CHEM-E0115 Aalto Course: Plant Engineering Lecture 5

Mechanical and Piping

Tuomas Kuusikko 5.10.2023

- Tuomas Kuusikko
- Masters' degree in Mechanical Engineering (Tampere University of Technology)
 - Major paper technology
- Approximately 20 years' experience of industrial engineering.
- Current position: Director, Mechanical & Piping

Tuomas Kuusikko Director, Mechanical and Piping M: +358 505758745 <u>tuomas.kuusikko@afry.com</u> AFRY P.O. Box 4, 01621 Vantaa, Finland Visit: Jaakonkatu 3, 01621 Vantaa Finland

2 2021-10-14 | COPYRIGHT AFRY

Table of Content:

- 1. 3D Plant Engineering Views
- 2. Plant Engineering Interfaces
- 3. Plant Engineering, Things to Consider in the Mechanical and Piping Engineering
- 4. Typical Project Organization
- 5. Project Workflow: four main phases
- 6. Estimated Accuracy of Investment Cost by Project Phase
- 7. Mechanical Engineering General
- 8. Piping Engineering General
 - 8.1 Mechanical and Piping FEL1 Phase
 - 8.1.1 Mechanical and Piping FEL1 Phase Deliverables
 - 8.2 Mechanical and Piping FEL2 Phase
 - 8.2.1 Mechanical and Piping FEL2 Phase Deliverables
 - 8.3 Mechanical and Piping FEL2 Phase
 - 8.3.1 Mechanical and Piping FEL2 Phase Deliverables
 - 8.4 Example Drawings Before Detail Engineering has Started
 - 8.5 Example Material Take-off's and Cost Estimation Before Detail Engineering has Started
 - 8.6 Execution/Detail Engineering Phase
 - 8.6.1 Mechanical Engineering
 - 8.6.2 Piping Engineering
 - 8.6.3. Detail Engineering Tasks, Deliverables and Documents: Mechanical Engineering
 - 8.6.4. Detail Engineering Tasks, Deliverables and Documents: : Piping Engineering
 - 8.6.5. Detail Engineering Tasks, Deliverables and Documents: Mechanical and Piping Specifications and Standards

9. Summary

1. 3D Plant Engineering Views

https://www.metsagroup.com/fi/metsafibre/metsafibre/sellun-tuotanto/kemin-biotuotetehdas/

2. Plant Engineering Interfaces

Plant Engineering is the combination of models, drawings, specifications and material take-offs are needed for the implementation of a plant project phase.

5 2021-10-14 | COPYRIGHT AFRY

3. Plant engineering, things to consider in the mechanical and piping engineering

AFRY

5. Project workflow: four main phases

COPYRIGHT AFRY

9

7. Mechanical Engineering General

Common mechanical tasks during the project:

- Layout engineering
- Equipment engineering
- Standards and specifications
- Technical calculations

- e.g. create 3D model and layout drawings
- e.g. create 3D model and equipment outline drawings
- e.g. create new specifications or update existing ones
- e.g. tank calculations

10 2020-06-01 | COPYRIGHT AFRY

8. Piping Engineering General

Common piping engineering general tasks during the project:

Standards and specifications

Piping route design

Piping support design

Pipe material management

Technical Piping calculations

- e.g. create technical specifications for piping, valves, etc. e.g. create material take off lists, isometric drawings
 - e.g. create piping support drawings
- e.g. material lists for cost estimations and purchasing
- e.g. create piping stress calculations

AFRY

11 2020-06-01 | COPYRIGHT AFRY

8.1 Mechanical and Piping FEL1 Phase

Engineering duration ~1-4 months

Mechanical engineering will show the space requirements regarding the mill site and the departments based on chosen process solution or several options.

- Understanding the client needs and follow scope of work. There can be several layout options to be consider.
- Understand special characteristic of the process
- Electrical engineering input: main substation, electrical rooms etc.
- Civil engineers, common understanding about main process building
- Communication and reviews internally and with the client "common understanding way to go forward"
- Take into account local geographic, authorities' requirements, national and international standards
- Understand the process and way of thinking about the ideal material flow from layout point of view
 - Take into account effective logistics: roads, traffic, accesses, railroad, storage areas, utilities etc.
 - Knowledge about possible safety distances
- Use reference information from the previous projects
- Most often no piping engineering, only input to cost estimate based on reference data

12 2020-06-01 | COPYRIGHT AFRY

8.1.1 Mechanical and Piping FEL1 Phase Deliverables

Mechanical deliverables e.g.

