
 

Everything before was related to equilibrium, but the changes will always take time. Ice don’t melt 

instantaneously, neither the chemical reactions happen instantaneously. Even in principle, 

everything is in equilibrium, in reality 

they are not. The most stable form of 

carbon and oxygen is CO2 but not all 

carbon is in CO2.  

Why? The reactions are slow.  

You can have several carbon containing 

molecules (or yourself) in air at room 

temperature and they do not burn. If 

you increase the temperature the 

situation is different.  

We need to consider time (or kinetics). 

If we look at the time behavior of a 

trivial reaction  A → B. The A(t) and B(t) 

are rather obvious. The long time limit 

is the equilibrium. (A can be ice and B liquid water at temperature above 0 C) 

Next we need to define the rate of chemical reaction. That is how many reaction ξ happen in 1 s. 

This is connected to mole change  

𝑑𝑛

𝑑𝑡
= 𝜈

𝑑𝜉

𝑑𝑡
 

The stoichiometric coefficient is needed since in a dissociation reaction one molecule breaks and 

two are formed. The rate is  

𝑅𝑎𝑡𝑒 =
𝑑𝜉

𝑑𝑡
 =
1

𝜈

𝑑𝑛

𝑑𝑡
        

An example:   4 NO2 + O2  -> 2 N2O5   

𝑅𝑎𝑡𝑒 = −
1

4

𝑑𝑛(𝑁𝑂2)

𝑑𝑡
=  −

𝑑𝑛(𝑂2)

𝑑𝑡
=  
1

2

𝑑𝑛(𝑁2𝑂5)

𝑑𝑡
    

 

This definition of rate depend on the system size (the amount of matter, n). To make it an intensive 

variable it can be divided by the volume of the system.  

𝑅𝑖 =
𝑅𝑎𝑡𝑒

𝑉
 =

1

𝜈𝑖𝑉

𝑑𝑛𝑖
𝑑𝑡
=    

1

𝜈𝑖

𝑑[𝑖]

𝑑𝑡
     

where [i] is the moles of species i divided by the volume. Typical unit of [i] is mol/L.  
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The rate of a reaction A + B -> X depends on the concentration [A], [B] etc.  

𝑅 = 𝑓([𝐴], [𝐵])    often   𝑅 =  𝑘[𝐴]𝛼[𝐵]𝛽 

this the rate law. If it is in the power form the exponents are called the reaction order.  The rate law 

needs to be determined experimentally.  

An example 4 NO2 + O2  -> 2 N2O5   

𝑅 =  𝑘[𝑁𝑂2]
2[𝑂2] 

this reaction is first order with respect of O2 and second order of NO2. The total reaction order is 3.   

If the rate law is known, then the reaction dynamics can be solved. The simplest case is the 

unimolecular first order reaction  

𝑅 = −
𝑑[𝐴]

𝑑𝑡
= 𝑘[𝐴] 

this is a first order differential equation and its solution is 

[A](t)=A0exp(-kt). The concentration decay exponentially 

with coefficient k. The k need to be determined 

experimentally.  

if the concentration in the beginning is 1 M (mol/L) and we 

measure the rate to be 40 M/s. The rate constant k=40 1/s. 

The rate law can be tested at a later time. If at 30 ms the 

concentration is 0.3 M and the rate is 12 M/s the 

k(30ms)=R(30 ms)/[A](30 ms)=12/0.3 1/s = 40 1/k. So the 

rate law is correct and the k is constant.  

The rate law determination is easy. Consider a simple 

reaction A + B -> C  

R = k[A]α[B]β   

We can use an isolation method in which one concentration 

is much higher than the other and then the major component is essentially not consumed. Choose 

[B] >> [A] then [B] is almost constant B0. 

R = k[A]α[B]β  ≈  k B β
 0 [A]α  = k’ [A]α   now  α is easy to determine. The experiments can be done with 

reversed conditions,  [A] >> [B]  and the β can be determined. At 2 different concentrations of [A], 

[A]1 and [A]2 the ratio of the rates is and taking log of these will give the α 

𝑅1
𝑅2
=
𝑘[𝐴]1

𝛼[𝐵]0
𝛽

𝑘[𝐴]2
𝛼[𝐵]0

𝛽
= (

[𝐴]1
[𝐴]2

)

𝛼

     =>    ln
𝑅1
𝑅2
= 𝛼 ln

[𝐴]1
[𝐴]2
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Another method is initial rate method. Now concentration of one component is kept constant, the 

other is varied and the initial rate is measured. The equations are the same as before. 

