
Applied Microeconometrics I
Lecture 10: Regression discontinuity design

Stefano Lombardi

Aalto University

October 5, 2023
Lecture Slides

1 / 26



What did we do last time?
• Difference-in-differences (DID):

• RCT is seldom feasible, CIA is unlikely to hold, and good
instruments are hard to find

• Often there is a before and after a treatment is assigned (e.g.
policy change) and some units are treated while others are not.

• We need panel data

• Idea: we use the evolution of Y in the control group to build
the counterfactual of “what would have happened” in the
treatment group in the absence of the treatment.

• Identifying assumption: in the absence of the treatment, the
outcomes of both groups would follow parallel trends.

• We allow for time-invariant (level) differences between the two
groups, but rule out time-variant differences (trends).
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What did we do last time?
• Regression form (FE notation):

Yi,t = αi + λt + ρDi,t + εi,t

• Di,t = 1 if death penalty is abolished and zero otherwise
• E(εi,t|αi, λt, Di,t) = 0

• Simplest case: 2 time periods, 2 cross-sectional units (States)
• Comparison of the two States across time periods gives ρ

• An equivalent way to write the 2x2 DID equation:
Yist = α+γTREATs +λAFTERt +ρ(AFTERt ∗TREATs)+εist

• Threats to validity:
• Lack of parallel trends
• Anticipatory behavior (e.g. leading to GE effects)

• ρ interpretation: shocks/policies implemented at same time?
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What did we do last time?

• Several model extensions:
• Add controls X (to achieve identification)
• Multiple time periods (before and after)

• inspect pre-trends
• placebo policy changes
• dynamic effects

• Multiple treated groups, treated at different times
• Different types of controls (never-treated; treated later)
• i and t can be anything !

• Jimeno and Boeri (2005): “workers” and “firms”
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Today: Regression Discontinuity Design

• Exploit institutional rules that create RCT’s
• a known (to us) threshold rule assigns people to treatments
• close to the threshold, the treatment assignment is randomized
• if nothing else discontinuously jumps at the threshold (other

than the treatment status), we can causally relate outcome
change to the treatment change at the threshold

• Randomization in observational data

• Identification: Imperfect manipulation, continuity assumption

• Types of RDD: sharp vs. fuzzy
• Sharp RDD:

• model specification, estimation, and testing validity
• sharp RDD as a local RCT
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Regression discontinuity design (RDD)
Institutional rules create experiments

• Institutional rules often assign individuals to “treatments”;
this can be exploited for estimating causal effects

• Typical case: threshold rule that is based on ex-ante variable
• Score in entry exams for college admission
• Income for subsidy eligibility
• Project quality score for public R&D subsidies eligibility
• Age limit for legal alcohol consumption

• The ex-ante variable X is called the running variable
(W refers to pre-determined observable characteristics)

• A pre-determined threshold c of X assigns individuals to the
binary treatment status D ∈ {0, 1}

• D = 1 if treated and D = 0 if not treated
• In principle, D can be continuous
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Regression discontinuity design
Institutional rules create experiments

• RDD exploits the randomness of the treatment assignment
around the threshold

• Provided that D is as good as randomly assigned at c, we can
compare the Y below (control) and above (treated) c.

• Main assumption: people cannot perfectly manipulate X
• X manipulation means being able the set own Di value
• some manipulation is allowed
• but no one can perfectly decide to be just below/above c
• imperfect self-selection around c cannot be fully tested
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Regression discontinuity design
Imperfect manipulation and identification

• Imperfect manipulation:
• It implies that X is continuous around c

• lack of continuity is consistent with precise sorting around c

• The continuity of X implies local randomization
• Randomization is key to identify the causal estimand of interest

• Why does RDD work?
1. Aim: estimate effect of D on Y for people at the threshold
2. Institutional rules assign D based on X (above/below c)
3. At the threshold, we want to causally relate the change in Y

with the discontinuity in D induced by the running variable
4. For this to work, no other variable can jump at c
5. In other words, any other discontinuities at c (in either X or

observable/unobservable characteristics) will bias the estimates
6. Continuity implies randomization: people close to c are similar
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Regression discontinuity design
Continuity assumption

• Why do we require continuity (and not randomization)?
• In RDD:

• All pre-determined observable and unobservable characteristics
(W and U) are allowed to be correlated with D! (and Y )

• we only require that they evolve smoothly around c.
• X is also allowed to be correlated with W and U

• we require that, conditional on (W, U), X passes smoothly across c

• Assuming that D is as good as randomly assigned conditional
on (W, X) would mean relying on CIA (and we don’t want to!)

