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What did we do last time?

• Conditional Independence Assumption (CIA)

E[Y0i|Di = 1, Xi] = E[Y0i|Di = 0, Xi]

• How to condition on X?
• Matching
• Regression
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What did we do last time?

• Things to worry about
• Omitted variable bias

Yi = αs + ρsSi + ui
Yi = α+ ρSi + γAi + ei

ρ̂sOLS = Cov(Y,S)
V ar(S) = ρ+ γ

Cov(A,S)
V ar(s)︸ ︷︷ ︸
OV B
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What did we do last time?

• Adding more controls is not always better - bad controls
• Bad controls: X that are themselves caused by D
• Example: Effect of college (Ci = 1) among white collar

workers (Wi = 1)
• Assume that the treatment Ci is randomly assigned:

{Y0i, Y1i,W0i,W1i} ⊥⊥ Ci

• Can we estimate: E[Y1i − Y0i|W1i = 1]?
• Comparing the average outcomes we get:

E[Yi|Wi = 1, Ci = 1]− E[Yi|Wi = 1, Ci = 0]
= E[Y1i − Y0i|W1i = 1]︸ ︷︷ ︸

Causal effect

+E[Y0i|W1i = 1]− E[Y0i|W0i = 1]︸ ︷︷ ︸
Selection bias
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Reminder: Interpreting results of a regression

• Probability distribution of the ‘true’ effect β
• Summarized with two moments of this distribution:

• Point estimate: expected value
• Standard error: provides information about the accuracy, or

precision, of the estimate
• Stars are sometimes used to report significance levels
• Another useful way to summarize this distribution:

• 95% confidence interval : point estimate ± 2*standard error
• β̂ not statistically different from zero 6=⇒ β is equal to zero

• Precisely estimated zeros vs. uninformative estimates
• Statistical significance vs. economic significance
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Reminder: Interpreting results of a regression

• Some examples - impact of taking this course on your lifetime
income (in euros)
• 100,000 (100,000)
• 100 (100,000)
• 100 (30)
• 100,000 (20,000)

• Corollary: Estimates are useful when they are precise
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Identification based on observables (continued)

• Main threats to validity
1. Omitted variables
2. Bad controls
3. Measurement error in the independent variable
4. Measurement error in the dependent variable?
5. Measurement error in the controls
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Measurement error in the independent variable
• Suppose that the amount of cabbages Yi produced by a lot i

depends on the daily rainfall xi during spring, which changes
from lot to lot because of local weather conditions
• Rainfall is arguably random and we are interested in the

causal relationship
Yi = µ+ τxi + vi

• I have a device that gives a daily rainfall measure x̃i of the
rain falling on the lot, with a random error ei so that
Cov(x, e) = 0:

x̃i = xi + ei

which implies that:
Cov(x̃, e) = Cov(x+ e, e) = V ar(e)

• Assume also Cov(v, e) = 0
• This kind of measurement error is called

classical-errors-in-variables (CSV)
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Measurement error in the independent variable

• Hence, if we plug in:
Yi = µ+ τ x̃i − τei + vi = µ+ τ x̃i + (vi − τei)

• Now the OLS estimate of τ can be written as:
τ̂ = τ V ar(x)

V ar(x)+V ar(e)
• If V ar(e) 6= 0, the term multiplying τ is always less than one

=⇒ attenuation bias
• As V ar(e)→∞ =⇒ τ̂ → 0
• Even if CIA applies, measurement error in the independent

variable would still bias our estimates
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Measurement error in the dependent variable

• Assume now that the only imperfect measure we are dealing
with is that of the dependent variable:

Y ∗
i = µ+ τxi + vi

• and we can only observe Y , which is an imperfect measure of
Y ∗, such that Y = Y ∗ + e

• What is relevant is how e is correlated with other regressors.
Let us plug Y into the regression

Yi − ei = µ+ τxi + vi
Yi = µ+ τxi + (ei + vi)

• If e is uncorrelated with x, we can consistently estimate our
regression and all the usual statistics are valid for inference.
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Measurement error in the control variable