Study the Example 18.2   

[A]x10-4  mol/L [B] x10-5   mol/L initial rate M/s 

2.30 3.10 5.25x10-4   

4.60 6.20 4.20x10-3   

9.20 6.20 1.68x10-2   

 
𝑅2
𝑅3
=
4.20 ∗ 10−3

1.68 ∗ 10−2
= (
4.6

9.2
)
𝛼

     =>    ln
𝑅2
𝑅3
= 𝛼 ln

4.6

9.2
=> −1.386 = 𝛼 ∗ −0.693 => 𝛼 = 2 

𝑅1
𝑅2
=
5.25 ∗ 10−4

4.20 ∗ 10−3
= (
2.3

4.6
)
2

 (
3.1

6.2
)
𝛽

   =>    0.125 = 0.25 ∗ (0.5)𝛽 =>  𝛽 = 1 

 

The equations are quite simple but the measurements of concentration of fast reactions are not 

easy. Sometimes physical quantities like pressure can be used to follow the reaction. Usually, some 

spectroscopical methods are convenient.  IR adsorption can be measured in ms.  

 

 

 

As shown above the time dependence of the reaction components can be solved when the rate law 

is known.  In simple cases the solution can be written with simple function but usually the solution 

can obtained only numerically.   

The first order reaction, A -> P  

𝑅 = −
𝑑[𝐴]

𝑑𝑡
= 𝑘[𝐴]    =>     [𝐴](𝑡) = [𝐴]𝑜𝑒

−𝑘𝑡 

where the [A]0 is the initial concentration. The product concentration is [P]+[A]=[A]0 

and [P](t)= [A]0(1-exp(-kt)) 

 

The second order reaction 2A -> P is also easy  

𝑅 = −
1

2

𝑑[𝐴]

𝑑𝑡
= 𝑘[𝐴]2    =>    

1

[𝐴](𝑡)
−

1

[𝐴]0
= 2𝑘𝑡 = 𝑘𝑒𝑓𝑓𝑡 

the more general reaction A + B -> P is more complex, see the derivation from the book  
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𝑅 = −
𝑑[𝐴]

𝑑𝑡
= −

𝑑[𝐵]

𝑑𝑡
= 𝑘[𝐴][𝐵]    =>   

1

[𝐵]0 − [𝐴]0
ln
[𝐴]/[𝐴]0
[𝐵]/[𝐵]0

= 𝑘𝑡 

 

 

In chemical reactions there are often intermediate compounds and the total rate of the reaction 

chain depend on these intermediate steps.  In this case, the reaction can be written as  

 𝐴 
𝑘𝐴
→   𝐼 

𝑘𝐼
→  𝑃 

Here we are interested the product P. For first order reaction (and no backward reactions)  the 

equations can be written as  

𝑑[𝐴]

𝑑𝑡
= −𝑘𝐴[𝐴],    

𝑑[𝐼]

𝑑𝑡
= 𝑘𝐴[𝐴] − 𝑘𝐼[𝐼],

𝑑[𝑃]

𝑑𝑡
= 𝑘𝐼[𝐼]   

We assume that the initial concentrations of I and P are = 0. The solutions are quite easy  

[𝐴](𝑡) = [𝐴]𝑜𝑒
−𝑘𝐴𝑡,

[𝐼](𝑡) =  [𝐴]𝑜
𝑘𝐴

𝑘𝐼 − 𝑘𝐴
(𝑒−𝑘𝐴𝑡 − 𝑒−𝑘𝐼𝑡),     [𝑃](𝑡) = [𝐴]𝑜(

𝑘𝐴𝑒
−𝑘𝐼𝑡 − 𝑘𝐼𝑒

−𝑘𝐴𝑡

𝑘𝐼 − 𝑘𝐴
+ 1)   

With different rate constant, the concentrations are shown below. The intermediate compound 

concentration is never very high.  

 

 

Even this model is very simple it contain many important features of chemical reactions.  
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The rate limiting step 

we can look the time dependence of the product at two limits, a) when kA >> kI  and exp(-kAt) << 

exp(-kIt)   then  

[𝑃](𝑡) = [𝐴]𝑜 (
𝑘𝐴𝑒

−𝑘𝐼𝑡 − 𝑘𝐼𝑒
−𝑘𝐴𝑡

𝑘𝐼 − 𝑘𝐴
+ 1)  →   (1 − 𝑒−𝑘𝐼𝑡)[𝐴]0 

so the production rate depend on the rate constant  kI . In other word the first step is fast and the 

second is slow, 𝐴 
𝑘𝐴
→   𝐼 

𝑘𝐼
→  𝑃. The slow step is called the rate limiting step. This is trivial in such a 

simple reaction but real reactions are often more complex.  

The second limit is b) when kI >> kA  and exp(-kIt) << exp(-kAt)   

[𝑃](𝑡) = [𝐴]𝑜 (
𝑘𝐴𝑒

−𝑘𝐼𝑡 − 𝑘𝐼𝑒
−𝑘𝐴𝑡

𝑘𝐼 − 𝑘𝐴
+ 1)  →   (1 − 𝑒−𝑘𝐴𝑡)[𝐴]0 

 

in both cases the approximate equations describe the product behavior.  In case b) it is easy to miss 

the intermediate state. Its concentration is very low.  

