Cell Biology Lecture 10

Cell Signaling - principles Sesilja Aranko 22.11.2023 Alberts • Johnson • Lewis • Morgan • Raff • Roberts • Walter

Molecular Biology of the Cell Sixth Edition

Chapter 17 The Cell Cycle Regulation

Pages: 963-974, 1010-1015

Copyright © Garland Science 2015

Course overview – Tentative schedule

Date	Lecture		Chapters & Topics		Assignments
25.10.	1		Course overview, DNA, Chromosomes, Genome, Ch. 4		
27.10.	2 -G	Part 1	Replication, Repair, Recombination, Ch. 5		
1.11.	3		From DNA to protein, Ch. 6		
3.11.	4		Control of gene expression, Ch. 7		
8.11.	5	Part 2	Membrane structures, Ch. 10 Membrane transport, Ch. 11		Assignment I (Essay) Draft I (8.11.)
10.11.	6 -G		Intracellular compartments and protein sorting, Ch. 12		
15.11.	7		Intracellular compartments and protein sorting, Ch. 12 Susanna Mäkinen, Solar Foods		Assignment II – Draft I (15.11.)
17.11.	8		Membrane Traffic, Ch. 13 iGEM team 2023		+iGEM intro
22.11.	9	3	Cell signalling, Ch. 15		Assignment II – Peer review (22.11.)
24.11.	10 -G		Cell signalling, Ch. 15		Assignment I (Essay) Draft II (24.11.)
29.11.	11	Part	Cell cycle, Ch. 17 Jere Weltner, Folkhälsan		
1.12.	12		Apoptosis, Ch. 18 + About exam		Assignment II – final version (1.12.)
7.12.	EXAM		December 7th		
8.12.	Final version essay		December 8th		Assignment I (Essay) Final version (8.12.) Aim at finishing before exam date. Use last days for polishing.

CONTENTS

- OVERVIEW OF THE CELL CYCLE
- THE CELL-CYCLE CONTROL SYSTEM
- CONTROL OF CELL DIVISION AND CELL GROWTH

FOUR (FIVE) PHASES OF THE CELL CYCLE

G1: PRIMARY GROWTH PHASE

S: DNA REPLICATION

G2: SECONDARY GROWTH PHASE

 collectively these 3 stages are called interphase

M: CELL DIVISION

- Mitosis
- Cytokinesis

G₀ PHASE (5TH PHASE)

- Resting cells
- Terminally differentiated cells

OVERVIEW OF THE CELL CYCLE

- The eukaryotic cell cycle usually consists of four phases
- G1 and G2 phases are "gap" phases
- G1+S+G2 = interphase

OVERVIEW OF THE CELL CYCLE

• G0 = resting phase

- E.g. bone and nerve cells permanently in G0
- Can also be temporary, e.g. in liver or lymphocytes

cytoplasm

THE CELL-CYCLE CONTROL SYSTEM

The cell-cycle control system triggers the major events of the cell cycle
 Are all chromosomes

- Cell-cycle control system triggers the essential processes of the cycle:
 - DNA replication
 - mitosis
 - cytokinesis
- Information about the completion of cell-cycle events, as well as signals from the environment, can cause the control system to arrest the cycle at the transition points

THE CELL-CYCLE CONTROL SYSTEM

The cell-cycle control system triggers the major events of the cell cycle
 Are all chromosomes

- Control system is based on molecular switches
- Typically, on/off + irreversible
- Robust + adaptive
- 3 major transitions

THE CELL-CYCLE CONTROL SYSTEM

- The cell-cycle control system depends on *cyclically activated* cyclin-dependent protein kinases
 cyclin
- Cyclin forms a complex with Cdk
 → the protein kinase is activated
 to trigger specific cell-cycle events.
- Without cyclin, Cdk is inactive.

- Cdk:
 - Constant levels
 - Phosphorylate proteins that mediate cell cycle
- Cyclin:
 - Regulate Cdk activity + direct to correct target
 - Cycles of synthesis and degradation in each cell cycle

CYCLIN-CDK COMPLEXES OF THE CELL-CYCLE CONTROL SYSTEM

The concentrations of the three major cyclin types oscillate during the cell cycle

The concentrations of Cdks do not change.