• The idea behind the CIA is that we can control for selection
• This suggests that the sensitivity of our estimate of our

parameter of interest to additional controls is an indication of
selection bias
• Example

Yi = βsSi + esi

Yi = βSi + γXi + ei

Xi = ρSi + vi

• OVB formula tells us that

βs − β = γρ
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Measurement error in the control variable

• But often we are forced to use proxies as controls (e.g. ability
proxies, coarse geographical identificatiors, proxies for parental
background etc.)
• The use of these kinds of proxies introduces measurement

error in control variables
• The case of classical measurement error:

X̃i = Xi + ui

where E(ui) = 0 and Cov(X,u) = 0
• In addition we assume that Cov(X,S) = Cov(X̃, S)
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Measurement error in the control variable

• Now we run
Y = βmSi + γmX̃i + emi

• The OLS estimates of β and γ are:

γm = Λγ
βm = β + γρ(1− Λ)

where Λ = V ar(S)V ar(X)− Cov(X,S)2

[V ar(X) + V ar(u)]V ar(S)− Cov(X,S)2 < 1

• Note that when V ar(u) = 0 then Λ = 1 which implies that
γm = γ and βm = β
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Measurement error in the control variable
• But if V ar(u) > 0, then γm < γ and

βs − βm = γρΛ < γρ = βs − β

• We are underestimating the sensitivity of βs to controls
because our estimate of γ is attenuated due to measurement
error
• Notice, however, that we can always estimate

X̃ = ρmSi + ui + ei

• Since measurement error is now in the dependent variable, we
get an unbiased estimate of ρ:

ρm = Cov(X,S)
V ar(S)

• Hence, a test for ρm = 0 is still a valid test for selection bias
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Example: Returns to education with controls for family
background and ability

Zhuan Pei, Steve Pischke, and Hannes Schwandt (2019):
‘Poorly Measured Confounders are More Useful on the Left Than
on the Right’,
Journal of Business & Economic Statistics, Vol. 37., No. 2,
205-16.
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Pei et al

• Illustrative example of the consequences of introducing noisy
controls to account for selection bias
• Classic question: What are the returns to education
• Selection bias: Unobserved ability and family background
• Pei et al use a well-known American data set to estimate

returns to education, controlling for an ability proxy (KWW
score) and introducing variables that might proxy for family
background:
• Mother’s years of education
• Library card at age 14
• Body height
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Pei et al: Results

17 / 37



Pei et al: Conclusions

• Adding noisy controls for family background has only a small
effect on the coefficient of years of education
• Based on this we might erroneously conclude that there is no

selection bias
• However, the correlation of years of education and family

background proxies is highly significant which implies that
there is selection
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Example: Returns to university quality

Stacy Berg Dale and Alan B. Krueger (2002):
’Estimating the payoff to attending a more selective college: An
application of selection on observables and unobservables’,
The Quarterly Journal of Economics, Vol. 117., 4 (2), 1491-1527.
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Dale and Krueger: Motivation

• Does attending a more selective university lead to higher
earnings?
• Students who attend more selective universities may have

greater earnings capacity regardless of which university they
attend
• Most studies try to control for differences in student attributes

that are correlated with earnings and the selectivity of
universities
• But in many countries, and especially in the U.S., college

entry is determined by characteristics that are not observed by
researchers
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Dale and Krueger: Identification strategy

• Compare university selectivity and earnings among students
who are accepted and rejected by a comparable set of
universities
• Example in the Finnish context

• Take two students, A and B, that are accepted to Turku and
Tampere but rejected by Aalto

• A decides to go to Turku and B decides to go to Tampere
• Compare the earnings of these students

• University admission is based on:
• Factors that are observable to the researcher (grades etc.)
• Factors that are observable to the university but not to the

researcher (enrtance exam, interviews etc.)
• Looking within matched set of students can help overcome

the bias due to unobservables
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Dale and Krueger: Identification strategy (from
Angrist-Pischke textbook)Regression 53

Table 2.1
The college matching matrix

Private Public

Applicant Altered 1996
group Student Ivy Leafy Smart All State Tall State State earnings

A 1 Reject Admit Admit 110,000

2 Reject Admit Admit 100,000

3 Reject Admit Admit 110,000

B 4 Admit Admit Admit 60,000

5 Admit Admit Admit 30,000

C 6 Admit 115,000

7 Admit 75,000

D 8 Reject Admit Admit 90,000

9 Reject Admit Admit 60,000

Note: Enrollment decisions are highlighted in gray.

