Applied Microeconometrics I
 Lecture 12: Recap of some of the course topics

Stefano Lombardi

Aalto University

October 12, 2023
Lecture Slides

Recap of some of the course topics

Three parts:

1. Example 1: effect of training on re-employment
2. Example 2: returns to schooling
3. Some words on the exam

Please stop me along the way if anything is unclear!

Example 1: training program for the jobseekers

- Setting:
- Unemployed people registered at Public Employment Service
- They are entitled to unemployment insurance (UI) benefits
- The law requires them to be actively searching for a new job (conditionality of benefits)
- Training programs are a key tool to activate unemployed people, build human capital, and ultimately find a job
- But they are costly!
- Question:
- Does the training program considered causally affect labor market outcomes? (labor income, employment)
- Notation:
- $D_{i} \in\{0,1\}$: participation status in the training program for i
- Y_{i} : labor income 1 year after the program ends
- Question: does D_{i} causally affect Y_{i} ?

Example 1: training programs for the jobseekers

Potential outcomes framework

- Suppose we focus on one jobseeker i, who has $D_{i}=1$.
- Question: did the training cause an increase in Y_{i} ?
- is Y_{i} when $D_{i}=1$ larger than Y_{i} when $D_{i}=0$?
- Equivalently, "what if" i did not take the treatment?
- what would have happened to Y_{i} in the case of $D_{i}=0$?
- what is the counterfactual Y_{i} when $D_{i}=0$?
- With counterfactual/potential outcomes: is $Y_{1 i}-Y_{0 i}>0$?
- for this jobseeker, only $Y_{1 i}$ is observed $\left(Y_{i}=Y_{1 i}\right)$
- we can still think of a "what if" scenario where $Y_{0 i}$ occurred
- fundamental problem: $Y_{1 i}-Y_{0 i}$ cannot be observed/estimated
- The statistical solution to this is to move away from individual-level effects and reason in terms of average effects

Example 1: training programs for the jobseekers

Comparing the average outcomes in observational data

- That is, we focus on the average effect: $E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1\right]$
- Again, for those with $D_{i}=1$ we only observe $Y_{1 i}$
- Can we use information on those with $D_{i}=0$ to build a valid counterfactual for the jobseekers with $D_{i}=1$?
- Natural starting point: observed data
$E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=E\left[Y_{1 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]$
- these are simply the outcome averages in the two groups
- both are readily observed!
- However, in general this is not the ATET: $E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]=A T E T+$ selection bias
- selection bias: $E\left[Y_{0 i} \mid D_{i}=1\right]-E\left[Y_{0 i} \mid D_{i}=0\right]$
- what does even mean selection bias?

Example 1: training program for the jobseekers

Selection into/out of the training program

- Unless otherwise specified, even in the presence of UI rules:
- the way the training is assigned/taken is a black box
- i can decide whether to participate into the program
- there is selection into (or out of) the program
- The training participation D_{i} is the result of preferences, motivation, ability, ...
- of both the jobseeker $i \ldots$
- and of the caseworker assigned to i
- Selection is part of life: we decide to do things because we think that it is good for us
- e.g., some jobseekers might think that D is a waste of time
- Participation incentives of those who have $D_{i}=1$ vs. $D_{i}=0$ are potentially very different: $E\left[Y_{0 i} \mid D_{i}=1\right] \neq E\left[Y_{0 i} \mid D_{i}=0\right]$

Example 1: training program for the jobseekers

Comparing the average outcomes in experimental data

- Suppose that we randomize the participation status D_{i}
- Full compliance: everyone randomized to have $D_{i}=1$ gets the training, and everyone randomized to have $D_{i}=0$ don't
- What does randomization of D_{i} mean/imply?
- randomization makes D_{i} independent of all characteristics
- hence, every characteristic has the same distribution in the two groups (e.g., preferences, motivation, ability, ...)
- potential outcomes distributions are equal in the two groups
- hence, also $E\left[Y_{0 i} \mid D_{i}=1\right]=E\left[Y_{0 i} \mid D_{i}=0\right]$: no selection bias
- Randomization decides who gets the training, not jobseekers (who would have chosen D_{i} according to their preferences)
- Now a simple comparison of averages in the two groups $E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right]$ is the ATET

