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Background

• RCTs solve the selection problem
• It is not possible to run a controlled experiment with every

research question
• We need to rely on observational data
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Causality without experiments

The identification strategy refers to the manner in which a
researcher uses observational data (i.e. data not generated by a
randomized trial) to approximate a real experiment.
• Selection based on observables
• Instrumental variables
• Difference-in-differences
• Regression discontinuity design
• The goal is to arrive at a situation where:

E[Y0i|Di = 1] = E[Y0i|Di = 0]
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Selection based on observables

• We may not have a controlled experiment, but maybe the
treated group and the non-treated group differ only by a set
of observable characteristics.
• This assumption, which would justify the causal interpretation

of our estimates, is known as the Conditional Independence
Assumption (CIA), also called selection-on-observables
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The CIA: an example
• To understand the CIA let’s begin with an example: master

thesis grade (Yi) and taking this course (Ci), in particular if
you take the course (Ci = 1) and if you do not take it
(Ci = 0)
• Two possible outcomes Y0i, Y1i
• But we observe only

Yi = CiY1i + (1− Ci)Y0i = Y0i + (Y1i − Y0i)Ci
• A naive comparison of observed averages yields:

E[Y1i|Ci = 1]− E[Y0i|Ci = 0] = E[Y1i − Y0i|Ci = 1] +
E[Y0i|Ci = 1]− E[Y0i|Ci = 0]

• Why do you think the bias is not zero?
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Causality and the CIA
• We would like to keep constant relevant observable

characteristics (e.g. GPA and affiliation)
• Let us compare the treatment and control group, taking into

account observable characteristics:

E[Y1i|Xi, Ci = 1]− E[Y0i|Xi, Ci = 0] = E[Y1i − Y0i|Xi, Ci = 1] +
E[Y0i|Xi, Ci = 1]− E[Y0i|Xi, Ci = 0]

(1)
• The CIA is valid when, conditioning on a set of observed

characteristics Xi (in the example GPA and affiliation), the
bias disappears

E[Y0i|Xi, Ci = 1] = E[Y0i|Xi, Ci = 0]
• Hence,
E[Y1i|Xi, Ci = 1]−E[Y0i|Xi, Ci = 0] = E[Y1i−Y0i|Xi, Ci = 1]
• Is the CIA plausible in this case? 6 / 31



Example

EXAMPLE: Case where the CIA holds 

  Osku Mia Heikki Maija 
Potential grade 
without the 
course 

𝒀𝒀𝒐𝒐𝒐𝒐 3 5 3 5 

Potential grade 
with the course 

𝒀𝒀𝟏𝟏𝟏𝟏 4 5 4 5 

Male 𝑿𝑿𝒊𝒊 1 0 1 0 
Treatment 
(took the 
course) 

𝑫𝑫𝒊𝒊 1 0 0 0 

Realized thesis 
grade 

𝒀𝒀𝒊𝒊 4 5 3 5 

Treatment 
effect 

𝒀𝒀𝟏𝟏𝟏𝟏 − 𝒀𝒀𝟎𝟎𝟎𝟎 1 0 1 0 

What is the observed difference between treated and non-treated? 

What is the effect of treatment on the treated? 

What is the observed difference between treated and non-treated among men? 
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Causality and the CIA

• In practice, how relevant is the selection problem?
• Three possible types of factors that affect the outcome

variable:
1. observable factors 3
2. unobservable factors not correlated with the treatment 3
3. unobservable factors correlated with the treatment NO

• What drives selection in the previous example? Do these
factors affect the outcome variable?
• Information, differences in preferences...
• Do any of these (unobserved) selection factors affect the

outcome variable?
• Note: why is this not a problem in an RCT?
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Matching: Brief Introduction

• Idea: Compare individuals that are similar in observable
characteristics
• Implementation of matching

1. Divide workers into different categories on the basis of the
observable characteristic

2. Compare means in outcomes over these different categories
• Propensity score matching

1. Estimate the propensity of the treatment using rich set of
observational characteristics (propensity score): P (Di|X)

2. Compare means within cells defined on the basis of the
propensity score : E[Yi|Di = 1, Pi = p]−E[Yi|Di = 0, Pi = p]
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Example: Smoking and Mortality

• Cochran 1968, Biometrics

Yearly death rates per 1,000 person
Non-smokers 13.5
Cigarettes smokers 13.5
Cigars/pipes 17.4

• How should we interpret this descriptive evidence?
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Smoking and causal inference in statistics: Ronald Fisher
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Example: Smoking and Mortality