The students in Table 2.1 are organized in four groups de-
fined by the set of schools to which they applied and were ad-
mitted. Within each group, students are likely to have similar
career ambitions, while they were also judged to be of similar
ability by admissions staff at the schools to which they applied.
Within-group comparisons should therefore be considerably
more apples-to-apples than uncontrolled comparisons involv-
ing all students.

The three group A students applied to two private schools,
Leafy and Smart, and one public school, Tall State. Although
these students were rejected at Leafy, they were admitted to
Smart and Tall State. Students 1 and 2 went to Smart, while
student 3 opted for Tall State. The students in group A have
high earnings, and probably come from upper middle class
families (a signal here is that they applied to more private
schools than public). Student 3, though admitted to Smart,
opted for cheaper Tall State, perhaps to save her family money
(like our friends Nancy and Mandy). Although the students in

 

 

 

 

 

 

 

From Mastering ‘Metrics: The Path from Cause to Effect. © 2015 Princeton University Press. Used by permission. 
All rights reserved. 
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Dale and Krueger: Identification strategy

• Assume that the admission to a university is determined by
observable characteristics Xi1, unobservable characteristics
Xi2, and idiosyncratic luck
• Each university j accepts the applicant i based on his or her

latent quality Zij if:

Zij = γ1Xi1 + γ2Xi2 + eij > Cj

and rejects otherwise
• Earnings are determined by:

Wi = β0 + β1Qj + β2X1i + β3Xi2 + εi

where Q is the university quality
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Dale and Krueger: Identification strategy

• Since X2i is unobservable, we are forced to estimate:

Wi = β
′
0 + β

′
1Qj + β

′
2X1i + ui

• Since applicants that are admitted to higher quality
universities have on average higher values of X2i it is likely
that Cov(Q, u) > 0 and β̂′

1 > β̂1
• Introducing a full set of dummies to control for groups of

students who received the same admission decision will absorb
differences in Xi2
• Run:

Wi = β
′
0 + β

′
1Qj + β

′
2X1i +

J∑
j=1

β3Dij + ui
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Dale and Krueger: ResultsRegression 63

Table 2.2
Private school effects: Barron’s matches

No selection controls Selection controls

(1) (2) (3) (4) (5) (6)

Private school .135 .095 .086 .007 .003 .013
(.055) (.052) (.034) (.038) (.039) (.025)

Own SAT score ÷ 100 .048 .016 .033 .001
(.009) (.007) (.007) (.007)

Log parental income .219 .190
(.022) (.023)

Female −.403 −.395
(.018) (.021)

Black .005 −.040
(.041) (.042)

Hispanic .062 .032
(.072) (.070)

Asian .170 .145
(.074) (.068)

Other/missing race −.074 −.079
(.157) (.156)

High school top 10% .095 .082
(.027) (.028)

High school rank missing .019 .015
(.033) (.037)

Athlete .123 .115
(.025) (.027)

Selectivity-group dummies No No No Yes Yes Yes

Notes: This table reports estimates of the effect of attending a private college or university
on earnings. Each column reports coefficients from a regression of log earnings on a
dummy for attending a private institution and controls. The results in columns (4)–(6) are
from models that include applicant selectivity-group dummies. The sample size is 5,583.
Standard errors are reported in parentheses.

school gap is merely a chance finding. The private school co-
efficient is statistically significant.