Example 1: training program for the jobseekers

Regression with observational data

- Suppose we regress Y_{i} on D_{i} with observational data.
- The model that relates earnings to training participation is:

$$
Y_{i}=\alpha+\beta D_{i}+\delta A_{i}+\varepsilon_{i}
$$

ε_{i} is pure random noise (uncorrelated with A_{i} and D_{i}), while the unobserved ability A_{i} is correlated with D_{i} (and with Y_{i})

- Since ability is left in the error term, $u_{i}=\delta A_{i}+\varepsilon_{i}$, and we can do OLS of the (short) regression:

$$
Y_{i}=\alpha+\beta D_{i}+u_{i}
$$

- OVB: since u_{i} is correlated with Y_{i}, the OLS estimator is not consistent for the true β, but will converge to $\beta+\delta \frac{\operatorname{Cov}\left(A_{i}, D_{i}\right)}{\operatorname{Var}\left(D_{i}\right)}$

Example 1: training program for the jobseekers

Regression with observational data

- Perhaps we have information on rich set of pre-determined characteristics X_{i} (past labor market history, SES, etc.)
- Then we could do OLS of:

$$
Y_{i}=\alpha+\beta D_{i}+\gamma X_{i}+u_{i}
$$

- Conditional independence assumption: the presumption is that conditional on X_{i}, D_{i} is as good as randomly assigned
- Then $E\left[Y_{0 i} \mid D_{i}=1, X_{i}\right]=E\left[Y_{0 i} \mid D_{i}=0, X_{i}\right]$ and $E\left[Y_{i} \mid D_{i}=1, X_{i}\right]-E\left[Y_{i} \mid D_{i}=0, X_{i}\right]$ is ATET condit. on X_{i}
- Issues: CIA unrealistic, measurement error, bad controls

Example 1: training program for the jobseekers

Regression with experimental data

- Suppose we regress Y_{i} on D_{i} with experimental data.
- The model looks identical as before:

$$
Y_{i}=\alpha+\beta D_{i}+\delta A_{i}+\varepsilon_{i}
$$

but now A_{i} is uncorrelated with D_{i} thanks to randomization (it's still correlated with Y_{i}, we don't care)

- We estimate, as before:

$$
Y_{i}=\alpha+\beta D_{i}+u_{i}
$$

- u_{i} is uncorrelated with Y_{i} : OLS estimator is consistent for β

$$
\text { - } \begin{aligned}
& E\left[Y_{i} \mid D_{i}=1\right]-E\left[Y_{i} \mid D_{i}=0\right] \\
&=\left(\alpha+\beta+E\left[u_{i} \mid D_{i}=1\right]\right)-\left(\alpha+E\left[u_{i} \mid D_{i}=0\right]\right)=\beta
\end{aligned}
$$

Example 1: training program for the jobseekers

Different types of experiments

- Remember that in this example we randomized participation
- Often we can only randomize eligibility (call it Z_{i}): participation D_{i} is (endogenously) chosen by the jobseeker
- Some will participate ($D_{i}=1$) when offered $\left(Z_{i}=1\right)$
- But others with $Z_{i}=1$ will not show up ($D_{i}=0$)
- Many ineligible jobseekers $\left(Z_{i}=0\right)$ will not show up ($D_{i}=0$)
- But others will manage to convince their caseworker to make them participate to the program $\left(D_{i}=1\right)$ even if $Z_{i}=0$.
- In an RCT with imperfect compliance we cannot force people to follow randomization: D_{i} is taken based on motivation, ability, etc.
- A simple comparison of outcome averages (i.e., regressing Y_{i} on D_{i}) will not work (even if we are using experimental data!)

Example 1: training program for the jobseekers

 RCT with imperfect compliance- However, remember that we have randomized eligibility $\left(Z_{i}\right)$
- Then we can instrument training participation with training eligibility
- We saw that the instrumental variables estimation of the effect D_{i} on Y_{i} requires additional assumptions (other than randomization of Z_{i})
- The average effect identified is also different from ATET:
- LATE: local in the sense that the effect is for compliers only
- people at the margin of taking the treatment; induced/pushed by Z_{i} to take D_{i} (but they would not if Z_{i} was 0)
- $D_{i}=1$ if $Z_{i}=1$, and $D_{i}=0$ if $Z_{i}=0$

Some general points about IV

- Why is LATE different from ATET?
- ATET is for all treated units
- the ATET conditions on $D_{i}=1$. Who are these people?
- assuming monotonicity holds, always-takers and compliers
- by exclusion restriction, LATE is not informative of the treated who are always-takers
- LATE is only for the subset of treated who are compliers
- First stage only requires randomization of Z_{i}
- causal effect of treatment eligibility Z_{i} on participation D_{i}
- It measures the compliance rate
- Reduced form also only requires randomization of Z_{i}
- causal effect of treatment eligibility Z_{i} on Y_{i}
- it occurs via D_{i} and (possibly many!) other channels
- IV estimator is RF/FS
- If we are willing to additionally assume that Z_{i} only affects Y_{i} via D_{i}, then we can adjust the RF by the compliance rate

Some general points about IV

Nomenclature can be confusing!