- Each Cdk-cyclin complex acts on specific target proteins
- Cdk-cyclin complex activity and levels regulated by:
 - Phosphorylation & dephosphorylation
 - Degradation of cyclins by proteasome

CYCLIN-CDK COMPLEXES OF THE CELL-CYCLE CONTROL SYSTEM

The concentrations of the three major cyclin types oscillate during the cell cycle

The concentrations of Cdks do not change.

- **G₁/S-cyclin**: levels rise in late $G_1 \rightarrow G_1/S$ -Cdk complexes \rightarrow **Start transition**
- S-cyclins: S-Cdk complexes in G₁ after start→ trigger DNA replication + early mitotic events
- M-cyclins: M-Cdk complexes form during G_2 but are held in an inactive state \rightarrow activated at the end of $G_2 \rightarrow$ trigger entry into mitosis at the G_2/M transition
- (APC/C, initiates the metaphase-to-anaphase transition)

CDK ACTIVATION AND SPESIFICITY

1. Active site is blocked by a region of the protein called the T-loop 2. The **binding of cyclin** causes the **T-loop** to move out of the active site, resulting in *partial activation* of Cdk2 3. **Phosphorylation of Cdk2** (by CAK) at a threonine residue in the **T-loop** *further activates the enzyme* by changing the shape of the T-loop

 Activity of cyclin/Cdk complexes targeted by cyclins and by availability of substrates (different at different states of cell cycle)

The regulation of Cdk activity by inhibitory phosphorylation and Cdk inhibitor proteins

activates

It also inserts into the ATP-binding site, further inhibiting the enzyme activity

CYCLIN-CDK COMPLEXES OF THE CELL-CYCLE CONTROL SYSTEM

- **G₁/S-cyclin**: levels rise in late $G_1 \rightarrow G_1/S$ -Cdk complexes \rightarrow **Start transition**
- S-cyclins: S-Cdk complexes in G₁ after start→ trigger DNA replication + early mitotic events
- M-cyclins: M-Cdk complexes form during G_2 but are held in an inactive state \rightarrow activated at the end of $G_2 \rightarrow$ trigger entry into mitosis at the G_2/M transition
- APC/C, initiates the metaphase-to-anaphase transition

THE CONTROL OF PROTEOLYSIS BY THE APC/C

• The anaphase-promoting complex/cyclosome (APC/C) triggers the metaphase-to-anaphase transition

1. The **APC/C is activated in metaphase** by association with Cdc20, which recognizes specific amino acid sequences on **M-cyclin**, **S-cyclin**, and other target proteins.

The marking of proteins with ubiquitin

Figure 3-70 Molecular Biology of the Cell 6e (© Garland Science 2015)

E3: ubiquitin ligase

SEQUENTIAL ACTIVATION OF CDKS DURING THE CELL CYCLE

• The cell-cycle control system functions as a linked series of biochemical switches

CONTROL OF CELL DIVISION AND CELL GROWTH

- Extracellular signal molecules regulate cell growth, division and survival
- Signals are generally soluble secreted proteins
- Mitogens stimulate cell division via stimulating G1/S-Cdk activity -> more cells
- Growth factors stimulate cell growth by promoting synthesis of proteins, etc. -> bigger cells
- Survival factors promote cell survival by suppressing apoptosis

CONTROL OF CELL DIVISION AND CELL GROWTH

Mitogens stimulate cell division

- Growth factors stimulate cell growth
- Survival factors suppress apoptosis

>50 mitogens in human, including *Platelet-derived growth factor* (*PDGF*) and epidermal growth factor (EGF)

Mitogens release the brakes on Cdk activity in G1 phase

→ Cell-cycle entry

 Mitogens Stimulate G₁-Cdk and G₁/S-Cdk Activities

downstream.