- Mill site layout
- Input to cost estimate

• Input to final report. Description of the layout and main reasons and definitions for the process area order.

Piping deliverables e.g.

- Piping material quantities (pipes, components, steels, insulation)
- Installation prize estimate to cost estimation
- Pipe materials quantities:
 - Using reference quantities from old reference projects
- Input to report: piping description

8.2 Mechanical and Piping FEL2 Phase

Engineering duration ~3-12 months

More engineering is done information available at this phase vs. FEL1

Main tasks: Piping engineering

Communicate with:

- layout engineers to find suitable pipe routes
- process engineers; dimensions of main pipe routes
- equipment supplier; battery limits
- stress calculation experts needed if there is already need for the preliminary pipeline stress calculation

Main tasks: Mechanical

14

- Investigate and understand earlier phase material
- Participate to main equipment supplier meetings and update information to the layout
 - Budget offers and equipment supplier preliminary layouts often available
- Process input: what has chanced since previous engineering phase, internal communication
- Initial data from electrical engineering: footprints from main substation, electrical and control rooms, cable trays, transformers etc.
- Communicate and review internally and with the client "to maintain same understanding"
- Inputs from main equipment suppliers: proposal layouts -> update information to layout
- Cooperation with civil engineering to able to define exact process building volume/ floor levels/dimensions/loads
- Make the final equipment layout modifications to the layout's and then freeze idea of the main department and mill site layout

8.2.1 Mechanical and Piping FEL2 Phase Deliverables

Mechanical deliverables e.g.

- Mill site layout (updated)
- Department layouts, typically main process areas.
- Input to cost estimate and report
- Enquiry drawings for tanks and towers for cost estimate
- Technical instructions and standards

Piping deliverables e.g.

- Input to cost estimate and report regarding piping items
- Underground pipes, drains and sewer system routes shown in the mill site layout
- Pipe bridge layout

8.3 Mechanical and Piping FEL3 Phase

Engineering duration ~3-12 months

More engineering is done information available at this phase vs. FEL1

Main tasks: Mechanical Engineering

- Investigate and understand earlier phase material
- Participate to main equipment supplier meetings and update information to the layout.
 - Budget offers and equipment supplier preliminary layouts often available.
- Process input: what has chanced since previous engineering phase, internal communication.
- Input from electrical engineering: main substation, electrical and control rooms, cable trays, transformers etc.
- Communicate and review internally and with the client "to maintain same understanding".
- Cooperation with civil engineering to able to define exact process building volume/ floor levels/dimensions/loads.
- Make the final equipment layout modifications to the layout's and then freeze department and mill site layouts.

Main tasks: Piping Engineering

Communicate with:

- layout engineers to find suitable main pipe routes
- process engineers; dimensions of main pipe routes
- equipment supplier; battery limits
- stress calculation experts needed if there is already need for the preliminary pipeline stress calculation.
- Preliminary 3D pipe routing will be done

8.3.1 Mechanical and Piping FEL3 Phase Deliverables

Mechanical deliverables e.g.

- 3D review model
- Mill site layout (updated)
- Department layouts (new)
- Input to cost estimate and report
- Enquiry drawings for tanks and towers
- Technical instructions and standards

Piping deliverables e.g.

- Inputs to cost estimate and report regarding piping
- Material take off (MTO) from the 3D piping model
- Underground pipes, drains and sewer system routing
- Pipe bridge layout
- Piping specifications and standards