In general, the classification is somewhat arbitrary.
What I used in class is:

- Instrumental variables is the overall identification approach
- IV estimator: one instrument, one endogenous variable; it's equal to the ratio of Z_{i} coefficients from RF and FS
- Wald estimator: special/simplest IV estimator with binary Z_{i}
- 2 SLS estimator is the most general one:
- it comprises the two above cases (numerically identical)
- it also allows for multiple instruments and endogenous variables (e.g., more instruments than endogenous variables)
- i) predict the treatment status D_{i} with Z_{i} (FS); ii) replace D_{i} in the model for Y_{i} with the FS fitted values and do OLS again

Example 2: Returns to schooling

- Whether education really increases earnings is one of the classic questions in economics
- Education: in years, completing a degree, degree type, etc.
- Subject on intensive study since Jacob Mincer's 1960's work
- Methods used: DD, IV, RDD

Example 2: Returns to schooling

Identification based on observables

- Early work on returns to schooling relied on identification based on observables
- Typical model would look like this (Mincer equation):

$$
\log Y_{i}=\alpha+\rho S_{i}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\epsilon_{i}
$$

where $\log Y_{i}$ is the logarithm of annual earnings, S_{i} is years of education, and X is potential work experience

- How credible is the CIA assumption here?

Example 2: Returns to schooling

Identification based on observables

- Which factors are we omitting, when estimating returns to schooling relying on identification based on observables?
- Denote "ability" with A_{i}
- Suppose that real model of Y_{i} on S_{i} looks like this (ignore experience X for convenience):

$$
\log Y_{i}=\alpha+\rho S_{i}+\gamma A_{i}+\epsilon_{i}
$$

Example 2: Returns to schooling

Identification based on observables

- If A_{i} is not observable and is omitted from the regression, our estimates are biased:

$$
\hat{\rho}=\rho+\gamma \frac{\operatorname{Cov}(S, A)}{\operatorname{Var}(S)}
$$

- $\gamma \frac{\operatorname{Cov}(S, A)}{\operatorname{Var}(S)}$ is the "ability bias"
- What is the likely sign of this bias?

Example 2: Returns to schooling

Identification based on observables

- Many early studies tried to control for ability with proxies (IQ)
- Suppose $D_{i}=1$ if i has graduated from university
- Then the observed earnings difference between university graduates and non-graduates conditional on IQ is:

$$
\begin{aligned}
& E\left[Y_{i} \mid D_{i}=1, \mathrm{IQ}\right]-E\left[Y_{i} \mid D_{i}=0, \mathrm{IQ}\right]= \\
& E\left[Y_{1 i}-Y_{0 i} \mid D_{i}=1, \mathrm{IQ}\right]+\left\{E\left[Y_{0 i} \mid D_{i}=1, \mathrm{IQ}\right]-E\left[Y_{0 i} \mid D_{i}=0, \mathrm{IQ}\right]\right\}
\end{aligned}
$$

- Under CIA, the second term (selection bias) disappears
- Two serious problems with this strategy:

1. IQ may not capture all relevant abilities
2. IQ may be a bad control

Example 2: Returns to schooling

Identification based on observables

- With CIA is vital to control for rich X vector But introducing controls can introduce several problems
- Bad controls: Control variables that are themselves outcomes caused by our causal variable of interest
- For example think of controlling for white collar status
- Even if college status is randomly assigned, controlling for occupation will induce selection bias

$$
\begin{gathered}
E\left[Y_{1 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1\right] \\
=E\left[Y_{1 i}-Y_{0 i} \mid W_{1 i}=1\right]+\left\{E\left[Y_{0 i} \mid W_{1 i}=1\right]-E\left[Y_{0 i} \mid W_{0 i}=1\right]\right\}
\end{gathered}
$$

