	971
Superfamily Musein Conserted Force by Courbing ATP I higher to	915	The Cell-Cycle Control System Functions as a Network of Biochemical Switches	972
Myosin Generates Force by Coupling ATP Hydrolysis to Conformational Changes	916	Summary	974
Sliding of Myosin II Along Actin Filaments Causes Muscles	010	S PHASE	974
to Contract	916	S Cdk Initiates DNA Replication Once Per Cycle	974
A Sudden Rise in Cytosolic Ca ²⁺ Concentration Initiates		Chromosome Duplication Requires Duplication of Chromatin	
Muscle Contraction	920	Structure	975
Heart Muscle Is a Precisely Engineered Machine Actin and Myosin Perform a Variety of Functions in Non-Muscle	923	Cohesins Hold Sister Chromatids Together	977 977
Cells	923	Summary	
Summary	925	MITOSIS M. Colle Drives Entry Into Mitosis	978 978
MICROTUBULES	925	M-Cdk-Drives Entry Into Mitosis Dephosphorylation Activates M-Cdk at the Onset of Mitosis	978
Microtubules Are Hollow Tubes Made of Protofilaments	926	Condensin Helps Configure Duplicated Chromosomes for	010
Microtubules Undergo Dynamic Instability	927	Separation	979
Microtubule Functions Are Inhibited by Both Polymer-stabilizing	000	The Mitotic Spindle Is a Microtubule Based Machine	982
and Polymer-destabilizing Drugs A Protein Complex Containing γ-Tubulin Nucleates Microtubules	929 929	Microtubule Dependent Motor Proteins Govern Spindle	000
Microtubules Emanate from the Centrosome in Animal Cells	930	Assembly and Function Multiple Mechanisms Collaborate in the Assembly of a Bipolar	983
Microtubule-Binding Proteins Modulate Filament Dynamics		Mitotic Spindle	984
and Organization	932	Centrosome Duplication Occurs Early in the Cell Cycle	984
Microtubule Plus-End-Binding Proteins Modulate Microtubule	000	M-Cdk Initiates Spindle Assembly in Prophase	985
Dynamics and Attachments Tubulin-Sequestering and Microtubule-Severing Proteins	932	The Completion of Spindle Assembly in Animal Cells Requires	005
Destabilize Microtubules	935	Nuclear Envelope Breakdown Microtubule Instability Increases Greatly in Mitosis	985 986
Two Types of Motor Proteins Move Along Microtubules	936	Mitotic Chromosomes Promote Bipolar Spindle Assembly	986
Microtubules and Motors Move Organelles and Vesicles	938	Kinetochores Attach Sister Chromatids to the Spindle	987
Construction of Complex Microtubule Assemblies Requires	0.40	Bi-orientation Is Achieved by Trial and Error	988
Microtubule Dynamics and Motor Proteins Motile Cilia and Flagella Are Built from Microtubules and Dyneins	940 941	Multiple Forces Act on Chromosomes in the Spindle	990
Primary Cilia Perform Important Signaling Functions in	341	The APC/C Triggers Sister Chromatid Separation and the	992
Animal Cells	942	Completion of Mitosis Unattached Chromosomes Block Sister Chromatid Separation:	992
Summary	943	The Spindle Assembly Checkpoint	993
INTERMEDIATE FILAMENTS AND SEPTINS	944	Chromosomes Segregate in Anaphase A and B	994
Intermediate Filament Structure Depends on the Lateral Bundling		Segregated Chromosomes Are Packaged in Daughter Nuclei	
and Twisting of Coiled-Coils	945	a t Telophase	995
Intermediate Filaments Impart Mechanical Stability to Animal Cells Linker Proteins Connect Cytoskeletal Filaments and Bridge the	946	Summary	995
Nuclear Envelope	948	CYTOKINESIS Actin and Myonin II in the Contractile Ding Concrete the Force	996
Septins Form Filaments That Regulate Cell Polarity	949	Actin and Myosin II in the Contractile Ring Generate the Force for Cytokinesis	996
Summary	950	Local Activation of RhoA Triggers Assembly and Contraction	J 50