8.4 Example drawings before detail engineering has started

Preliminary layout drawing done

COPYRIGHT AFRY

18

Main pipes are routed in the 3D model

8.5 Example material take-off's and cost estimation before detail engineering has started

Piping cost estimation

Compa Ma	aterial dn1	dn2	dn3	Detail_text	SumOfQualit Standard	Dimensional	Material_Unit_IM	laterial_Price In	nstallation_UnIns	stallation_Pri To	tal_Price
1010 1.4	4432 12	200	0	Pipe 1220x6.3 - SFS-EN 10217-7	4,40 SFS-EN 10217-7	1220x6.3	1 669,98	7 352,27	278,52	1 226,21	8 578,48
1010 1.4	4432 8	300	0	Pipe 813x6.3 - SFS-EN 10217-7	24,63 SFS-EN 10217-7	813x6.3	951,41	23 429,77	198,00	4 876,03	28 305,80
1010 1.4	4432 6	600	0	Pipe 610x4 - SFS-EN 10217-7	0,20 SFS-EN 10217-7	610x4	2 802,00	560,40	129,36	25,87	586,27
1010 1.4	4432 4	004	0	Pipe 406.4x3.2 - SFS-EN 10217-7	0,63 SFS-EN 10217-7	406.4x3.2	1 843,09	1 160,95	84,48	53,21	1 214,17
1010 1.4	4432 3	350	0	Pipe 355.6x2.6 - SFS-EN 10217-7	1,43 SFS-EN 10217-7	355.6x2.6	720,30	1 027,87	71,28	101,72	1 129,58
1010 1.4	4432 3	300	0	Pipe 323.9x2.6 - SFS-EN 10217-7	96,14 SFS-EN 10217-7	323.9x2.6	139,50	13 412,10	60,72	5 837,87	19 249,96
1010 1.4	4432 1	50	0	Pipe 168.3x2 - SFS-EN 10217-7	9,36 SFS-EN 10217-7	168.3x2	50,05	468,29	34,32	321,10	789,40
1010 1.4	4432 1	00	0	Pipe 114.3x2 - SFS-EN 10217-7	99,36 SFS-EN 10217-7	114.3x2	33,44	3 322,96	27,72	2 754,23	6 077,18
1010 1.4	4432	80	0	Pipe 88.9x2 - SFS-EN 10217-7	239,27 SFS-EN 10217-7	88.9x2	26,08	6 239,10	23,76	5 684,96	11 924,07
1010 1.4	4432	50	0	Pipe 60.3x2 - SFS-EN 10217-7	209,15 SFS-EN 10217-7	60.3x2	19,32	4 040,74	22,44	4 693,28	8 734,02
1010 1.4	4432	40	0	Pipe 48.3x2 - SFS-EN 10217-7	1,65 SFS-EN 10217-7	48.3x2	15,53	25,57	21,12	34,78	60,35
1010 1.4	4432	32	0	Pipe 42.4 X 2 - SFS-EN 10217-7	39,90 SFS-EN 10217-7	42.4x2	13,78	549,66	18,48	737,35	1 287,01
1010 1.4	4432	25	0	Pipe 33.7x1.6 - SFS-EN 10217-7	46,13 SFS-EN 10217-7	33.7x1.6	9,19	424,05	18,48	852,53	1 276,58
1010 1.4	4432	20	0	Pipe 26.9x1.6 - SFS-EN 10217-7	1,34 SFS-EN 10217-7	26.9x1.6	8,06	10,77	18,48	24,68	35,45
1010 1.4	4432	15	0	Pipe 21.3x1.6 - SFS-EN 10217-7	21,55 SFS-EN 10217-7	21.3x1.6	6,55	141,19	18,48	398,24	539,43
1110 1.4	4432 12	200	90	Elbow 1220x8 - SFS-EN 10253-4 -type A - 3D - 90	2,00 SFS-EN 10253-4 -type A - 3D	1220x8	13 080,00	26 160,00	2 225,52	4 451,04	30 611,04
1110 1.4	4432 12	200	5	Elbow 1220x8 - SFS-EN 10253-4 -type A - 3D - 90	1,00 SFS-EN 10253-4 -type A - 3D	1220x8	13 080,00	13 080,00	2 225,52	2 225,52	15 305,52
1110 1.4	4432 8	300	90	Elbow 813x8 - SFS-EN 10253-4 -type A - 3D - 90	7,00 SFS-EN 10253-4 -type A - 3D	813x8	5 193,89	36 357,22	1 511,40	10 579,80	46 937,02
1110 1.4	4432 4	00	60	Elbow 406.4x3.2 - SFS-EN 10253-4 -type A - 3D - 90	2,00 SFS-EN 10253-4 -type A - 3D	406.4x3.2	431,59	863,18	566,28	1 132,56	1 995,74
1110 1.4	4432 3	300	90	Elbow 323.9x2.6 - SFS-EN 10253-4 -type A - 3D - 90	86,00 SFS-EN 10253-4 -type A - 3D	323.9x2.6	252,04	21 675,10	373,56	32 126,16	53 801,26
1110 1.4	4432 1	50	90	Elbow 168.3x2 - SFS-EN 10253-4 -type A - 3D - 90	8,00 SFS-EN 10253-4 -type A - 3D	168.3x2	33,58	268,61	220,44	1 763,52	2 032,13
1110 1.4	4432 1	50	30	Elbow 168.3x2 - SFS-EN 10253-4 -type A - 3D - 90	1,00 SFS-EN 10253-4 -type A - 3D	168.3x2	33,58	33,58	220,44	220,44	254,02
1110 1.4	4432 1	00	90	Elbow 114.3x2 - SFS-EN 10253-4 -type A - 3D - 90	68,00 SFS-EN 10253-4 -type A - 3D	114.3x2	13,54	920,45	158,40	10 771,20	11 691,65
1110 1.4	4432 1	00	30	Elbow 114.3x2 - SFS-EN 10253-4 -type A - 3D - 90	1,00 SFS-EN 10253-4 -type A - 3D	114.3x2	13,54	13,54	158,40	158,40	171,94
1110 1.4	4432	80	90	Elbow 88.9x2 - SFS-EN 10253-4 -type A - 3D - 90	77,00 SFS-EN 10253-4 -type A - 3D	88.9x2	9,48	729,96	126,72	9 757,44	10 487,40