- Conditioning on occupation changes the composition of the treatment and control group: the white collar workers with college degree have a different $Y_{0 i}$ than those without college

Example 2: Returns to schooling

Difference-in-differences

- Suppose we controlled for some pre-determined covariates, but we are still concerned about omitted family-level determinants of income A_{i} (e.g. family inputs)
- Can we use fixed effects/differences-in-differences to estimate returns to education when we have data on twins?

$$
\begin{aligned}
& \text { Twin 1: } Y_{1 f}=\alpha+\rho S_{1 f}+\gamma A_{f}+\epsilon_{1 f} \\
& \text { Twin 2: } Y_{2 f}=\alpha+\rho S_{2 f}+\gamma A_{f}+\epsilon_{2 f}
\end{aligned}
$$

f denotes the family, the outcome is log-earnings.

- If A_{f} is common to the pair of twins, then differencing yields:

$$
\begin{gathered}
Y_{1 f}-Y_{2 f}=\rho\left(S_{1 f}-S_{2 f}\right)+\left(\epsilon_{1 f}-\epsilon_{2 f}\right) \\
\bar{Y}_{f}=\rho \bar{S}_{f}+\bar{\epsilon}_{f}
\end{gathered}
$$

- If nothing left in the differenced error term is correlated with $S_{1 f}-S_{2 f}$, then estimating ρ with the differenced equation gives us the causal effect of schooling on earnings

Example 2: Returns to schooling

Difference-in-differences (Ashenfelter and Rouse, 1998)

OLS estimates in the population and in the twin sample

TABLE II
OLS Estimates of the (Mean) Return to Schooling Using
the CPS and Twins Data

	CPS ${ }^{\text {a }}$	Identical twins
	OLS	OLS
	(1)	0.110
Own education	0.085	(0.009)
	(0.0003)	0.104
Age	0.071	(0.010)
	(0.0004)	-0.106
Age $^{2}(\div 100)$	-0.074	(0.013)
Female	(0.0005)	-0.318
	-0.253	(0.040)
White	(0.001)	-0.100
	0.087	(0.072)
Sample size	(0.002)	680
R^{2}	476,851	0.339

Standard errors are in parentheses. All regressions include a constant.
a. The Current Population Survey (CPS) sample is drawn from the 1991-1993 Outgoing Rotation Group files. The sample includes workers age 18-65 with an hourly wage greater than $\$ 1$ per hour in 1993 dollars; the regression is weighted using the earnings weight. We converted the 1992 and 1993 education categories into a continuous measure according to the categorization suggested by Park [1994].

Example 2: Returns to schooling

Difference-in-differences (Ashenfelter and Rouse, 1998)

GLS (OLS) and first difference estimates

	$\begin{gathered} \text { GLS } \\ \text { (1) } \end{gathered}$	GLS (2)	$\begin{gathered} \text { 3SLS } \\ \text { (3) } \end{gathered}$	Firstdifference (4)	Firstdifference by IV (5)
Own education	$\begin{gathered} 0.102 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.066 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.091 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.088 \\ (0.025) \end{gathered}$
Avg. education $\left[\left(S_{1}+S_{2}\right) / 2\right]$		$\begin{gathered} 0.051 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.033 \\ (0.028) \end{gathered}$		
Age	$\begin{gathered} 0.104 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.103 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.103 \\ (0.013) \end{gathered}$		
$\mathrm{Age}^{2}(\div 100)$	$\begin{gathered} -0.107 \\ (0.015) \end{gathered}$	$\begin{gathered} -0.104 \\ (0.015) \end{gathered}$	$\begin{gathered} -0.104 \\ (0.015) \end{gathered}$		
Female	$\begin{gathered} -0.315 \\ (0.049) \end{gathered}$	$\begin{gathered} -0.309 \\ (0.049) \end{gathered}$	$\begin{gathered} -0.306 \\ (0.049) \end{gathered}$		
White	$\begin{gathered} -0.106 \\ (0.090) \end{gathered}$	$\begin{gathered} -0.105 \\ (0.091) \end{gathered}$	$\begin{gathered} -0.101 \\ (0.091) \end{gathered}$		
Covered by a union					
Married					
Tenure (years)					
Sample size	680	680	680	340	340
R^{2}	0.262	0.264	0.267	0.039	