CELL POLARIZATION AND MIGRATION	951	of the Contractile Ring	997
Many Cells Can Crawl Across a Solid Substratum	951	The Microtubules of the Mitotic Spindle Determine the Plane	
Actin Polymerization Drives Plasma Membrane Protrusion	951	of Animal Cell Division	997
Lamellipodia Contain All of the Machinery Required for Cell Motility Myosin Contraction and Cell Adhesion Allow Cells to Pull	953	The Phragmoplast Guides Cytokinesis in Higher Plants Membrane-Enclosed Organelles Must Be Distributed to	1000
Themselves Forward	954	Daughter Cells During Cytokinesis	1001
		J - J	

DETAILED CONTENTS xxxi

Some Cells Reposition Their Spindle to Divide Asymmetrically	1001	Members of the Immunoglobulin Superfamily Mediate	
Mitosis Can Occur Without Cytokinesis	1002	Ca ²⁺ -Independent Cell-Cell Adhesion	1055
The G ₁ Phase Is a Stable State of Cdk Inactivity	1002	Summary	1056
Summary	1004	THE EXTRACELLULAR MATRIX OF ANIMALS	1057
MEIOSIS	1004	The Extracellular Matrix Is Made and Oriented by the Cells	
Meiosis Includes Two Rounds of Chromosome Segregation	1004	Within It	1057
Duplicated Homologs Pair During Meiotic Prophase Homolog Pairing Culminates in the Formation of a Synaptonemal		Glycosaminoglycan (GAG) Chains Occupy Large Amounts of Space and Form Hydrated Gels	1058
Gomplex Homolog Segregation Depends on Several Unique Features	1006	Hyaluronan Acts as a Space Filler During Tissue Morphogenesis and Repair	1059
of Meiosis I Crossing Over Is Highly Regulated	1008 1009	Proteoglycans Are Composed of GAG Chains Covalently Linked to a Core Protein	1059
Meiosis Frequently Goes Wrong	1003	Collagens Are the Major Proteins of the Extracellular Matrix	1061
Summary	1010	Secreted Fibril-Associated Collagens Help Organize the Fibrils	1063
CONTROL OF CELL DIVISION AND CELL GROWTH	1010	Cells Help Organize the Collagen Fibrils They Secrete by	
Mitogens Stimulate Cell Division	1011	Exerting Tension on the Matrix	1064
Cells Can Enter a Specialized Nondividing State	1012	Elastin Gives Tissues Their Elasticity	1065
Mitogens Stimulate G ₁ -Cdk and G ₁ /S-Cdk Activities	1012	Fibronectin and Other Multidomain Glycoproteins Help	4000
DNA Damage Blocks Cell Division: The DNA Damage Response	1014	Organize the Matrix	1066 1067
Many Human Cells Have a Built-In Limitation on the Number		Fibronectin Binds to Integrins Tension Exerted by Cells Regulates the Assembly of	1007
of Times They Can Divide	1016	Fibronectin Fibrils	1068
Abnormal Proliferation Signals Cause Cell-Cycle Arrest or Apoptosis, Except in Cancer Cells	1016	The Basal Lamina Is a Specialized Form of Extracellular Matrix	1068
Cell Proliferation is Accompanied by Cell Growth	1016 1016	Laminin and Type IV Collagen Are Major Components of the	
Proliferating Cells Usually Coordinate Their Growth and Division	1018	Basal Lamina	1069
Summary	1018	Basal Laminae Have Diverse Functions	1070
Problems	1019	Cells Have to Be Able to Degrade Matrix, as Well as Make It	1072
References	1020	Matrix Proteoglycans and Glycoproteins Regulate the	1070
		Activities of Secreted Proteins Summary	1073 1074
Chapter 18 Cell Death	1021		
Apoptosis Eliminates Unwanted Cells	1021	CELL-MATRIX JUNCTIONS	1074
Apoptosis Depends on an Intracellular Proteolytic Cascade		Integrins Are Transmembrane Heterodimers That Link the Extracellular Matrix to the Cytoskeleton	1075
That Is Mediated by Caspases	1022	Integrin Defects Are Responsible for Many Genetic Diseases	1076
Cell-Surface Death Receptors Activate the Extrinsic Pathway	4004	Integrins Can Switch Between an Active and an Inactive	
