Applied Microeconometrics |

Lecture 10: Regression discontinuity design

Stefano Lombardi

Aalto University

October 5, 2023
Lecture Slides

1/26



What did we do last time?

Difference-in-differences (DID):
® RCT is seldom feasible, CIA is unlikely to hold, and good
instruments are hard to find
® Often there is a before and after a treatment is assigned (e.g.
policy change) and some units are treated while others are not.
® We need panel data

Idea: we use the evolution of Y in the control group to build
the counterfactual of “what would have happened” in the
treatment group in the absence of the treatment.

Identifying assumption: in the absence of the treatment, the
outcomes of both groups would follow parallel trends.

We allow for time-invariant (level) differences between the two
groups, but rule out time-variant differences (trends).
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What did we do last time?

Regression form (FE notation):
Yie=0a; + N +pDip +eip
® D, =1 if death penalty is abolished and zero otherwise

® E(eit|ai, A, Dig) =0

Simplest case: 2 time periods, 2 cross-sectional units (States)
® Comparison of the two States across time periods gives p

An equivalent way to write the 2x2 DID equation:
Yiet = a+YTREAT,+ NAFTER, + p(AFTER,* TREAT,) + €

Threats to validity:

® Lack of parallel trends
® Anticipatory behavior (e.g. leading to GE effects)

p interpretation: shocks/policies implemented at same time?
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What did we do last time?

® Several model extensions:

® Add controls X (to achieve identification)

Multiple time periods (before and after)
® inspect pre-trends
® placebo policy changes
® dynamic effects

Multiple treated groups, treated at different times

Different types of controls (never-treated; treated later)
1 and t can be anything!
® Jimeno and Boeri (2005): “workers” and “firms”
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Today: Regression Discontinuity Design

Exploit institutional rules that create RCT'’s
® a known (to us) threshold rule assigns people to treatments
® close to the threshold, the treatment assignment is randomized

® if nothing else discontinuously jumps at the threshold (other
than the treatment status), we can causally relate outcome
change to the treatment change at the threshold

Randomization in observational data
Identification: Imperfect manipulation, continuity assumption

Types of RDD: sharp vs. fuzzy
Sharp RDD:

® model specification, estimation, and testing validity
® sharp RDD as a local RCT
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Regression discontinuity design (RDD)

Institutional rules create experiments

Institutional rules often assign individuals to “treatments”;
this can be exploited for estimating causal effects

Typical case: threshold rule that is based on ex-ante variable
® Score in entry exams for college admission

Income for subsidy eligibility

Project quality score for public R&D subsidies eligibility

Age limit for legal alcohol consumption

The ex-ante variable X is called the running variable
(W refers to pre-determined observable characteristics)

A pre-determined threshold ¢ of X assigns individuals to the
binary treatment status D € {0,1}

® D =1 if treated and D = 0 if not treated
® |n principle, D can be continuous
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Regression discontinuity design

Institutional rules create experiments

® RDD exploits the randomness of the treatment assignment
around the threshold

® Provided that D is as good as randomly assigned at ¢, we can
compare the Y below (control) and above (treated) c.

® Main assumption: people cannot perfectly manipulate X
® X manipulation means being able the set own D; value
® some manipulation is allowed
® but no one can perfectly decide to be just below/above ¢
® imperfect self-selection around ¢ cannot be fully tested
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Regression discontinuity design

Imperfect manipulation and identification

® Imperfect manipulation:

® |t implies that X is continuous around ¢

® Jack of continuity is consistent with precise sorting around ¢

® The continuity of X implies local randomization
® Randomization is key to identify the causal estimand of interest

® Why does RDD work?

1.
. Institutional rules assign D based on X (above/below ¢)

Aim: estimate effect of D on Y for people at the threshold

At the threshold, we want to causally relate the change in Y
with the discontinuity in D induced by the running variable
For this to work, no other variable can jump at c

. In other words, any other discontinuities at ¢ (in either X or

observable/unobservable characteristics) will bias the estimates
Continuity implies randomization: people close to ¢ are similar
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Regression discontinuity design

Continuity assumption

Why do we require continuity (and not randomization)?

In RDD:

® All pre-determined observable and unobservable characteristics
(W and U) are allowed to be correlated with D! (and Y')

® we only require that they evolve smoothly around c.

® X is also allowed to be correlated with W and U
® we require that, conditional on (W,U), X passes smoothly across ¢

Assuming that D is as good as randomly assigned conditional
on (W, X)) would mean relying on CIA (and we don't want to!)