Mechanical equipment costs

Code	Specification	Currency	Quantity	Unit	Unit price in currency	Unit price in EUR	Total	Freight	Installation in currency	Installation in EUR	TOTAL	
3								2		-		Π
3						-	-			-		1
4	Mechanical Equipment											ſ
4	Water Exchanger	eur	3		64 515	64 515	193 545	5 806	19 355	19 355	218 706	Γ
4	Cooling Water Pump	eur	3		20 000	20 000	60 000	1 800	6 000	6 000	67 800	Π
4	Expansion vessel	eur	1		10 000	10 000	10 000	300	1 000	1 000	11 300	Π
4	CiP Tank	eur	1		2 000	2 000	2 000	60	300	300	2 360	Π
4	CiP Pump	eur	1		3 000	3 000	3 000	90	450	450	3 540	Π
4	Condensate removal pot	eur	1		3 500	3 500	3 500	105	525	525	4 130	Π
4	LNG Evaporator	eur	1		450 000	450 000	450 000	13 500	22 500	22 500	486 000	Π
4	LNG storage tank	eur	1		145 000	145 000	145 000	4 350	10 150	10 150	159 500	Π
4	District heating exchanger	eur	1		14 000	14 000	14 000	420	1 400	1 400	15 820	Π
4	Steam generator	eur	1		566 000	566 000	566 000		28 300	28 300	594 300	Π
4	14 Air compressor	eur	4		26 800	26 800	107 200		10 720	10 720	117 920	ľ
4	Instrument air dryer	eur	1		46 000	46 000	46 000		4 600	4 600	50 600	ľ
4	Buffer tank	eur	1		11 400	11 400	11 400		1 140	1 140	12 540	Π

8.6 Execution/Detail Engineering Phase

Engineering duration ~6-24 months

8.6.1 Mechanical Engineering

Targets:

- From the start of detail engineering finalize the basic engineering solutions without any remarkable chances.
- Task is to execute the detail phase with the detail information
- Communication needed between all project parties
 - Lack of missing information can be very critical
 - Share your initial information on time
 - Communication with client, architects, civil, EIA, process, procurement etc.
- Organize layout and piping reviews regularly and your own discipline progress.
- Follow time schedule and document delivery schedule
- Check the drawings and documents to achieve enough high quality
- Follow your own discipline progress
- Make sure that 3D models received on time from the other disciplines or 3rd parties (civil, EIA, to able to maintain up to date layout)

8.6.2 Piping Engineering

Targets:

- Piping 3D library is up to date (supplier components and valves are available to piping design)
- Design all the pipes that are presented in he PID's and scope of work
- Piping calculations are done before finalizing drawings
- Collect pipe related instrument and components installation information from electrical and instrumentation disciplines able add them to 3D model correctly
- Main final documents:
 - Pipe isometrics
 - 2D support drawings
 - Material take-offs (MTO)
 - No more cost estimations. Enquiries to the contractors

Example key figures: Engineering hours

- If total engineering cost is generally ~10% of the total investment, then:
 - mechanical and piping engineering is 1/3 of $10\% \rightarrow 3\%$
 - 3% is divided to: Mechanical 40%, piping 60%

Example key figures: Engineering hours

-Tail oil plant: pipe meters 900m

Example of 100000 (100km) meters of mechanical and piping engineering:

Total hours: 1h x 100000= 100 000h x (cost per hour)

- Brownfield use 2h/m. Total hours: 2h x 100 000m= 200 000h x (cost per hour)
- Greenfield use: 1h/m. Total hours: 1h x 100 000m= 100 000h x (cost per hour)

*Mechanical hours: 0,4x100 000h = 40 000h Piping hours: 0,6x20 000h= 60 000h

*Or use only calculated piping hours and calculate mechanical hours: 40 hours × equipment quantity.