The large private school premium reported in column (1)
of Table 2.2 is an interesting descriptive fact, but, as in our
example calculation, some of this gap is almost certainly due
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Dale and Krueger: Results66 Chapter 2

Table 2.3
Private school effects: Average SAT score controls

No selection controls Selection controls

(1) (2) (3) (4) (5) (6)

Private school .212 .152 .139 .034 .031 .037
(.060) (.057) (.043) (.062) (.062) (.039)

Own SAT score ÷ 100 .051 .024 .036 .009
(.008) (.006) (.006) (.006)

Log parental income .181 .159
(.026) (.025)

Female −.398 −.396
(.012) (.014)

Black −.003 −.037
(.031) (.035)

Hispanic .027 .001
(.052) (.054)

Asian .189 .155
(.035) (.037)

Other/missing race −.166 −.189
(.118) (.117)

High school top 10% .067 .064
(.020) (.020)

High school rank missing .003 −.008
(.025) (.023)

Athlete .107 .092
(.027) (.024)

Average SAT score of .110 .082 .077
schools applied to ÷ 100 (.024) (.022) (.012)

Sent two applications .071 .062 .058
(.013) (.011) (.010)

Sent three applications .093 .079 .066
(.021) (.019) (.017)

Sent four or more applications .139 .127 .098
(.024) (.023) (.020)

Notes: This table reports estimates of the effect of attending a private college or university
on earnings. Each column shows coefficients from a regression of log earnings on a dummy
for attending a private institution and controls. The sample size is 14,238. Standard errors
are reported in parentheses.
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Dale and Krueger: Checking the identifying assumption

• Key assumption behind the Dale-Krueger approach is that the
university students choose among the set of universities to
which they were admitted is unrelated to unobservables X2
• Can we test this assumption?
• We can check the relationship between the proxies for X2 and

private school attendance, once we control for the universities
that the student was admitted to
• Identical to testing for ρm = 0 in the Pei at al paper
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Dale and Krueger: Balancing test76 Chapter 2

Table 2.5
Private school effects: Omitted variables bias

Dependent variable

Own SAT score ÷ 100 Log parental income

(1) (2) (3) (4) (5) (6)

Private school 1.165 1.130 .066 .128 .138 .028
(.196) (.188) (.112) (.035) (.037) (.037)

Female −.367 .016
(.076) (.013)

Black −1.947 −.359
(.079) (.019)

Hispanic −1.185 −.259
(.168) (.050)

Asian −.014 −.060
(.116) (.031)

Other/missing race −.521 −.082
(.293) (.061)

High school top 10% .948 −.066
(.107) (.011)

High school rank missing .556 −.030
(.102) (.023)

Athlete −.318 .037
(.147) (.016)

Average SAT score of .777 .063
schools applied to ÷ 100 (.058) (.014)

Sent two applications .252 .020
(.077) (.010)

Sent three applications .375 .042
(.106) (.013)

Sent four or more applications .330 .079
(.093) (.014)

Notes: This table describes the relationship between private school attendance and personal
characteristics. Dependent variables are the respondent’s SAT score (divided by 100) in columns
(1)–(3) and log parental income in columns (4)–(6). Each column shows the coefficient from a
regression of the dependent variable on a dummy for attending a private institution and controls.
The sample size is 14,238. Standard errors are reported in parentheses.
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Dale and Krueger: why application dummies work
Assume short regression includes no controls (col. 1 in Table 2.3)
Assume long regression adds SAT scores as controls (col. 2)
Recall OV B = βs − β = γρ = .212− .152 = .06 = .051× 1.165

Now assume short regression includes only application dummies
(col. 4 in Table 2.3)
Assume long regression adds SAT scores as controls + application
dummies (col. 5)
Recall OV B = βs − β = γρ = .034− .031 = .003 = 0.36× .066

The effect of the omitted SAT on earnings falls from .051 to .036
in the regression with application dummies
The relationship between SAT and private school attendance goes
from 1.165 to 0.066 in the regression with application dummies

=⇒ conditional on the application dummies, students who go to
private vs. public are not very different in terms of their SAT scores
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Dale and Krueger: Conclusions

• Simply controlling for observables suggests that returns to
university quality are substantial
• However, if we control for the set of universities that the

applicant is admitted to, the returns are zero
• This suggests that positive returns are driven by selection bias
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What did we do last time?