• Remember, randomization follows from X continuity at c.
• X continuity ensures that at c the effect of the discontinuous

jump of D on Y is not confounded by a jump in X

• X continuity implies that, conditional on X, on average the
potential outcomes evolve smoothly across c
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Regression discontinuity design
Consequences of the local random assignment

• Local random assignment means that treated and comparison
units are not systematically different in any dimension at c

• It is “pure luck” whether i is just above vs. below c

• This follows from the inability of precisely manipulating X to
be on one side vs. the other

• Three implications local random assignment:
1. Identification: It is a necessary condition (and sufficient, in

sharp RDD) to identify causal effect of D on Y at c

2. Validity testing: test whether pre-determined W jump at c
(similar to randomization test in RCTs)

3. Irrelevance of W : their inclusion/exclusion should not matter
for consistency (only for precision)
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Types of Regression discontinuity designs

• Overall, RDD is compelling design (high internal validity):
• local RCT
• if X and c are known to the researcher, one can exploit local

randomization in observational data
• local randomization does not need to be assumed, it follows

from imperfect manipulation of X.

• Sharp RDD:
1. Treatment status D is a deterministic function of X
2. D is a discontinuous function of X

That is, D jumps from 0 to 1 at c (everyone with Xi ≥ c
receives Di = 1).

• Fuzzy RDD allows for a smaller jump at c.
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Types of Regression discontinuity designs

• We can often redefine D to have a sharp vs. fuzzy design:

X D Y RDD
Test score college admission Income sharp
Test score college enrollment Income fuzzy
Income welfare benefits eligibility Employment sharp
Income welfare benefits take-up Employment fuzzy
Age legal alcohol consumption Death sharp
Age actual alcohol consumption Death fuzzy

Table 1 – Example of RDD applications
• Typically:

• Sharp RDD if X fully/deterministically captures the eligibility
• Fuzzy RDD if D is participation/take-up
• Fuzzy RDD if D assignment follows more rules than just X
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Effect of Minimum Legal Drinking Age on death rates
Carpenter and Dobkin (2009)

• We are interested in the effect of the minimum legal drinking
age (in the US it’s 21) on mortality.

• What type of RDD is this?
• Setting:

• outcome variable Yi: death rate
• treatment status Di: legal drinking status
• running variable Xi: age
• cutoff c = 21: MLDA rule transforms 21-year-olds from

underage minors to legal alcohol consumers.
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Effect of Minimum Legal Drinking Age on death rates
Carpenter and Dobkin (2009)Regression Discontinuity Designs 149

Figure 4.1
Birthdays and funerals
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1997 and 2003. Deaths here are plotted by day, relative to
birthdays, which are labeled as day 0. For example, someone
who was born on September 18, 1990, and died on September
19, 2012, is counted among deaths of 22-year-olds occurring
on day 1.

Mortality risk shoots up on and immediately following a
twenty-first birthday, a fact visible in the pronounced spike in
daily deaths on these days. This spike adds about 100 deaths
to a baseline level of about 150 per day. The age-21 spike
doesn’t seem to be a generic party-hardy birthday effect. If
this spike reflects birthday partying alone, we should expect
to see deaths shoot up after the twentieth and twenty-second
birthdays as well, but that doesn’t happen. There’s something
special about the twenty-first birthday. It remains to be seen,
however, whether the age-21 effect can be attributed to the
MLDA, and whether the elevated mortality risk seen in Figure
4.1 lasts long enough to be worth worrying about.