Piping material and installation capex:

-Generally: piping material and installation is ~5-8% of total capex

8.6.3. Detail engineering tasks, deliverables and documents: Mechanical Engineering

	Tasks	Deliverables	Typical documents		
M-Mechanical Engineering	General Mechanical Engineering	•Coordination between Disciplines	 Coordination, memos etc. Engineering instructions Tank inquiry Overhead Crane inquiry 		
	3D Layout Design	 Mill Site Departments Visualization Products Routing of underground Pipes Equipment Modeling 	 Mill Site Layouts Area Layouts Department Layouts Equipment arrangement layouts Mill Site Visualizations Animations Routing of underground pipes 		
	Civil Guide Design	•Modeling of buildings •Civil Guide Drawings	•Loading drawings •Civil Guide Drawings •Insert lists •Building Model •Equipment Models		
	Tank and Tower Design	•Tank Inquiry Drawings •Tank Outline Drawings	•Tank Inquiry Drawings •Tank Outline Drawings •Workshop Drawings for tanks		
	Miscellaneous Steel Structure Design	•Main Outline Drawings For Miscellaneous Steel Structures	Main Outline Drawings for Miscellaneous Steel Structures Work Drawings for Steel Structures		
	Miscellaneous Steel Structure Design	For Miscellaneous Steel Structures	Miscellaneous Steel Structures •Work Drawings for Steel Structures		

Ø AFRY

8.6.4. Detail engineering tasks, deliverables and documents: : Piping engineering

	Tasks	Deliverables	Typical documents
T-Piping Engineering	General Piping Engineering	•Coordination between Disciplines •3D System Mgmt	 Coordination, memos etc. Engineering Follow Up Engineering Instructions Inquiry's for pipes and installation 3D system management 3D system specifications
	Piping Engineering	•3D Piping model	Pipe Routing Pipe Detailing Piping Arrangement Drawings Pipe detail & system drawings
			•Browser model •Isometric Drawings •Bill of Materials/material take off
	Piping Support Design	•3D Support Model	Pipe Support StandardPipe Support DrawingsBill of Materials

8.6.5. Detail engineering tasks, deliverables and documents: Mechanical and Piping Specifications and Standards

Tasks	Deliverables	Typical documents		
General Mechanical Engineering	 Mech. Specifications Mechanical standards Technical Inquiries 	 Technical Specifications Tank Standards Technical Inquiries 		
		Bid Comparisons		
General Piping Engineering	 Piping Specifications Piping Standard Files Material Management 	 Piping Specifications Piping Standard Files Piping Material Lists and Comparison 		
		•Insulation Lists •Piping Support Lists		
Technical Calculations	•Stress Calculations •FEM Calculations	 Stress Calculations FEM Calculations Piping Component Calculation Branch Calculations 		
		 Tank Wall Calculations Foundation Calculations Earthquake Calculations Wind Calculations Pump Calculations Flow Calculations 		
	Tasks General Mechanical Engineering General Piping Engineering Technical Calculations	TasksDeliverablesGeneral Mechanical Engineering•Mech. Specifications •Mechanical standards •Technical InquiriesMeneral Piping Engineering•Piping Specifications •Piping Standard Files •Material ManagementMaterial Management•Stress Calculations •FEM Calculations		

Study, pre- and basic engineering phases (FEL1 - FEL3)

- Critical for the plant success
- Less man-hours
- More possibilities to affect the outcome
- Tools: 2D, 3D and visualization

Detail Engineering phase

- Critical for the project success
- A lot of work in a short time
- Managing the information is the challenge, integration needed
- Execute according to plan
- Tools: 3D & databases

Construction phase

- Managing the construction phase and changes at the site

Operations & Maintenance

- Continuous improvement
- Keeping the mill and virtual model up-to-date
- Laser scan for rebuilds

26

AFRY SMART SITE

Data generated during a project

AFRY SMART SITE

Data generated during a project

Thank You!