of Apoptosis The Intrinsia Pathway of Apoptosis Papanda on Mitaghandria	1024 1025	Conformation	1077
The Intrinsic Pathway of Apoptosis Depends on Mitochondria Bcl2 Proteins Regulate the Intrinsic Pathway of Apoptosis	1025	Integrins Cluster to Form Strong Adhesions	1079
IAPs Help Control Caspases	1029	Extracellular Matrix Attachments Act Through Integrins to	
Extracellular Survival Factors Inhibit Apoptosis in Various Ways	1029	Control Cell Proliferation and Survival	1079
Phagocytes Remove the Apoptotic Cell	1030	Integrins Recruit Intracellular Signaling Proteins at Sites of	1070
Either Excessive or Insufficient Apoptosis Can Contribute to		Cell-Matrix Adhesion Cell-Matrix Adhesions Respond to Mechanical Forces	1079 1080
Disease	1031	Summary	1081
Summary	1032	THE PLANT CELL WALL	1081
Problems References	1033 1034	The Composition of the Cell Wall Depends on the Cell Type	1082
References	1034	The Tensile Strength of the Cell Wall Allows Plant Cells to	1002
Chapter 19 Cell Junctions and the Extracellular		Develop Turgor Pressure	1083
Matrix	1035	The Primary Cell Wall Is Built from Cellulose Microfibrils	
Watnx	1000	Interwoven with a Network of Pectic Polysaccharides	1083
CELL-CELL JUNCTIONS	1038	Oriented Cell Wall Deposition Controls Plant Cell Growth	1085
Cadherins Form a Diverse Family of Adhesion Molecules	1038	Microtubules Orient Cell Wall Deposition	1086
Cadherins Mediate Homophilic Adhesion	1038	Summary Problems	1087 1087
Cadherin-Dependent Cell-Cell Adhesion Guides the	1040	References	1089
Organization of Developing Tissues Epithelial–Mesenchymal Transitions Depend on Control of	1040	110101011000	1000
Cadherins	1042	Chapter 20 Capacr	1091
Catenins Link Classical Cadherins to the Actin Cytoskeleton	1042	Chapter 20 Cancer	1091
Adherens Junctions Respond to Forces Generated by the Actin		CANCER AS A MICROEVOLUTIONARY PROCESS	1091
Cytoskeleton	1042	Cancer Cells Bypass Normal Proliferation Controls and	
Tissue Remodeling Depends on the Coordination of Actin-		Colonize Other Tissues	1092
Mediated Contraction With Cell-Cell Adhesion	1043	Most Cancers Derive from a Single Abnormal Cell	1093
Desmosomes Give Epithelia Mechanical Strength	1045	Cancer Cells Contain Somatic Mutations A Single Mutation Is Not Enough to Change a Normal Cell	1094
Tight Junctions Form a Seal Between Cells and a Fence Between Plasma Membrane Domains	1047	into a Cancer Cell	1094
Tight Junctions Contain Strands of Transmembrane Adhesion	10+1	Cancers Develop Gradually from Increasingly Aberrant Cells	1095
Proteins	1047	Tumor Progression Involves Successive Rounds of Random	
Scaffold Proteins Organize Junctional Protein Complexes	1049	Inherited Change Followed by Natural Selection	1096
Gap Junctions Couple Cells Both Electrically and Metabolically	1050	Human Cancer Cells Are Genetically Unstable	1097
A Gap-Junction Connexon Is Made of Six Transmembrane		Cancer Cells Display an Altered Control of Growth	1098
Connexin Subunits	1051	Cancer Cells Have an Altered Sugar Metabolism	1098
In Plants, Plasmodesmata Perform Many of the Same Functions	1050	Cancer Cells Have an Abnormal Ability to Survive Stress and	1000
as Gap Junctions Selectins Mediate Transient Cell–Cell Adhesions in the	1053	DNA Damage Human Cancer Cells Escape a Built-in Limit to Cell Proliferation	1099 1099
Bloodstream	1054	The Tumor Microenvironment Influences Cancer Development	1100
	. 55 -	and the second s	

Cancer Cells Must Survive and Proliferate in a Foreign		Many Cancers May Be Treatable by Enhancing the Immune	