 

 

The steady state approximation 

In the case of sequential chemical reactions the reaction kinetics can in principle be solved from set 

of coupled differential equations. This usually require numerical methods and this is not very 

convenient. There are some ways to approximate the rate equations. The most convenient 

approximation is the steady-state approximation. In this approximation the intermediate 

concentrations are assumed to be rather constant or  



𝑑[𝐼𝐴]

𝑑𝑡
= 0 

Mathematically this would simplify the differential equations to ordinary equation and very complex 

reactions can be solved.  

We can study a reaction path with two intermediate states   

𝐴 
𝑘𝐴
→   𝐼1  

𝑘1
→ 𝐼2  

𝑘2
→𝑃 

in steady-state  

   

 
𝑑[𝐼1]

𝑑𝑡
= 𝑘𝐴[𝐴] − 𝑘1[𝐼1] = 0,

[𝐼1] =
𝑘𝐴
𝑘1
[𝐴],      

𝑑[𝐼2]

𝑑𝑡
= 𝑘1[𝐼1] − 𝑘2[𝐼2] = 0,   [𝐼2] =

𝑘1
𝑘2
[𝐼1] =   

𝑘𝐴
𝑘2
[𝐴]  

the product forming rate is  

𝑑[𝑃]

𝑑𝑡
= 𝑘2[𝐼2] = 𝑘𝐴[𝐴], [𝐴] = [𝐴]0𝑒

−𝑘𝐴𝑡   =>  
𝑑[𝑃]

𝑑𝑡
= 𝑘𝐴[𝐴]0𝑒

−𝑘𝐴𝑡    

the last equation can be integrated  

 [𝑃] = [𝐴]0(1 − 𝑒
−𝑘𝐴𝑡)    

The s-s approximation works well if the 

intermediate rate constant k1 and k2 are large 

compared to kA  (case b) above.  

The steady-state approximation work also if the 

backward reactions are included  

𝐴 
𝑘𝑓𝐴,𝑘𝑏𝐴
↔      𝐼  

𝑘𝑓𝐼,𝑘𝑏𝐼
↔     𝑃 

This will be discussed later in the book so we will 

come back to this later. Overall, the steady-state 

approximation is a very powerful tool to analyze 

complex reactions.  
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Reactions can have several reaction channels  

𝐴
𝑘𝐵
→      𝐵

     ↓ 𝑘𝐶  
𝐶  

   

 

𝑑[𝐴]

𝑑𝑡
= −𝑘𝐵[𝐴] − 𝑘𝐶[𝐴],     

𝑑[𝐵]

𝑑𝑡
= 𝑘𝐵[𝐴],    

𝑑[𝐶]

𝑑𝑡
= 𝑘𝐶[𝐴]    

[𝐵] =
𝑘𝐵

𝑘𝐵 + 𝑘𝐶
[𝐴]0(1 − 𝑒

−(𝑘𝐵+𝑘𝐶)𝑡),    [𝐶] =
𝑘𝐶

𝑘𝐵 + 𝑘𝐶
[𝐴]0(1 − 𝑒

−(𝑘𝐵+𝑘𝐶)𝑡)  

so the concentrations of B and C depend on the reaction constants kB and kC    

[𝐵]

[𝐶]
=
𝑘𝐵
𝑘𝐶
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One of the key observation of reactions is the temperature dependence of rate constant. It is the 

famous Arrhenius law 

𝑘 = 𝐴𝑒−𝐸𝑎/𝑅𝑇  

here the Ea is the activation energy and A is a prefactor that 

contain the reaction entropy. It is clear that the reaction 

rates will increase rapidly with respect of temperature.  

The parameters of Arrhenius law are easy to determine 

ln(k) = ln(A) – Ea/RT vs 1/T plot. The slope is the activation 

energy/R or Ea/R and the interception give the prefactor.  

 

Examine the problem 18.8 
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It is important to remember that every reaction will have forward and backward reaction constants  

𝐴 
𝑘𝑓𝐴,𝑘𝑏𝐴
↔      𝐼  

𝑘𝑓𝐼,𝑘𝑏𝐼
↔     𝑃 

Earlier we studied a lot of the equilibrium. To have consistent kinetic model we need to include the 

backward reactions.  

The kinetics of this reaction is:   

𝑑[𝐴]

𝑑𝑡
= −𝑘𝑓𝐴[𝐴] + 𝑘𝑏𝐴[𝐼],      

𝑑[𝐼]

𝑑𝑡
= 𝑘𝑓𝐴[𝐴] − 𝑘𝑏𝐴[𝐼] − 𝑘𝑓𝐼 [𝐼] + 𝑘𝑏𝐼[𝑃], 

  
𝑑[𝑃]

𝑑𝑡
= 𝑘𝑓𝐼[𝐼] − 𝑘𝑏𝐼[𝑃]   

this is quite complex, so let us look a simpler reaction  𝐴 
𝑘𝑓,𝑘𝑏
↔    𝐵, the kinetics is  

𝑑[𝐴]

𝑑𝑡
= −𝑘𝑓[𝐴] + 𝑘𝑏[𝐵],     

𝑑[𝐵]

𝑑𝑡
= 𝑘𝑓[𝐴] − 𝑘𝑏[𝐵]  