• Non-smokers and smokers differ in age

Mean age (years)
Non-smokers 57.0
Cigarettes smokers 53.2
Cigars/pipes 59.7

• Age is correlated with smoking behaviour, and probably
affects also mortality
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Example: Smoking and Mortality
• We could compare death rates within age groups (matching

by age)
• This way, we neutralize any imbalances in the observed

sample related with age

Matching:
• Divide the sample into several age groups
• Compute death rates for smokers and non-smokers by age

group
• Compare smokers and non-smokers by age group:

E[Yi|Di = 1, Ai = a]− E[Yi|Di = 0, Ai = a]

and calculate the average effect using some weight.
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Example: Smoking and Mortality

• Adjusted Average Death Rates

Yearly death rates per 1,000 person
Non-smokers 13.5
Cigarettes smokers 17.7
Cigars/pipes 14.2

• cigarette smokers had relatively low death rates only because
they were younger on average
• perhaps the three groups are unbalanced in another variable...

(any idea?)
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Regression analysis: a brief introduction

In practice, there are many details to worry about when
implementing a matching strategy. This leads us to regression
analysis.
• Example: How does schooling affect wages?
Yi(s) = α+ ρsi + ui

• where
Yi(s) is earnings (outcome)
si is schooling (treatment)
α is the intercept, level of earnings when no schooling, (Yi(0))
ρ is the slope, how wages vary with schooling?
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OLS estimator

• OLS (Ordinary Least Squares) estimator minimizes the sum of
squared residuals

ρ̃ =

n∑
i=1

(si − s̄)
(
Yi − Ȳ

)
n∑
i=1

(si − s̄)2

= Cov(Yi, si)
V ar(si)

(2)
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OLS estimator

• Under some assumptions, OLS is an estimator with some
desirable properties:
• Assumptions

1. A1. Linearity (in parameters): yi = α+ x′
iβ + εi

2. A2. Exogeneity: E(εi|xi) = 0
3. A3. No linear dependency (multicollinearity)
4. A4. V ar(ε|X) = σ2 (homoscedasticity) and Cov(εi, εj |X) = 0

• Under these assumptions OLS is unbiased and efficient
(BLUE)
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If schooling would be randomly assigned...

• However, it is not necessarily an estimate of the causal effect
of si on Yi
• Only when we have random exposure of subjects to the

treatment in the population, conditional on observables, we
can be sure that regression analysis provides a causal estimate
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Endogeneity

• When the CIA is not satisfied we say that s is endogenous
• More generally, an explanatory variable sji is said to be

endogenous if it is correlated with unobservable factors that
affect the outcome variable (error term)
• Three main cases:

1. Omitted variable
2. Measurement error
3. Simultaneity
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Omitted variable bias

• Let us assume that the ”true” model states that wages are
affected by schooling and ability

yi = α+ ρsi + γai + ei

where ei is uncorrelated with si and ai
• Unfortunately, we do not have a good measure for ability, and

thus can only estimate the following short regression
yi = α̃+ ρ̃si + ui

where ui = γai + ei
• Generally ρ̃ and ρ are different, unless:

1. γ = 0
2. si and ai are uncorrelated in the sample

• Let us see in which sense they are different
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What happens if we omit a variable
• Let us calculate the OLS estimator of ρ̃:

yi = α̃+ ρ̃si + ui
• OLS estimate

ρ̃ols = Cov(yi, si)
V ar(si)

• Plug in the long regression

= Cov(α+ ρsi + γai + ei, si)
V ar(si)

• Recall Cov(ei, si) = 0

= ρ+ γ
Cov(ai, si)
V ar(si)
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What happens if we omit a variable

ρ̃ols = ρ+ γ
Cov(ai, si)
V ar(si)︸ ︷︷ ︸

omitted variable bias

• ⇒ ρ̃ is generally biased for ρ
• Two cases in which there is no omitted variable bias:

1. γ = 0 (a is not in the true model!)
2. s and a are uncorrelated
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What happens if we omit a variable

Corr(s, a) > 0 Corr(s, a) < 0
γ > 0 POSITIVE BIAS NEGATIVE BIAS
γ < 0 NEGATIVE BIAS POSITIVE BIAS
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Is adding controls always a good idea?

• CIA suggests that one way to deal with the omitted variable
bias would be to include additional controls so that we are
able to control for all the omitted variables
• However, adding controls may not always be a good idea
• Bad controls are variables that are themselves potential

outcome variables in the notional experiment at hand
1. Controlling for occupation in college-earnings regression
2. IQ after schooling as proxy for ability in schooling-earnings

regression (late proxy)
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Is adding controls always a good idea?