Environment	1101	Response Against the Specific Tumor	1137 1139
Many Properties Typically Contribute to Cancerous Growth Summary	1103 1103	Cancers Evolve Resistance to Therapies Combination Therapies May Succeed Where Treatments with	1139
CANCER-CRITICAL GENES: HOW THEY ARE FOUND	1100	One Drug at a Time Fail	1139
AND WHAT THEY DO	1104	We Now Have the Tools to Devise Combination Therapies	
The Identification of Gain-of-Function and Loss-of-Function		Tailored to the Individual Patient	1140
Cancer Mutations Has Traditionally Required Different		Summary	1141 1141
Methods	1104	Problems References	1143
Retroviruses Can Act as Vectors for Oncogenes That Alter Cell Behavior	1105	Tioloronooo	1140
Different Searches for Oncogenes Converged on the Same	1105	Chapter 21 Development of Multicellular	
Gene—Ras	1106	Organisms	1145
Genes Mutated in Cancer Can Be Made Overactive in Many			1143
Ways	1106	OVERVIEW OF DEVELOPMENT	1147
Studies of Rare Hereditary Cancer Syndromes First Identified Tumor Suppressor Genes	1107	Conserved Mechanisms Establish the Basic Animal Body Plan The Developmental Potential of Cells Becomes Progressively	1147
Both Genetic and Epigenetic Mechanisms Can Inactivate	1107	Restricted	1148
Tumor Suppressor Genes	1108	Cell Memory Underlies Cell Decision-Making	1148
Systematic Sequencing of Cancer Cell Genomes Has		Several Model Organisms Have Been Crucial for Understanding	
Transformed Our Understanding of the Disease	1109 1111	Development	1148
Many Cancers Have an Extraordinarily Disrupted Genome Many Mutations in Tumor Cells are Merely Passengers	1111	Genes Involved in Cell-Cell Communication and Transcriptional Control Are Especially Important for Animal Development	1149
About One Percent of the Genes in the Human Genome Are		Regulatory DNA Seems Largely Responsible for the Differences	1143
Cancer-Critical	1112	Between Animal Species	1149
Disruptions in a Handful of Key Pathways Are Common to	4440	Small Numbers of Conserved Cell–Cell Signaling Pathways	4450
Many Cancers Mutations in the Pl3K/Akt/mTOR Pathway Drive Cancer Cells	1113	Coordinate Spatial Patterning Through Combinatorial Control and Cell Memory, Simple	1150
to Grow	1114	Signals Can Generate Complex Patterns	1150
Mutations in the p53 Pathway Enable Cancer Cells to Survive		Morphogens Are Long-Range Inductive Signals That Exert	
and Proliferate Despite Stress and DNA Damage	1115	Graded Effects	1151
Genome Instability Takes Different Forms in Different Cancers	1116	Lateral Inhibition Can Generate Patterns of Different Cell Types	1151
Cancers of Specialized Tissues Use Many Different Routes to Target the Common Core Pathways of Cancer	1117	Short-Range Activation and Long-Range Inhibition Can Generate Complex Cellular Patterns	1152
Studies Using Mice Help to Define the Functions of Cancer-	1117	Asymmetric Cell Division Can Also Generate Diversity	1153
Critical Genes	1117	Initial Patterns Are Established in Small Fields of Cells and	
Cancers Become More and More Heterogeneous as They		Refined by Sequential Induction as the Embryo Grows	1153
Progress	1118	Developmental Biology Provides Insights into Disease and	1154
The Changes in Tumor Cells That Lead to Metastasis Are	1119	Tissue Maintenance Summary	1154 1154
Still Largely a Mystery A Small Population of Cancer Stem Cells May Maintain Many	1119	MECHANISMS OF PATTERN FORMATION	1155
Tumors	1120	Different Animals Use Different Mechanisms to Establish Their	1155
The Cancer Stem-Cell Phenomenon Adds to the Difficulty		Primary Axes of Polarization	1155