Example 2: Returns to schooling

Quarter of birth instrument

- In Lecture 7, we saw how one could use instrumental variables to estimate the returns to schooling
- Angrist and Krueger: Quarter of birth as an instrument for schooling
- Students enter schooling in the September of the calendar year in which they turn 6
- And compulsory school law requires them to remain in school until they become 16
- Hence people born late in the year are more likely to stay at school longer

Example 2: Returns to schooling

Quarter of birth instrument
First stage:
A. Average Education by Quarter of Birth (first stage)

Example 2: Returns to schooling

Quarter of birth instrument

Reduced form for earnings

B. Average Weekly Wage by Quarter of Birth (reduced form)

Example 2: Returns to schooling

Quarter of birth instrument

Table 4.1.2: Wald estimates of the returns to schooling using quarter of birth instruments

	(1)		
	Born in the 1st or 2nd quarter of year	Born in the 3rd or 4th quarter of year	Difference (std. error) (1)-(2)
\ln (weekly wage)	5.8916	5.9051	$\begin{gathered} -0.01349 \\ (0.00337) \end{gathered}$
Years of education	12.6881	12.8394	$\begin{gathered} -0.1514 \\ (0.0162) \end{gathered}$
Wald estimate of return to education			$\begin{gathered} 0.0891 \\ (0.0210) \end{gathered}$
OLS estimate of return to education			$\begin{gathered} 0.0703 \\ (0.0005) \end{gathered}$

Notes: Adapted from a re-analysis of Angrist and Krueger (1991) by Angrist and Imbens (1995). The sample includes native-born men with positive earnings from the 1930-39 birth cohorts in the 1980 Census 5 percent file. The sample size is 329,509.

Example 2: Returns to schooling

Quarter of birth instrument

- How is the effect local here? Who are the compliers?
- Monotonicity?
- Barua and Lang (2010): parents delay school entrance of their child if they think child is not mature (redshirting)
- children born late in the year are more likely to be redshirted
- some will spend less time in school than if born in January
- Other examples where monotonicity might not hold? What about the sex-mix instrument?
- parents' sex bias might lead to monotonicity violation
- Dahl and Moretti (2008): US fathers have a preference for boys
- couples who prefer two boys/two girls are defiers
- Other example: monetary incentives in encouragement design
- Frey and Jegen (2001): for some, monetary incentives part of the design crowd-out (reduce) intrinsic motivation

Example 2: Returns to schooling
 RDD: Do degrees matter? Clark and Martorelli (2014)

- Finally, we go over an RDD example on the effects of schooling
- What is the effect of the high school diploma as such? (literally, the "piece of paper" from a given institution)
- Sheepskin effect: The effect of diploma as a piece of paper, ceteris paribus

Example 2: Returns to schooling

RDD: Do degrees matter? Clark and Martorelli (2014)

- In Texas, getting a high school diploma is conditional on passing an exit exam
- The probability of getting the diploma jumps discontinuously at the passing of exit exam threshold; can use this to identify the effect of diplomas on earnings
- No reasons to expect other discontinuities at the threshold, so that getting a diploma is as good as randomly assigned near c
- Results:
- The probability of getting the diploma increases by 50 percentage points at the passing threshold (FS)
- Yet, the earnings don't change discontinuously (RF)
- Therefore, no evidence of sheepskin effects

Example 2: Returns to schooling
 RDD: Do degrees matter? Clark and Martorelli (2014)

First stage

Diploma receipt and last-chance scores

Example 2: Returns to schooling

 RDD: Do degrees matter? Clark and Martorelli (2014)
Reduced form

Concluding remarks

- For each method, ask yourself:
- what is randomized? (or conditionally randomized)
- is D chosen or assigned randomly? Do people have a say in terms of taking/not the treatment?
- what are the identifying assumptions?
- what can I test with the data and how? Is the test "definitive"?

Concluding remarks

- For the exam:

- do not memorize proofs (unless this helps you)
- the papers we covered are part of the materials in the sense that you need to understand what has been done and why
- I will not ask questions like "what is Card doing in this paper"?
- but you need to understand what the papers we covered did!
- revise the PS as well: exam questions will be similar
- no software questions
- no "write this equation with the proper notation", but I can ask to describe in words what one or more equations are in the context of the example (What is the dependent variable? What is on the right-hand side? Interpretation?)
- short answers to each sub-question are fine!
- read a full question before starting answering to the sub-points
- If you are stuck, move on and go back to it later
- if you can, try to write even partial answers: I will do all that I can to give points for effort!