Remember, randomization follows from X continuity at c.
® X continuity ensures that at ¢ the effect of the discontinuous
jump of D on Y is not confounded by a jump in X
® X continuity implies that, conditional on X, on average the
potential outcomes evolve smoothly across ¢
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Regression discontinuity design

Consequences of the local random assignment

® | ocal random assignment means that treated and comparison
units are not systematically different in any dimension at ¢
® |t is “pure luck” whether 7 is just above vs. below ¢

® This follows from the inability of precisely manipulating X to
be on one side vs. the other

® Three implications local random assignment:
1. ldentification: It is a necessary condition (and sufficient, in
sharp RDD) to identify causal effect of D on Y at ¢

2. Validity testing: test whether pre-determined W jump at ¢
(similar to randomization test in RCTs)

3. lIrrelevance of W: their inclusion/exclusion should not matter
for consistency (only for precision)
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Types of Regression discontinuity designs

® Overall, RDD is compelling design (high internal validity):

® |ocal RCT

® if X and c are known to the researcher, one can exploit local
randomization in observational data

® |ocal randomization does not need to be assumed, it follows
from imperfect manipulation of X.

e Sharp RDD:

1. Treatment status D is a deterministic function of X
2. D is a discontinuous function of X

That is, D jumps from 0 to 1 at ¢ (everyone with X; > ¢
receives D; = 1).

® Fuzzy RDD allows for a smaller jump at c.
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Types of Regression discontinuity designs

® \We can often redefine D to have a sharp vs. fuzzy design:

X D Y RDD
Test score | college admission Income sharp
Test score | college enrollment Income fuzzy
Income welfare benefits eligibility Employment | sharp
Income welfare benefits take-up Employment | fuzzy
Age legal alcohol consumption Death sharp
Age actual alcohol consumption | Death fuzzy
TABLE 1 — Example of RDD applications
® Typically:

® Sharp RDD if X fully/deterministically captures the eligibility

® Fuzzy RDD if D is participation/take-up

® Fuzzy RDD if D assignment follows more rules than just X

12/26



Effect of Minimum Legal Drinking Age on death rates

Carpenter and Dobkin (2009)

® We are interested in the effect of the minimum legal drinking
age (in the US it's 21) on mortality.

® What type of RDD is this?

® Setting:

outcome variable Y;: death rate

treatment status D;: legal drinking status

running variable X;: age

cutoff ¢ = 21: MLDA rule transforms 21-year-olds from
underage minors to legal alcohol consumers.
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Effect of Minimum Legal Drinking Age on death rates

Carpenter and Dobkin (2009)

FiGure 4.1
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Effect of Minimum Legal Drinking Age on death rates

Carpenter and Dobkin (2009)

FIGURE 4.2
A sharp RD estimate of MLDA mortality effects
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Notes: This figure plots death rates from all causes against age in months.
The lines in the figure show fitted values from a regression of death rates on
an over-21 dummy and age in months (the vertical dashed line indicates the
minimum legal drinking age (MLDA) cutoff).
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Sharp Regression Discontinuity Design

® Suppose that D; is a deterministic and discontinuous function
of the running variable X;

® D jumps from 0 to 1 at ¢. For each i:

1 iinZC
DZ_{ 0 if X;<ec

Or, more compactly, D; = 1[X; > ¢].

e All people to the right of the cut off are exposed to the
treatment and all those to the left are denied the treatment
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Sharp Regression Discontinuity Design

Linear case

What is the effect of college admission (D) on income (Y')?

We have information on the college admission rules:

® admission is entirely based on applicant’s entry test score (X).

® students scoring at least ¢ are admitted: D = 1[X > ¢].

We can write the model for Y as:
Y, =a+ D7+ X;8+ u;
Note that:
® Y; varies discontinuously with D; (if 7 # 0)
® D, is discontinuous function of X; generating treat. effect 7

® here, by assumption the relationship between Y; and Xj is
linear (and the same above/below ¢)

Side note: can we use X as an instrument for D?
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Sharp Regression Discontinuity Design

Linear case

Outcome variable (Y)

e

FIGURE 1 - Linear RDD

The causal effect for a person whose X; = c requires us to extrapolate beyond ¢

Suppose that all factors (other than college admission) affecting Y; evolve
smoothly with respect to X;

Then B’ (A”) is a reasonable guess for Y; when D; =1 (D; = 0)
And B' — A” would be the impact of treatment on Y;
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Sharp Regression Discontinuity Design
Specifying the functional form
Tradeoff:

® Estimates are more accurate, the closer we are to the thershold
® The closer we are to the threshold, the less data we have

We always need to use data away from the threshold

® |n the example, no individual had X; = ¢!
® extrapolation means that we must always control for X;

As a result we need to assume a functional form for the
relationship between Y and X
® In the example, a linear relationship seems appropriate
® |f the true population model is linear, OLS using all
observations provides the best estimate for 7