of Curing Cancer	1121	Studies in <i>Drosophila</i> Have Revealed the Genetic Control	
Colorectal Cancers Evolve Slowly Via a Succession of Visible Changes	1122	Mechanisms Underlying Development	1157
A Few Key Genetic Lesions Are Common to a Large Fraction	1122	Egg-Polarity Genes Encode Macromolecules Deposited in the Egg to Organize the Axes of the Early <i>Drosophila</i> Embryo	1157
of Colorectal Cancers	1123	Three Groups of Genes Control <i>Drosophila</i> Segmentation Along	1101
Some Colorectal Cancers Have Defects in DNA Mismatch Repair	1124	the A-P Axis	1159
The Steps of Tumor Progression Can Often Be Correlated	1105	A Hierarchy of Gene Regulatory Interactions Subdivides the	
with Specific Mutations Summary	1125 1126	Drosophila Embryo Egg-Polarity, Gap, and Pair-Rule Genes Create a Transient	1159
CANCER PREVENTION AND TREATMENT: PRESENT AND	1120	Pattern That Is Remembered by Segment-Polarity and	
FUTURE	1127	Hox Genes	1160
Epidemiology Reveals That Many Cases of Cancer Are		Hox Genes Permanently Pattern the A-P Axis	1162
Preventable	1127	Hox Proteins Give Each Segment Its Individuality	1163
Sensitive Assays Can Detect Those Cancer-Causing Agents	1107	Hox Genes Are Expressed According to Their Order in the Hox Complex	1163
that Damage DNA Fifty Percent of Cancers Could Be Prevented by Changes	1127	Trithorax and Polycomb Group Proteins Enable the <i>Hox</i>	1100
in Lifestyle	1128	Complexes to Maintain a Permanent Record of Positional	
Viruses and Other Infections Contribute to a Significant		Information	1164
Proportion of Human Cancers	1129	The D-V Signaling Genes Create a Gradient of the Transcription	4404
Cancers of the Uterine Cervix Can Be Prevented by Vaccination Against Human Papillomavirus	1131	Regulator Dorsal A Hierarchy of Inductive Interactions Subdivides the Vertebrate	1164
Infectious Agents Can Cause Cancer in a Variety of Ways	1132	Embryo	1166
The Search for Cancer Cures Is Difficult but Not Hopeless	1132	A Competition Between Secreted Signaling Proteins Patterns	
Traditional Therapies Exploit the Genetic Instability and Loss	1100	the Vertebrate Embryo	1168
of Cell-Cycle Checkpoint Responses in Cancer Cells	1132	The Insect Dorsoventral Axis Corresponds to the Vertebrate	1100
New Drugs Can Kill Cancer Cells Selectively by Targeting Specific Mutations	1133	Ventral-Dorsal Axis Hox Genes Control the Vertebrate A-P Axis	1169 1169
PARP Inhibitors Kill Cancer Cells That Have Defects in <i>Brca1</i>		Some Transcription Regulators Can Activate a Program That	1103
or Brca2 Genes	1133	Defines a Cell Type or Creates an Entire Organ	1170
Small Molecules Can Be Designed to Inhibit Specific	1105	Notch-Mediated Lateral Inhibition Refines Cellular Spacing	4471
Oncogenic Proteins	1135	Patterns	1171

DETAILED CONTENTS xxxiii

Asymmetric Cell Divisions Make Sister Cells Different Differences in Regulatory DNA Explain Morphological Differences	1173 1174	Ephrin-Eph Signaling Drives Segregation of the Different Gut Cell Types	1224
Summary	1175	Notch Signaling Controls Gut Cell Diversification and Helps	
DEVELOPMENTAL TIMING	1176	Maintain the Stem-Cell State	1224
Molecular Lifetimes Play a Critical Part in Developmental Timing A Gene-Expression Oscillator Acts as a Clock to Control	1176	The Epidermal Stem-Cell System Maintains a Self-Renewing Waterproof Barrier	1225
Vertebrate Segmentation	1177	Tissue Renewal That Does Not Depend on Stem Cells: Insulin- Secreting Cells in the Pancreas and Hepatocytes in the Liver	1226
Intracellular Developmental Programs Can Help Determine the Time-Course of a Cell's Development	1179	Some Tissues Lack Stem Cells and Are Not Renewable	1227