Material is conserved [𝐴]0 = [𝐴] + [𝐵]  and the kinetic can be solved (detail are in the book)  

[𝐴](𝑡) = [𝐴]𝑜
𝑘𝑓 + 𝑘𝑏𝑒

−(𝑘𝑓+𝑘𝑏)𝑡

𝑘𝑓 + 𝑘𝑏
,   [𝐵](𝑡) = [𝐴]0 − [𝐴](𝑡)  

The equilibrium constant is K=[B]/[A] the   

[𝐴]𝑒𝑞 = [𝐴]𝑜
𝑘𝑓

𝑘𝑓 + 𝑘𝑏
,   [𝐵]𝑒𝑞 = [𝐴]0(1 −

𝑘𝑓

𝑘𝑓 + 𝑘𝑏
) 

and now  (easy to derive at d[A]/dt=0:   
𝑑[𝐴]

𝑑𝑡
= −𝑘𝑓[𝐴]𝑒𝑞 + 𝑘𝑏[𝐵]𝑒𝑞 = 0   =>  𝑘𝑓[𝐴]𝑒𝑞 = 𝑘𝑏[𝐵]𝑒𝑞     

𝐾 =
[𝐵]𝑒𝑞
[𝐴]𝑒𝑞

=
𝑘𝑓

𝑘𝑏
 

 

 



 

 

For the more complex reaction.  𝐴 
𝑘𝑓𝐴,𝑘𝑏𝐴
↔      𝐼  

𝑘𝑓𝐼,𝑘𝑏𝐼
↔     𝑃   At equilibrium  

𝑑[𝐴]

𝑑𝑡
= −𝑘𝑓𝐴[𝐴] + 𝑘𝑏𝐴[𝐼] = 0 =>  𝐾𝐴𝐼 =

[𝐴]

[𝐼]
=
𝑘𝑏𝐴
𝑘𝑓𝐴

 

𝑑[𝐼]

𝑑𝑡
= 𝑘𝑓𝐴[𝐴] − 𝑘𝑏𝐴[𝐼] − 𝑘𝑓𝐼 [𝐼] + 𝑘𝑏𝐼[𝑃] = 0, 

  
𝑑[𝑃]

𝑑𝑡
= 𝑘𝑓𝐼[𝐼] − 𝑘𝑏𝐼[𝑃] = 0 => 𝐾𝑃𝐼 =

[𝑃]

[𝐼]
=
𝑘𝑓𝐼

𝑘𝑏𝐼
 

  𝐾𝑃𝐴 =
[𝑃]

[𝐴]
=
[𝑃]

[𝐼]

[𝐼]

[𝐴]
=
𝑘𝑓𝐴

𝑘𝑏𝐴

𝑘𝑓𝐼

𝑘𝑏𝐼
 

 

It is interesting that the PA equilibrium depend on the rate constants of the intermediate complex.  

 

 

The reactions can be understood using a (free) energy profile. The reaction proceeds via a reaction 

coordinate. We discuss later the reaction coordinate and here we focus on the energy profile. The 

reaction free energy is the energy difference Δ𝐺𝑟 of reactants and products. (not in the figure). This 

will determine the equilibrium constant  𝐾 = exp (−
Δ𝐺𝑟

𝑅𝑇
). The forward rate constant is determined 

by the energy barrier Ea , 𝑘𝑓 = 𝐴exp (−
Ea

𝑅𝑇
)  and the backward rate constant with barrier  E’a  𝑘𝑏 =

𝐴′ exp (−
E′a

𝑅𝑇
). This is the Arrhenius Law. Here the activation energy instead the free energy is used, 

and this is a bit confusing. The activation energy is the internal energy and the entropy and PV term 

Reaction energy profile  Engel & Reid chapter 18.13 

 



are included to the prefactor A. A precise derivation of these equations uses the activated complex 

theory (chapter 18.14), which is outside of this course.  

 

 

The reaction coordinate is quite “concrete”. It describes 

the movement of all atoms in the reaction. On the right 

there is three  atoms of reaction AB + C -> A + BC. In the 

beginning the distance AB is short (there is a chemical 

bond between them). The reaction proceeds, and at 

some point the bonds AB and BC are rather similar. At 

this point the reaction energy is at its maximum. This is 

the transition state. After it the energy will go down and 

the bond BC become short.  

The total potential energy surface will describe the (free) 

energy at every atom position. This is very complex function. For 10 atoms it is 24 dimensional 

function, which is in practice impossible to measure. It can be computed using quantum chemical 

methods but only in few dimensions. See subfigure (c) below.   

 



 

The reaction path is the lowest possible energy path from reactants to products. The transition state 

is the highest point in the reaction path and it position will determine the reaction rates.  

Using the activated complex theory one can derive the precise equations and if you are interested of 

the details read the book.  

Few remarks: in every reaction step there is a transition state. There can be different reaction paths 

between A and P and each of them have a transition state. If the reaction is endothermic the 

transition state is at least as high as the reaction energy.  

If the transition state resembles the reactants is it called early transition state and if it resemble the 

products it called late transition state.   