 Mitogens Stimulate G₁-Cdk and G₁/S-Cdk Activities

activation of transcription regulatory protein

mitogen mitogen receptor Ras MAP kinase activation of transcription regulatory protein Myc increases the CYTOSOL expression of many NUCLEUS delayed-response immediate early 111 gene expression genes, including some that lead to increased G₁-Cdk activity (cyclin transcription regulatory D-Cdk4) protein delayed-response gene expression active G1-Cdk positive feedback active active Rb G₁/S-Cdk protein active E2F protein NIL, G1/S-cyclin S-phase gene DNA (cvclin E) active ////// transcription S-cyclin S-Cdk **SYNTHESIS** (cyclin A) inactivated E2F protein positive feedback inactivated Rb protein

G₁

S

- Mitogens Stimulate G₁-Cdk and G₁/S-Cdk Activities
- G₁-Cdk activity (cyclin D–Cdk4), triggers the phosphorylation of members of the Rb family of proteins → inactivates the Rb proteins, freeing the gene regulatory protein E2F

- mitogen mitogen receptor Ras MAP kinase activation of transcription regulatory protein CYTOSOL NUCLEUS immediate early 111 gene expression transcription regulatory protein delayed-response gene expression active G1-Cdk positive feedback active active Rb G₁/S-Cdk protein active E2F protein NIL, G1/S-cyclin S-phase gene DNA active (cvclin E) ////// transcription S-cyclin S-Cdk **SYNTHESIS** (cyclin A) inactivated E2F protein positive feedback inactivated Rb protein G₁ S
- Mitogens Stimulate G₁-Cdk and G₁/S-Cdk Activities

- The resulting G₁/S-Cdk and S-Cdk activities further enhance Rb protein phosphorylation, forming a positive feedback loop.
- E2F proteins also stimulate the transcription of their own genes, forming another positive feedback loop
- \rightarrow complete and irreversible cell cycle

CONTROL OF CELL DIVISION AND CELL GROWTH

- Mitogens stimulate cell division
- Growth factors stimulate cell growth
- Survival factors suppress apoptosis

CELL PROLIFERATION IS ACCOMPANIED BY CELL GROWTH

- Cell division must be accompanied by cell growth
- Extracellular growth factor activate cells stimulating rate of synthesis and decreasing rate of degradation of cellular macromolecules
- Protein kinase TOR is at heart of all growth regulatory pathways in eukaryotes

STIMULATION OF CELL GROWTH BY EXTRACELLULAR GROWTH FACTORS AND NUTRIENTS

Growth factors bind to cell surface receptors \rightarrow activation of *PI 3-kinase*, which promotes protein synthesis through a complex signaling pathway that leads to the activation of the **protein kinase TOR**.

Extracellular nutrients such as amino acids also help activate TOR.

4E-BP: inhibitor of the translation initiation factor eIF4E S6: ribosomal subunit S6K: S6 kinase

STIMULATION OF CELL GROWTH BY EXTRACELLULAR GROWTH FACTORS AND NUTRIENTS

TOR phosphorylates multiple proteins to stimulate protein synthesis

Growth factors also stimulate increased production of the transcription regulatory protein **Myc**, which activates the transcription of various genes that promote cell metabolism and growth

4E-BP: inhibitor of the translation initiation factor eIF4E S6: ribosomal subunit S6K: S6 kinase

Figure 17-64 Molecular Biology of the Cell 6e (© Garland Science 2015)

STIMULATION OF CELL GROWTH BY EXTRACELLULAR GROWTH FACTORS AND NUTRIENTS

Growth factors also stimulate increased production of the transcription regulatory protein **Myc**, which activates the transcription of various genes that promote cell metabolism and growth

4E-BP: inhibitor of the translation initiation factor eIF4E S6: ribosomal subunit S6K: S6 kinase

DNA DAMAGE BLOCKS CELL DIVISION

 Damaged DNA must be repaired prior to duplication

DNA DAMAGE BLOCKS CELL DIVISION

 DNA damage leads to signaling cascade involving p53 that activates synthesis of p21

CONTROL OF CELL DIVISION AND CELL GROWTH

M-Cdk

• The p21 binds and inactivates G₁/S-Cdk and S-Cdk complexes, arresting the cell in G₁

S-cyclin

S

cyclin

S-Cdk

G₁/S-cyclin

Start

G₁

G₁/S-Cdk

TRANSCRIPTION