Cells Rarely Count Cell Divisions to Time Their Development	1180	Summary	1227
MicroRNAs Often Regulate Developmental Transitions	1180	FIBROBLASTS AND THEIR TRANSFORMATIONS:	
Hormonal Signals Coordinate the Timing of Developmental Transitions	1182	THE CONNECTIVE-TISSUE CELL FAMILY Fibroblasts Change Their Character in Response to Chemical	1228
Environmental Cues Determine the Time of Flowering	1182	and Physical Signals	1228
Summary	1184	Osteoblasts Make Bone Matrix	1229
MORPHOGENESIS	1184	Bone Is Continually Remodeled by the Cells Within It	1230
Cell Migration Is Guided by Cues in the Cell's Environment	1185	Osteoclasts Are Controlled by Signals From Osteoblasts	1232 1232
The Distribution of Migrant Cells Depends on Survival Factors	1186	Summary	
Changing Patterns of Cell Adhesion Molecules Force Cells	4407	GENESIS AND REGENERATION OF SKELETAL MUSCLE	1232 1233
Into New Arrangements Papulairo Interactiona Hola Maintain Tigaya Payadariaa	1187 1188	Myoblasts Fuse to Form New Skeletal Muscle Fibers Some Myoblasts Persist as Quiescent Stem Cells in the Adult	1233
Repulsive Interactions Help Maintain Tissue Boundaries Groups of Similar Cells Can Perform Dramatic Collective	1100	Summary	1235
Rearrangements	1188	BLOOD VESSELS, LYMPHATICS, AND ENDOTHELIAL CELLS	1235
Planar Cell Polarity Helps Orient Cell Structure and Movement in		Endothelial Cells Line All Blood Vessels and Lymphatics	1235
Developing Epithelia	1189	Endothelial Tip Cells Pioneer Angiogenesis	1236
Interactions Between an Epithelium and Mesenchyme Generate		Tissues Requiring a Blood Supply Release VEGF	1237
Branching Tubular Structures	1190	Signals from Endothelial Cells Control Recruitment of Pericytes	4000
An Epithelium Can Bend During Development to Form a Tube or Vesicle	1192	and Smooth Muscle Cells to Form the Vessel Wall	1238 1238
Summary	1193	Summary	1230
GROWTH	1193	A HIERARCHICAL STEM-CELL SYSTEM: BLOOD CELL FORMATION	1239
The Proliferation, Death, and Size of Cells Determine Organism	1130	Red Blood Cells Are All Alike; White Blood Cells Can Be	1239
Size	1194	Grouped in Three Main Classes	1239
Animals and Organs Can Assess and Regulate Total Cell Mass	1194	The Production of Each Type of Blood Cell in the Bone Marrow	
Extracellular Signals Stimulate or Inhibit Growth	1196	Is Individually Controlled	1240
Summary	1197	Bone Marrow Contains Multipotent Hematopoietic Stem Cells,	1010
NEURAL DEVELOPMENT	1198	Able to Give Rise to All Classes of Blood Cells Commitment Is a Stepwise Process	1242 1243
Neurons Are Assigned Different Characters According to the	4400	Divisions of Committed Progenitor Cells Amplify the Number of	1240
Time and Place of Their Birth The Growth Cone Pilots Axons Along Specific Routes Toward	1199	Specialized Blood Cells	1243
Their Targets	1201	Stem Cells Depend on Contact Signals From Stromal Cells	1244
A Variety of Extracellular Cues Guide Axons to their Targets	1202	Factors That Regulate Hematopoiesis Can Be Analyzed in Culture	
The Formation of Orderly Neural Maps Depends on Neuronal		Erythropoiesis Depends on the Hormone Erythropoietin	1244
Specificity	1204	Multiple CSFs Influence Neutrophil and Macrophage Production The Behavior of a Hematopoietic Cell Depends Partly on Chance	1245 1245
Both Dendrites and Axonal Branches From the Same Neuron	1000	Regulation of Cell Survival Is as Important as Regulation of Cell	1240
Avoid One Another Target Tissues Release Neurotrophic Factors That Control	1206	Proliferation	1246