 

 

 

 

 

 

 

From Mastering ‘Metrics: The Path from Cause to Effect. © 2015 Princeton University Press. Used by permission. 
All rights reserved. 
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Effect of Minimum Legal Drinking Age on death rates
Carpenter and Dobkin (2009)150 Chapter 4

Figure 4.2
A sharp RD estimate of MLDA mortality effects
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Notes: This figure plots death rates from all causes against age in months.
The lines in the figure show fitted values from a regression of death rates on
an over-21 dummy and age in months (the vertical dashed line indicates the
minimum legal drinking age (MLDA) cutoff).

Sharp RD

The story linking the MLDA with a sharp and sustained rise
in death rates is told in Figure 4.2. This figure plots death rates
(measured as deaths per 100,000 persons per year) by month of
age (defined as 30-day intervals), centered around the twenty-
first birthday. The X-axis extends 2 years in either direction,
and each dot in the figure is the death rate in one monthly
interval. Death rates fluctuate from month to month, but few
rates to the left of the age-21 cutoff are above 95. At ages over
21, however, death rates shift up, and few of those to the right
of the age-21 cutoff are below 95.

Happily, the odds a young person dies decrease with age, a
fact that can be seen in the downward-sloping lines fit to the
death rates plotted in Figure 4.2. But extrapolating the trend
line drawn to the left of the cutoff, we might have expected an
age-21 death rate of about 92; in the language of Chapter 1,
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Sharp Regression Discontinuity Design

• Suppose that Di is a deterministic and discontinuous function
of the running variable Xi

• D jumps from 0 to 1 at c. For each i:

Di =
{

1 if Xi ≥ c
0 if Xi < c

Or, more compactly, Di = 1[Xi ≥ c].

• All people to the right of the cut off are exposed to the
treatment and all those to the left are denied the treatment
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Sharp Regression Discontinuity Design
Linear case

• What is the effect of college admission (D) on income (Y )?
• We have information on the college admission rules:

• admission is entirely based on applicant’s entry test score (X).
• students scoring at least c are admitted: D = 1[X ≥ c].

• We can write the model for Yi as:
Yi = α + Diτ + Xiβ + ui

• Note that:
• Yi varies discontinuously with Di (if τ ̸= 0)
• Di is discontinuous function of Xi generating treat. effect τ
• here, by assumption the relationship between Yi and Xi is

linear (and the same above/below c)

• Side note: can we use X as an instrument for D?
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Sharp Regression Discontinuity Design
Linear case

Figure 1 – Linear RDD

• The causal effect for a person whose Xi = c requires us to extrapolate beyond c
• Suppose that all factors (other than college admission) affecting Yi evolve

smoothly with respect to Xi

• Then B
′ (A′′ ) is a reasonable guess for Yi when Di = 1 (Di = 0)

• And B
′ − A

′′ would be the impact of treatment on Yi
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Sharp Regression Discontinuity Design
Specifying the functional form

• Tradeoff:
• Estimates are more accurate, the closer we are to the thershold
• The closer we are to the threshold, the less data we have

• We always need to use data away from the threshold
• In the example, no individual had Xi = c!
• extrapolation means that we must always control for Xi

• As a result we need to assume a functional form for the
relationship between Y and X

• In the example, a linear relationship seems appropriate
• If the true population model is linear, OLS using all

observations provides the best estimate for τ

• Since we need data away from threshold, the τ estimate
depends on chosen functional form

• In the example, if we restricted β = 0, OLS would biased
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Sharp Regression Discontinuity Design
Specifying the functional form

• We saw the linear example

• But in general the relationship can be any f(Xi):
Yi = α + τDi + f(Xi) + ui

• For example, ρ:th order polynomial:
f(Xi) = β1Xi + β2X2

i + β3X3
i + ... + βρXρ

i

• f(Xi) can also be different at each side of the cutoff point

• Relies on the assumption that f(Xi) is an adequate
description of the relationship between Y and X

• The further away from c we are, the bolder this assumption is

• Therefore, it makes sense to use estimation methods for
f(Xi) well-suited locally
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Sharp Regression Discontinuity Design
Nonlinear case