 

Any reaction to happen the reactant molecules need 

to be very near (within a chemical bond distance) to 

each other. In gas phase this happen with molecular 

collision and in liquid via diffusion. Here we 

concentrate on the liquid phase. We note with AB 

the case where the molecules are near each other 

(this is not the transition state) and we can see the 

state AB as an intermediate state. Next the state AB 

can either broke (to A+B) or form the product P. The 

reaction steps are  

A + B 
𝑘𝑑
→  AB 

AB 
𝑘𝑏
→  A + B 

AB  
𝑘𝑝
→   P  

we can use the steady-state approximation  

𝑑[𝐴𝐵]

𝑑𝑡
= 𝑘𝑑[𝐴][𝐵] − 𝑘𝑏[𝐴𝐵] − 𝑘𝑝[𝐴𝐵] = 0  

and   [𝐴𝐵] =
𝑘𝑑

𝑘𝑏+𝑘𝑝
[𝐴][𝐵]   the reaction product 

rate is 𝑘𝑝[𝐴𝐵] =
𝑘𝑝𝑘𝑑

𝑘𝑏+𝑘𝑝
[𝐴][𝐵]   if the rate constant 𝑘𝑝 >> 𝑘𝑏 (or most of the AB complexes will react 

further to product), the effective rate constant is 𝑘𝑑 . In this case the diffusion will limit the reaction 

rate. This is called the diffusion limited reaction.  

The other limit 𝑘𝑏 >> 𝑘𝑝 where most of the AB complexes broke back to A and B. Then the rate is  

𝑘𝑝𝑘𝑑

𝑘𝑏
[𝐴][𝐵].  

This is called the reaction limited reaction. 

The diffusion rate constant can be estimated as 𝑘𝑑 = 4𝜋𝑁𝐴(𝑟𝐴 + 𝑟𝐵)𝐷𝐴𝐵 where 𝐷𝐴𝐵 is the 

intermolecular diffusion constant, 𝐷𝐴𝐵 = 𝐷𝐴 + 𝐷𝐵 and 𝑟𝐴 is the estimate of the radius of molecule A 

(or B).  

For many molecules, the diffusion coefficient and rough estimation of their sizes are known.  

See problem 35.11  

The oxygen binding to hemoglobin has rate constant of 4*107 1/(Ms) (in water). What is the 

diffusion rate? The diffusion coefficients are 7.6*10-7 cm2/s (hemog) and 2.2*10-5 cm2/s (oxygen). The 

sizes (radius) are 35 Å (hemog) and 2 Å (oxygen). Is the reaction diffusion limited?  

With these we can compute the   𝑘𝑑= 6.4*1010 1/(Ms).  This is much larger than the observed rate so 

the rate is limited by the reaction.  

Diffusion controlled reactions   Engel & Reid chapter 18.15 

 



Note that the diffusion rate estimation is only estimation. So only, if the rates differ significantly 

conclusion can be made.  

 

 

  

There are several interesting reactions in this chapter especially the catalysis and photochemical 

reactions. We do not have time to go through all of this. But if you have time try to also read the end 

of the chapter. 

 

Intermediate reactions  

 

We usually write the chemical reactions from reactants to products but there are often some 

intermediates. Those can be difficult to detect but there are several hints that they exist.  

Let us look the following reaction  

2 𝑁2𝑂5
𝑘
→   4 𝑁𝑂2 + 𝑂2 

Its experimental rate law is linear to [𝑁2𝑂5]. In the reaction equation there are two 𝑁2𝑂5 molecules 

and then the rate should be second order for [𝑁2𝑂5].  

There is a suggestion for intermediate reactions  

𝑁2𝑂5
𝑘1,𝑘−1
↔     𝑁𝑂2 +𝑁𝑂3 

𝑁𝑂2 +𝑁𝑂3
𝑘2
→    𝑁𝑂2 + 𝑂2 +𝑁𝑂 

𝑁𝑂 + 𝑁𝑂3
𝑘3
→    2𝑁𝑂2 

The rate of the reaction is   

𝑅 = −
1

2

𝑑[𝑁2𝑂5]

𝑑𝑡
=
1

2
( 𝑘1[𝑁2𝑂5] − 𝑘−1[𝑁𝑂2][𝑁𝑂3]) 

now we need to look the intermediates and we will use the steady-state approximation  

   
𝑑[𝑁𝑂]

𝑑𝑡
= 𝑘2[𝑁𝑂2][𝑁𝑂3] − 𝑘3[𝑁𝑂][𝑁𝑂3] = 0  =>   [𝑁𝑂] =

𝑘2

𝑘3
 [𝑁𝑂2]  

𝑑[𝑁𝑂3]

𝑑𝑡
=  𝑘1[𝑁2𝑂5] − (𝑘−1 + 𝑘2)[𝑁𝑂2][𝑁𝑂3] − 𝑘3[𝑁𝑂][𝑁𝑂3] = 0  

⇒    𝑘1[𝑁2𝑂5] − (𝑘−1 + 𝑘2)[𝑁𝑂2][𝑁𝑂3] − 𝑘2[𝑁𝑂2][𝑁𝑂3] = 0  

 

Complex reactions    Engel & Reid chapter 19 

 



𝑘1[𝑁2𝑂5] − (𝑘−1 + 2𝑘2)[𝑁𝑂2][𝑁𝑂3] = 0 ⇒  [𝑁𝑂2][𝑁𝑂3] =  𝑘1/(𝑘−1 + 2𝑘2)[𝑁2𝑂5]  

and the rate is  

𝑅 =
𝑘1𝑘2

𝑘−1 + 2𝑘2
[𝑁2𝑂5] 

The rate is of first order. The difficult part is to find the intermediate reactions. Note that only in the 

first reaction the backward reaction is taken into account.  