E[Yi|Wi = 1, Ci = 1]− E[Yi|Wi = 1, Ci = 0]
= E[Y1i|W1i = 1, Ci = 1]− E[Y0i|W0i = 1, Ci = 0]
= E[Y1i|W1i = 1]− E[Y0i|W0i = 1]
= E[Y1i|W1i = 1]− E[Y0i|W1i = 1]

+E[Y0i|W1i = 1]− E[Y0i|W0i = 1]
= E[Y1i − Y0i|W1i = 1]︸ ︷︷ ︸

Causal effect

+E[Y0i|W1i = 1]− E[Y0i|W0i = 1]︸ ︷︷ ︸
Selection bias
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Bias due to measurement error in the independent variable

Cov(Y, x̃)
V ar(x̃) = Cov(µ+ τx+ v, x+ e)

V ar(x+ e)

= τ
V ar(x)

V ar(x+ e) + τCov(x, e)
V ar(x+ e)

+ Cov(x, v)
V ar(x+ e) + Cov(v, e)

V ar(x+ e)
Recall the assumptions:
Cov(x, e) = 0;Cov(x, v) = 0;Cov(v, e) = 0

= τ
V ar(x)

V ar(x) + V ar(e) + 2Cov(x, e)

= τ
V ar(x)

V ar(x) + V ar(e)
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Measurement error in the control variable

• We have that

β̂s = Cov(Y,S)
V ar(S)

= Cov(βS+γX+e,S)
V ar(S)

= β + γCov(S,X)
V ar(S)

= β + γρ

• So it follows that:
β̂s − β = γρ
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Measurement error in the control variable

• Denote Cov(X,Y ) = σXY and V ar(X) = σ2
X

• Use OLS formula for the case of two independent variables

β̂m =
σ2
X̃
σY S − σX̃SσY X̃

σ2
X̃
σ2
S − (σX̃,S)2

= [σ2
X + σ2

u][βσ2
S + γσXS ]− σXS [βσXS + γσ2

X ]
[σ2
X + σ2

u]σ2
S − (σXS)2

= β + γ
σ2
uσSX

[σ2
X + σ2

u]σ2
S − (σXS)2

= β + γρ
σ2
uσ

2
S

[σ2
X + σ2

u]σ2
S − (σXS)2
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Measurement error in the control variable

γ̂m =
σ2
S̃
σY X̃ − σX̃SσY S

σ2
X̃
σ2
S − (σX̃,S)2

= σ2
S [βσXS + γσ2

X ]− σXS [βσ2
S + γσXS ]

[σ2
X + σ2

u]σ2
S − (σXS)2

= σ2
Sσ

2
X − (σSX)2

[σ2
X + σ2

u]σ2
S − (σXS)2γ

= Λγ
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Measurement error in the control variable

1− Λ = [σ2
X + σ2

u]σ2
S − (σXS)2 − σ2

xσ
2
S + (σXS)2

[σ2
X + σ2

u]σ2
S − (σXS)2

= σ2
uσ

2
S

[σ2
X + σ2

u]σ2
S − (σXS)2

• Hence, we have that:

β̂m = β + γρ(1− Λ)
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OLS with two independent variables

• The regression:

yi = β0 + β1xi + β2zi + ei

• Choosing the estimators β̂0, β̂1 and β̂2 to minimize the sum of
squared residuals yields the OLS estimators:

β̂0 = ȳ − β̂1x̄− β̂2z̄

β̂1 = Cov(x, y)V ar(z)− Cov(z, y)Cov(x, z)
V ar(x)V ar(z)− Cov(x, z)2

β̂2 = Cov(z, y)V ar(x)− Cov(x, y)Cov(x, z)
V ar(x)V ar(z)− Cov(x, z)2
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