Figure 2 – Non-linear RDD

• Yi(0), Yi(1): potential outcomes. The i-level treatment effect is never observed.
• E[Yi(0)|X], E[Yi(1)|X]: underlying relationships between the average

outcomes and X (non-linear; different above/below c).
• We never observe E[Yi(1)|X] below c = 2 (the opposite holds for E[Yi(0)|X]).
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Sharp Regression Discontinuity Design
Nonlinear case

• With what is observable, we can estimate:

B − A = lim
ϵ→0

E[Yi|Xi = c + ϵ] − lim
ϵ→0

E[Yi|Xi = c − ϵ]

• Assume that X evolves continuously across c. This implies
that also the underlying E[Yi(0)|X] and E[Yi(1)|X] do so.

• Then B − A at the limit is equal to:
τ = E[Yi(Di = 1) − Yi(Di = 0)|Xi = c]

• This is the treatment effect at the thershold c

• Continuity enables us to use the average outcomes of those
right below c and valid counterfactuals for those right above

• We can estimate smooth E[Y |X] relationships before/after c,
but must assume relationship is smooth in the counterfactuals
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Sharp Regression Discontinuity Design
Estimation within a bandwidth

• How to estimate E[Yi|Xi = c + ϵ] and E[Yi|Xi = c − ϵ]?
• f(Xi) approximates well relationship between X and Y ?
• The further away from c we are, the bolder this assumption is
• We need estimation methods for f(Xi) well-suited locally

• Non-parametric methods flexibly estimate E[Y |X] below
and above c within a bandwidth (window) of width h.

• E.g., local constant estimator (Figure 2):
• choose interval h around c = 2, e.g. (−1.5, 1.5)
• use data in (−1.5, 2) to compute A′; repeat above c to get B′

• B′ − A′ is the estimate for τ

• Alternatively, local linear/polynomial regression, and we can
give more weight to observations closest to c

• How to choose h? Precision vs. bias tradeoff
• Literature on optimal bandwidths
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Model specification and estimation
Sharp RDD

• Standard approach is to choose a window of width h and use
local linear regression with rectangular kernel.

• This is equivalent to estimating two linear regressions over
window h on both sides of c:

Yi = αl + βlX̃i + ui if X̃i ∈ [−h, 0)
Yi = αr + βrX̃i + ui if X̃i ∈ [0, h]

• with X̃i = X − c, hence Di = 1[X̃i ≥ 0]
• this way, αl αr are the value of the regression functions at c.
• then, τ = αr − αl

• Equivalently, do OLS once to estimate pooled regression:

Yi = αl + τDi + βlX̃i + (βr − βl)DiX̃i + ui, X̃i ∈ [−h, h]

• again, τ = αr − αl, but now we directly get σ̂(τ̂)
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Model specification and estimation
Sharp RDD

• Note that in general we can rewrite the pooled regression as:

Yi = αl + τDi + f(X̃i) + ui, X̃i ∈ [−h, h]

with f(X̃i) = fl(X̃i) + D[fr(X̃i) − fl(X̃i)]

• for local linear regression: fl(X̃i) = βlX̃i and fr(X̃i) = βrX̃i

• we can alternatively use local polynomial regression for f(X̃i)

• alternative non-parametric methods exist, but local linear
regression with rectangular kernel (same weight to all
observations in h) is a good start

• optimal bandwidth algorithms and manual inspection help
deciding h value (and robustness of results to it)
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Testing for sharp/fuzzy RDD validity

• We cannot test whether individuals influence the running
variable precisely. But we can check:

1. institutional rules defining Xi:
• is it likely/feasible to precisely sort on one side vs. the other?
• do people even know about c?

2. local random assignment:
• do pre-determined W jump at c? (similar to balance test in RCTs)
• does W inclusion change estimates? (should only affect precision)

3. continuity (McRary test):
• Is the density of X continuous across c?

4. relationship between Y and X
• are results robust to the use of different h? (bias-variance trade-off)
• what is the optimal bandwidth?
• are estimates sensitive to different functional forms for f(Xi)?

• Transparency: plot Y vs. X to see variation that identifies τ
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