 

Lindeman mechanism  

 

Unimolecular reactions are usually assumed to be first order. In pure systems (only one component) 

this is not necessarily correct. Usually the reaction have some barrier and the molecule need energy 

to cross this barrier. The energy come from collision to another molecule.  The activated molecule is 

denoted with *. 

𝐴 + 𝐴 
𝑘1
→ 𝐴∗ + 𝐴 

The activation can end in a collision or the molecule can react.  

𝐴∗ + 𝐴 
𝑘−1
→  𝐴 + 𝐴        or     𝐴∗   

𝑘2
→   𝑃 

The reaction rate is k2[A*] and using the steady-state 

approximation  

𝑑[𝐴∗]

𝑑𝑡
=  𝑘1[𝐴]

2 − 𝑘−1[𝐴
∗][𝐴] − 𝑘2[𝐴

∗] = 0 =>  [𝐴∗]

=
𝑘1[𝐴]

2

𝑘−1  [𝐴] + 𝑘2
,    𝑅 =

𝑘2𝑘1[𝐴]
2

𝑘−1  [𝐴] + 𝑘2
  

This is not linear. If 𝑘−1  [𝐴] ≫ 𝑘2 then R = keff [A]  so at high 

pressures concentrations of A the normal assumption is valid. 

At low pressures or 𝑘−1  [𝐴] ≪  𝑘2   then R = k1 [A]2.   

This same problem can be written to a mixed system, where 

the reacting molecule is A and there is some inert gas or liquid 

M.  

𝐴 +𝑀 
𝑘1
→ 𝐴∗ +𝑀,    𝐴∗ +𝑀 

𝑘−1
→  𝐴 +𝑀        𝑜𝑟     𝐴∗   

𝑘2
→   𝑃 

now  

𝑑[𝐴∗]

𝑑𝑡
=  𝑘1[𝐴][𝑀] − 𝑘−1[𝐴

∗][𝑀] − 𝑘2[𝐴
∗] = 0 =>  [𝐴∗]

=
𝑘1[𝐴][𝑀]

𝑘−1  [𝑀] + 𝑘2
,     

𝑅 =
𝑘2𝑘1[𝑀]

𝑘−1  [𝑀] + 𝑘2
[𝐴] = 𝑘𝑒𝑓𝑓[𝐴] 



in this case the reaction is always linear with respect to A. The keff depend on concentration of M. 

One can write this equation as  

1

𝑘𝑒𝑓𝑓
=
𝑘−1
𝑘1𝑘2

+
1

𝑘1

1

[𝑀]
 

  

 

 

 

 

Catalysis is one of the most important topics in chemistry. Often the reactions are slow but with 

some catalyst the reaction rate can be improved enormously. Chemical industry is using catalyst a 

lot and most biochemical reactions are (protein) catalyzed. In catalysis the reacting molecules (or 

one of them) are bound to some catalyst. The reaction equation is very 

simple (S is the reacting molecule, C catalyst and P product). The catalyst is 

not consumed in the reaction.   

 

𝑆 + 𝐶 
𝑘1,𝑘−1
↔     𝑆𝐶,   𝑆𝐶 

𝑘2
→   𝑃 +  𝐶             

We use the steady-state approximation  

𝑑[𝑆𝐶]

𝑑𝑡
=  𝑘1[𝑆][𝐶] − 𝑘−1[𝑆𝐶] − 𝑘2[𝑆𝐶] = 0  =>   [𝑆𝐶] =

𝑘1
𝑘−1 + 𝑘2

 [𝑆][𝐶]

= [𝑆][𝐶]/𝐾𝑚 

 the rate is  

𝑑[𝑃]

𝑑𝑡
=
𝑘2
𝐾𝑚
 [𝑆][𝐶]   and   𝐾𝑚 =

[𝑆][𝐶]

[𝑆𝐶]
=  
𝑘−1 + 𝑘2
𝑘1

  

Km is the equilibrium constant of [S][C] and [SC]. Typically, the k2 is much 

larger than the rate constant of an uncatalyzed reaction. This is form is bit 

inconvenient since we do not know the [S] and [C] during the reaction but we 

can use the initial values   [S]0 = [S] + [SC] + [P]   and [C]0 = [S] + [SC]. Next we 

assume that [SC]2  and [P] are small. With these assumptions we get (see the 

steps from the book)   