Since we need data away from threshold, the 7 estimate
depends on chosen functional form

® |n the example, if we restricted 5 = 0, OLS would biased
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Sharp Regression Discontinuity Design

Specifying the functional form

We saw the linear example

But in general the relationship can be any f(X;):
)/i :Oé+TDi+f(Xi)+ui

For example, p:th order polynomial:
F(Xi) = B1.Xi + P X7 + B3 X7 + ... + B, X!

f(X;) can also be different at each side of the cutoff point

Relies on the assumption that f(X;) is an adequate
description of the relationship between Y and X

The further away from ¢ we are, the bolder this assumption is

Therefore, it makes sense to use estimation methods for
f(X;) well-suited locally
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Sharp Regression Discontinuity Design

Nonlinear case

Observed

Observed

E[Y(O)X]

0 0.5 1 15 2 25 3

Assignment vaiable (X)

FIGURE 2 — Non-linear RDD

® Y;(0), Y;(1): potential outcomes. The i-level treatment effect is never observed.

* E[Y;(0)|X], E[Y;(1)|X]: underlying relationships between the average
outcomes and X (non-linear; different above/below c).

® We never observe E[Y;(1)|X] below ¢ = 2 (the opposite holds for E[Y;(0)|X]).
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Sharp Regression Discontinuity Design

Nonlinear case

With what is observable, we can estimate:
B —A=1limEY;|X; =c+ €] — lim E[Y;|X; = c — €
e—0 e—0
Assume that X evolves continuously across c. This implies
that also the underlying E[Y;(0)|X] and E[Y;(1)|X] do so.
Then B — A at the limit is equal to:
This is the treatment effect at the thershold ¢

Continuity enables us to use the average outcomes of those
right below ¢ and valid counterfactuals for those right above

We can estimate smooth E[Y | X] relationships before/after c,
but must assume relationship is smooth in the counterfactuals
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Sharp Regression Discontinuity Design

Estimation within a bandwidth

How to estimate E[Y;|X; = c+ €] and E[Y;|X; = c — €]?
® f(X;) approximates well relationship between X and Y?
® The further away from ¢ we are, the bolder this assumption is
® \We need estimation methods for f(X;) well-suited locally

Non-parametric methods flexibly estimate E[Y|X] below
and above ¢ within a bandwidth (window) of width h.

E.g., local constant estimator (Figure 2):
® choose interval h around ¢ = 2, e.g. (—1.5,1.5)
® use data in (—1.5,2) to compute A’; repeat above ¢ to get B’
® B’ — A’ is the estimate for T

Alternatively, local linear/polynomial regression, and we can
give more weight to observations closest to ¢

How to choose h? Precision vs. bias tradeoff
® Literature on optimal bandwidths
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Model specification and estimation
Sharp RDD

e Standard approach is to choose a window of width h and use
local linear regression with rectangular kernel.

® This is equivalent to estimating two linear regressions over
window h on both sides of ¢:

Yi=o +51X~i+uz‘ if)j(jz' € [~h,0)
Y=o, + 6, X; +u; if X;€ [O,h]
® with X; = X — ¢, hence D; = I[X,; > 0]
® this way, oy «,. are the value of the regression functions at c.
® then, 7 = o, — (g
® Equivalently, do OLS once to estimate pooled regression:

Yi=a;+7D;i+ B X; + (B — B)D:iXi +ui, X; € [—h,h]

® again, T = a, — «y, but now we directly get (%)
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Model specification and estimation
Sharp RDD

Note that in general we can rewrite the pooled regression as:

Y; =a;+7D; + f(Xi) +ui, X; € [~h,h]
with f(X;) = fi(Xi) + D[f-(Xy) — fi(X5)]
for local linear regression: fl(X'z) = 3,.X; and fr()?z) = 3. X;
we can alternatively use local polynomial regression for f(X;)

alternative non-parametric methods exist, but local linear
regression with rectangular kernel (same weight to all
observations in h) is a good start

optimal bandwidth algorithms and manual inspection help
deciding h value (and robustness of results to it)
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Testing for sharp/fuzzy RDD validity

® We cannot test whether individuals influence the running
variable precisely. But we can check:

1. institutional rules defining X;:
® s it likely/feasible to precisely sort on one side vs. the other?
® do people even know about c?
2. local random assignment:
® do pre-determined W jump at ¢? (similar to balance test in RCTs)
® does W inclusion change estimates? (should only affect precision)
3. continuity (McRary test):
® |s the density of X continuous across c?

4. relationship between Y and X

® are results robust to the use of different h? (bias-variance trade-off)
® what is the optimal bandwidth?
® are estimates sensitive to different functional forms for f(X;)?

® Transparency: plot Y vs. X to see variation that identifies 7
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