Nerve Cell Growth and Survival	1208	Summary	1247
Formation of Synapses Depends on Two-Way Communication	1200	REGENERATION AND REPAIR	1247
Between Neurons and Their Target Cells	1209	Planarian Worms Contain Stem Cells That Can Regenerate a	
Synaptic Pruning Depends on Electrical Activity and Synaptic		Whole New Body	1247
Signaling	1211	Some Vertebrates Can Regenerate Entire Organs	1248
Neurons That Fire Together Wire Together	1211 1213	Stem Cells Can Be Used Artificially to Replace Cells That Are Diseased or Lost: Therapy for Blood and Epidermis	1249
Summary Problems	1213	Neural Stem Cells Can Be Manipulated in Culture and Used to	1240
References	1215	Repopulate the Central Nervous System	1250
		Summary	1251
Chapter 22 Stem Cells and Tissue Renewal	1217	CELL REPROGRAMMING AND PLURIPOTENT STEM CELLS	1251
•		Nuclei Can Be Reprogrammed by Transplantation into Foreign	
STEM CELLS AND RENEWAL IN EPITHELIAL TISSUES	1217	Cytoplasm	1252
The Lining of the Small Intestine Is Continually Renewed Through Cell Proliferation in the Crypts	1218	Reprogramming of a Transplanted Nucleus Involves Drastic Epigenetic Changes	1252
Stem Cells of the Small Intestine Lie at or Near the Base of	1210	Embryonic Stem (ES) Cells Can Generate Any Part of the Body	1253
Each Crypt	1219	A Core Set of Transcription Regulators Defines and Maintains	00
The Two Daughters of a Stem Cell Face a Choice	1219	the ES Cell State	1254
Wnt Signaling Maintains the Gut Stem-Cell Compartment	1220	Fibroblasts Can Be Reprogrammed to Create Induced	40-
Stem Cells at the Crypt Base Are Multipotent, Giving Rise to	1000	Pluripotent Stem Cells (iPS Cells)	1254
the Full Range of Differentiated Intestinal Cell Types The Two Daughters of a Stem Cell Do Not Always Have to	1220	Reprogramming Involves a Massive Upheaval of the Gene Control System	1255
Become Different	1222	An Experimental Manipulation of Factors that Modify Chromatin	. 200
Paneth Cells Create the Stem-Cell Niche	1222	Can Increase Reprogramming Efficiencies	1256
A Single Lgr5-expressing Cell in Culture Can Generate an Entire		ES and iPS Cells Can Be Guided to Generate Specific Adult	
Organized Crypt-Villus System	1223	Cell Types and Even Whole Organs	1256

xxxiv DETAILED CONTENTS

Cells of One Specialized Type Can Be Forced to Transdifferentiate Directly Into Another	1258	OVERVIEW OF THE ADAPTIVE IMMUNE SYSTEM B Cells Develop in the Bone Marrow, T Cells in the Thymus	1307 1308
ES and iPS Cells Are Useful for Drug Discovery and Analysis	1200	Immunological Memory Depends On Both Clonal Expansion	1000
of Disease	1258	and Lymphocyte Differentiation	1309
Summary	1260	Lymphocytes Continuously Recirculate Through Peripheral	
Problems References	1260 1262	Lymphoid Organs Immunological Self-Tolerance Ensures That B and T Cells	1311
		Do Not Attack Normal Host Cells and Molecules	1313
Chapter 23 Pathogens and Infection	1263	Summary	1315
INTRODUCTION TO PATHOGENS AND THE HUMAN		B CELLS AND IMMUNOGLOBULINS B Cells Make Immunoglobulins (lgs) as Both Cell-Surface	1315
MICROBIOTA The Human Microbiota Is a Complex Ecological System That Is	1263	Antigen Receptors and Secreted Antibodies	1315
Important for Our Development and Health	1264	Mammals Make Five Classes of Igs	1316
Pathogens Interact with Their Hosts in Different Ways	1264	lg Light and Heavy Chains Consist of Constant and Variable Regions	1318
Pathogens Can Contribute to Cancer, Cardiovascular Disease,	1065	Ig Genes Are Assembled From Separate Gene Segments	