  [𝑆𝐶] =
[𝑆]𝑜[𝐶]𝑜

[𝑆]𝑜+[𝐶]𝑜 + 𝐾𝑚
  

and the early state rate is (this assumes that [P] is small) 

Catalysis         Engel & Reid chapter 19.4 



𝑅𝑜 =
𝑑[𝑃]

𝑑𝑡
=

𝑘2[𝑆]𝑜[𝐶]𝑜
[𝑆]𝑜+[𝐶]𝑜 +𝐾𝑚

 

 

if [S]0  >> [C]0  so there is much more reacting molecules than catalyst  

𝑅𝑜 =
𝑘2[𝑆]𝑜[𝐶]𝑜
[𝑆]𝑜 + 𝐾𝑚

 

and if [C]0  >> [S]0   

𝑅𝑜 =
𝑘2[𝑆]𝑜[𝐶]𝑜
[𝐶]𝑜 + 𝐾𝑚

 

 

Michaelis-Menten reaction   

MM reaction is a good example of catalysis or enzyme catalysis. The main reaction is the same as 

above   

𝑆 + 𝐶 
𝑘1,𝑘−1
↔     𝑆𝐶,   𝑆𝐶 

𝑘2
→   𝑃 +  𝐶             

We can look this on the limit [S]0  >> [C]0  and [S]0  >> Km  this determinate the maximum rate  
𝑅𝑚𝑎𝑥 = 𝑘2[𝐶]𝑜  now we can rewrite the early state rate as (Lineweaver-Burk plot)   

1

𝑅𝑜
=

1

𝑅𝑚𝑎𝑥
+

𝐾𝑚
𝑅𝑚𝑎𝑥 [𝑆]𝑜

 

with this we can easily determine the 𝑅𝑚𝑎𝑥 and 𝐾𝑚    

See Example 36.1. 

The slope of the 1/R vs 1/[S]o plot is  𝐾𝑚/𝑅𝑚𝑎𝑥 and the interception is 1/𝑅𝑚𝑎𝑥 

 

 



 

Competitive inhibition in catalysis or catalysis poisoning   

 

Sometimes another molecule can bind to the catalyst. In biochemistry this is called competitive 

inhibition and catalysis research catalyst poisoning. We denote the inhibitor are I and when it is 

bound to catalyst the catalyst is inactive 

𝑆 + 𝐶 
𝑘1,𝑘−1
↔     𝑆𝐶,   𝑆𝐶 

𝑘2
→   𝑃 +  𝐶 ,   𝐼 + 𝐶  

𝑘3,𝑘−3
↔     𝐼𝐶          

The total catalyst is  

[𝐶]0 = [𝐶] + [𝑆𝐶] + [𝐼𝐶] 

and we have two equilibrium constants  

 𝐾𝑠 =
[𝑆][𝐶]

[𝑆𝐶]
≈ 𝐾𝑚, 𝐾𝑖 =

[𝐼][𝐶]

[𝐼𝐶]
 

With assumptions that 𝑘2  is small the rate can be written  

𝑅 =
𝑑[𝑃]

𝑑𝑡
= 𝑘2[𝑆𝐶] =

𝑘2[𝑆][𝐶]𝑜

[𝑆] + 𝐾𝑚(1 +
[𝐼]
𝐾𝑖
)
 

we can also assume that [EC] and [P] << [S] then  

𝑅𝑜 =
𝑘2[𝑆]𝑜[𝐶]𝑜

[𝑆]𝑜 + 𝐾𝑚(1 +
[𝐼]
𝐾𝑖
)
 

These equations are similar to the ones above but the Km is enhanced with the inhibition. We can 

shorten the using effective Km,  𝐾𝑚
∗ =  𝐾𝑚(1 +

[𝐼]

𝐾𝑖
). Now the Lineweaver-Burk plot can be used to 

analyze the reaction.  

1

𝑅𝑜
=

1

𝑅𝑚𝑎𝑥
+

𝐾𝑚
∗

𝑅𝑚𝑎𝑥 [𝑆]𝑜
 

If the inhibitor does not bind strongly to the catalyst or its concertation is low (<< Ki) it does not 

harm the reaction much but this is not always the case. Pt is commonly used catalyst in chemical 

industry and it is sensitive for lead (Pb) and sulphur (S) poisoning. That’s why you cannot use lead or 

high S containing fuel in car that have catalysator.  Lead is very strong catalyst poison and it will 

destroy Pt catalyst almost forever. In biochemistry some drugs act as a catalyst poison. The drug can 

slow or stop some biochemical catalyst and for example kill bacteria.  

 

Homogenous and heterogenous catalysis    

In chemical catalyst the catalyst is divided to homogenous and heterogenous catalysis. In 

homogenous catalyst the catalyst is in the save phase as the reactants.  