• Let’s see an example: controlling for occupation
• Occupation is affected by college. Does it make sense to look

at the effect of college on earnings conditional on occupation?
• Wi is a dummy for white collar jobs, Ci a dummy for colleges,

and Yi earnings
• Counterfactual outcomes: Y0i, Y1i,W0i,W1i
• As usual we observe:

Yi = CiY1i + (1− Ci)Y0i
Wi = CiW1i + (1− Ci)W0i

• Let’s assume that Ci is randomly assigned ⇒ no trouble
estimating its causal effect on both Yi and Wi

• Let us assume that we want to see the impact of Ci on Yi for
white collar workers
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Bad controls

• Given the assumptions we can easily estimate:

E[Yi|Ci = 1]− E[Yi|Ci = 0] = E[Y1i − Y0i|Ci = 1]

and

E[Wi|Ci = 1]− E[Wi|Ci = 0] = E[W1i −W0i|Ci = 1]

• But we want to know

E[Y1i − Y0i|Ci = 1,Wi = 1]
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Bad controls

• We can either control for Wi in a regression or regress Yi on
Ci in the sample where Wi = 1:

E[Yi|Wi = 1, Ci = 1]− E[Yi|Wi = 1, Ci = 0] =
E[Y1i|W1i = 1, Ci = 1]− E[Y0i|W0i = 1, Ci = 0]

• By the joint independence of {Y1i,W1i, Y0i,W0i} and Ci:
E[Y1i|W1i = 1, Ci = 1]− E[Y0i|W0i = 1, Ci = 0] =

E[Y1i|W1i = 1]− E[Y0i|W0i = 1]

27 / 31



Bad controls

• Calculating the above we see the problem:
E[Y1i|W1i = 1]− E[Y0i|W0i = 1]

= E[Y1i − Y0i|W1i = 1] + {E[Y0i|W1i = 1]−E[Y0i|W0i = 1]}
• The bias is due to the fact that college is likely to change the

composition of the pool of white collars
• You need an explicit model of the links between college,

occupation, and earning
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Example

EXAMPLE: Case with a bad control 

  Osku Mia Heikki Maija 
Potential grade without the course 𝒀𝒐𝒊 3 5 3 5 
Potential grade with the course 𝒀𝟏𝒊 4 4 4 5 
Seminar attendance without the course 𝑾𝒐𝒊 0 1 0 1 
Seminar attendance with the course 𝑾𝟏𝒊 1 1 1 1 
Treatment (took the course) 𝑫𝒊 1 0 0 1 
Seminar attendance 𝑾𝒊 1 1 0 1 
Realized thesis grade 𝒀𝒊 4 5 3 5 
Treatment effect on grades 𝒀𝟏𝒊 − 𝒀𝟎𝒊 1 -1 1 0 
Treatment effect on seminar attendance 𝑾𝟏𝒊 −𝑾𝟎𝒊 1 0 1 0 

Check that the observed differences between treated and the non-treated are same 

as the effect of treatment on treated for both Y and W! 

What is the observed difference of Y between treated and the non-treated when 

W=1? 

Is this equal to the effect of treatment on the treated when 𝑾𝟏𝒊 = 𝟏? 

Is 𝑬[𝒀𝟎𝒊|𝑾𝟏𝒊 = 𝟏] = 𝑬[𝒀𝟎𝒊|𝑾𝟎𝒊 = 𝟏] in this case? 
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OLS estimator

• The exogeneity assumption, E(εi|xi) = 0, implies that
Cov(xi, εi) = 0
• Then, the OLS estimator of β:

β̂OLS = Cov(y,x)
V ar(x)

= Cov(α+βx+ε,x)
V ar(x)

= β V ar(x)
V ar(x) + Cov(x,ε)

V ar(x)
= β
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Bad controls

E[Yi|Wi = 1, Ci = 1]− E[Yi|Wi = 1, Ci = 0]
= E[Y1i|W1i = 1, Ci = 1]− E[Y0i|W0i = 1, Ci = 0]
= E[Y1i|W1i = 1]− E[Y0i|W0i = 1]
= E[Y1i|W1i = 1]− E[Y0i|W1i = 1]
+ E[Y0i|W1i = 1]− E[Y0i|W0i = 1]
= E[Y1i − Y0i|W1i = 1] + E[Y0i|W1i = 1]− E[Y0i|W0i = 1]
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