and Other Chronic Illnesses Pathogens Can Be Viruses, Bacteria, or Eukaryotes	1265 1266	During B Cell Development Antigon Driven Sematic Hypermutation Fine Tupes Antibody	1319
Bacteria Are Diverse and Occupy a Remarkable Variety of	1200	Antigen-Driven Somatic Hypermutation Fine-Tunes Antibody Responses	1321
Ecological Niches	1267	B Cells Can Switch the Class of Ig They Make	1322
Bacterial Pathogens Carry Specialized Virulence Genes	1268	Summary	1323
Bacterial Virulence Genes Encode Effector Proteins and Secretion		T CELLS AND MHC PROTEINS	1324
Systems to Deliver Effector Proteins to Host Cells Fungal and Protozoan Parasites Have Complex Life Cycles	1269	T Cell Receptors (TCRs) Are Ig-like Heterodimers	1325
Involving Multiple Forms	1271	Activated Dendritic Cells Activate Naïve T Cells	1326
All Aspects of Viral Propagation Depend on Host Cell Machinery	1273	T Cells Recognize Foreign Peptides Bound to MHC Proteins MHC Proteins Are the Most Polymorphic Human Proteins	1326
Summary	1275	Known	1330
CELL BIOLOGY OF INFECTION	1276	CD4 and CD8 Co-receptors on T Cells Bind to Invariant Parts	1000
Pathogens Overcome Epithelial Barriers to Infect the Host	1276	of MHC Proteins	1331
Pathogens That Colonize an Epithelium Must Overcome Its Protective Mechanisms	1276	Developing Thymocytes Undergo Negative and Positive Selection	
Extracellular Pathogens Disturb Host Cells Without Entering		Cytotoxic T Cells Induce Infected Target Cells to Kill Themselves Effector Helper T Cells Help Activate Other Cells of the Innate	1333
Them	1277	and Adaptive Immune Systems	1335
Intracellular Pathogens Have Mechanisms for Both Entering and Leaving Host Cells	1278	Naïve Helper T Cells Can Differentiate Into Different Types of	1005
Viruses Bind to Virus Receptors at the Host Cell Surface	1279	Effector T Cells Both T and B Cells Require Multiple Extracellular Signals For	1335
Viruses Enter Host Cells by Membrane Fusion, Pore Formation,		Activation	1336
or Membrane Disruption	1280	Many Cell-Surface Proteins Belong to the Ig Superfamily	1338
Bacteria Enter Host Cells by Phagocytosis	1281	Summary	1339
Intracellular Eukaryotic Parasites Actively Invade Host Cells Some Intracellular Pathogens Escape from the Phagosome	1282	Problems	1340
into the Cytosol	1284	References	1342
Many Pathogens Alter Membrane Traffic in the Host Cell to			
Survive and Replicate	1284		
Viruses and Bacteria Use the Host-Cell Cytoskeleton for	1000		
Intracellular Movement Viruses Can Take Over the Metabolism of the Host Cell	1286 1288		
Pathogens Can Evolve Rapidly by Antigenic Variation	1289		
Error-Prone Replication Dominates Viral Evolution	1291		
Drug-Resistant Pathogens Are a Growing Problem	1291		
Summary	1294		
Problems References	1294 1296		
Totoronooo	1200		
Chapter 24 The Innate and Adaptive Immune			
Systems	1297		
THE INNATE IMMUNE SYSTEM	1298		
Epithelial Surfaces Serve as Barriers to Infection	1298		
Pattern Recognition Receptors (PRRs) Recognize Conserved			
Features of Pathogens	1298		
There Are Multiple Classes of PRRs	1299		
Activated PRRs Trigger an Inflammatory Response at Sites of	1300		
Infection Phagocytic Cells Seek, Engulf, and Destroy Pathogens	1300 1301		
Complement Activation Targets Pathogens for Phagocytosis	1001		
or Lysis	1302		
Virus-Infected Cells Take Drastic Measures to Prevent Viral	1000		
Replication Natural Killor Colla Induce Virus Infected Colla to Kill Thomsolves	1303		
Natural Killer Cells Induce Virus-Infected Cells to Kill Themselves Dendritic Cells Provide the Link Between the Innate and	1304		
Adaptive Immune Systems	1305		
Summary	1305		