An example, Rowland and Molina proposed that Cl atom will catalytically destroy ozone (O3) in 

stratosphere and causing the ozone hole. The main reaction is simple  

𝐶𝑙 +  𝑂3
𝑘1
→  𝐶𝑙𝑂 + 𝑂2     and  𝐶𝑙𝑂 + 𝑂 

𝑘2
→  𝐶𝑙 + 𝑂2   

the net reaction is  

𝑂3 + 𝑂
𝑘𝑐𝑎𝑡
→   2𝑂2  

Here the Cl is the catalyst and it is gas phase. The same reaction can happen without the catalyst but 

the catalysed reaction is ca. 74 times faster and a single Cl atom can broke thousands ozone 

molecules. In stratosphere the main source of Cl is chlorofluorocarbons (CFC’s), like CFCl2. 

 

Surface catalysis is the main type of heterogenous catalyst. There the reacting molecules (A and B) 

will bind to a surface like Pt (M) and react on it.  

𝐴(𝑔) + 𝐵(𝑔) + 2𝑀(𝑠)
𝑘1
→  𝐴𝑀(𝑠) + 𝐵𝑀(𝑠)  

𝑘2
→  𝐴𝐵𝑀(𝑠) + 𝑀(𝑠)  

𝑘3
→   𝐴𝐵(𝑔) + 2𝑀(𝑠)     

 

The adsorption of the molecule A can modelled with the 

Langmuir isotherm  

𝜃𝐴 =
𝐾𝑃𝐴

𝐾𝑃𝐴 + 1
 

where 𝜃𝐴 is the coverage of molecule A (𝜃𝐴 = 1 means that the 

whole surface is covered with A.) and K is the binding constant 

of A, PA is the partial pressure of A.  

If there are two gases the Langmuir isotherms are  

𝜃𝐴 =
𝐾𝐴𝑃𝐴

𝐾𝐴𝑃𝐴 + 𝐾𝐵𝑃𝐵 + 1
 ,    𝜃𝐵 =

𝐾𝐵𝑃𝐵
𝐾𝐴𝑃𝐴 + 𝐾𝐵𝑃𝐵 + 1

 

If the step 2 (AM + BM -> ABM) is the rate limiting step (which it usually is) the rate of the total 

reaction is  

𝑅 = 𝑘2𝜃𝐵𝜃𝐴 =
𝑘2𝐾𝐴𝑃𝐴𝐾𝐵𝑃𝐵

(𝐾𝐴𝑃𝐴 + 𝐾𝐵𝑃𝐵 + 1)
2
= 

𝑘2𝑥𝑦

(𝑥 + 𝑦 + 1)2
 

The maximum rate is achieved 

when x=y or the surface coverage 

is equal. For example, if 𝐾𝐴 =

10𝐾𝐵 the optimal partial pressure 

ratio is 1/10. This equation give a 

very simple tool to control the 

reaction.  

 

 



 

 

 

 

The rest of chapter 19 

 

There are a lot of interesting topics in the end of this chapter. They are not included to the course 

but some of them are useful. Like chain reaction, photochemistry and electrochemistry.  

 

Electrochemistry 

 

Electron transfer can be an important part of chemical 

reactions. As an example, the biochemical sugar forming  

6𝐶𝑂2(𝑔) + 6𝐻2𝑂(𝑙)
𝑝ℎ𝑜𝑡𝑜𝑛𝑠
→      𝐶6𝐻12𝑂6 + 6𝑂2    

This reaction is photocatalyzed and it involves electron transfers.  

In this process water is spitted  

2𝐻2𝑂(𝑙) → 4𝐻
+ + 𝑂2 + 4𝑒

−  

This biochemical process is very complicated, but the water splitting is 

also the key reaction in electrolyser. The water splitting does not 

happen spontaneously. We need energy to drive the reaction, more 

than 1.23 eV/Hydrogen. The reverse reaction can be used to generate 

current and energy (fuel cell). In photosynthesis the energy become 

from photons and in electrochemical systems from external voltage. In both cases some catalyst are 

used. The biochemical catalyst are enzymes and in fuel cell Pt and IrO are usually used. There are 

several research projects that aim to find new catalyst for electrolyser/fuel cells.   

 

 

 

 

 

 

 

 

 

e- 

2H2

O 

2H2 + O2 

4H+ +2e- + O2 
4.93 eV 



 

The water splitting happen differently on anode and cathode. 
These two half reactions balanced. In acidic solution  

Cathode 

(reduction): 

2H+(aq) + 

2e− 
→ H2(g) 

Anode (oxidation): 2 H2O(l) → 
O2(g) + 4 H+(aq) + 

4e− 

In basic solution: 

Cathode 

(reduction): 

2 H2O(l) + 

2e− 
→ H2(g) + 2 OH−(aq) 

Anode (oxidation): 2 OH−(aq) → 
1/2 O2(g) + H2O(l) + 

2 e− 

 

The precent hydrogen generation and usage is not very efficient. The efficiency is 40 % - 60 %. The 

use of hydrogen as an energy storage is not optimal (different batteries, like Li-ion, are more 

efficient) but the other applications of H are interesting. H is used in oil refineries in hydrocarbon 

hydrogenation or in iron decarbonization.   

 

 


