
 

All real gas molecules have some volume and they interact with each 

other. There is a paradox in ideal gases. We always assume that they are in 

equilibrium but this is not possible if the molecules do not interact. The 

ideal gas cannot either describe the liquid phase.  

The form of the molecular interaction depends on the molecules involved. 

Argon atoms interact differently than water molecules. There is no unique 

equation for real gases.  

The mostly used model is the van der Waals equation  

𝑃 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
−

𝑛2𝑎

𝑉2
 

and another one, the Redlich-Kwong equation  

𝑃 =
𝑛𝑅𝑇

𝑉−𝑛𝑏
−

𝑛2𝑎

√𝑇

1

𝑉(𝑉+𝑛𝑏)
  

the a and b are empirical gas dependent 

parameters. See Table 7.4. (Appendix A). Note that 

parameter b is related to the molecules volume.  

Virial expansion is another type of model. The 

coefficients B(T) and C(T) can be computed from the 

model potentials.  

𝑃 = 𝑅𝑇(
1

𝑉𝑚
+

𝐵(𝑇)

𝑉𝑚
2 +

𝐶(𝑇)

𝑉𝑚
3 + ⋯ ) 

As one can expect the ideal gas equation do not 

work close to the boiling point. On the left is the P-V 

diagrams of CO2 . The one above (a) is at 426 K and 

the lower at 310 K (the boiling point of CO2 is 304 K 

at 76 bar. ) The red curve is the ideal gas, blue the 

RK model and purple the vdW. 

To understand better the liquid-gas behavior we 

need to look what happen in a pressure experiment. 

When gas is compressed at fixed temperature it will 

first stay as gas (a). Then there will be liquid in the systems (b) and (c) and finally only liquid (d).  
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This can be done at different temperatures and a rather complex but interesting figure can be made. 

The examples above are at 258 K and the points are marked to the figure.  There are several features 

here. The liquid is noted with blue and the gas-liquid coexistence with yellow.  

Note that temperatures above 304.12 K for CO2 there is no gas-liquid coexistence at any pressure or 

no liquid phase. This temperature is called the critical temperature.  There is also critical pressure 

and volume. Together these values are called the critical point. See Table 7.2. (Appendix A). In this 

table there are some critical constants of some substances.  

 

Figure 7.2 Isotherms of CO2 

 

Go through example 7.1  

Find out what is the critical temperature, pressure and volume in the van der Waals equation:  

 𝑇𝑐 =
8𝑎

27𝑅𝑏
 ,  𝑃𝑐 =

𝑎

27𝑏
  and  𝑉𝑚,𝑐 = 3𝑏.  

These relations can be used to determine the parameters a and b:  



𝑏 =
𝑅𝑇𝑐

8𝑃𝑐
    and   𝑎 =

27𝑅2𝑇𝑐
2

64𝑃𝑐
.  There are some parameters of different materials in Table 7.4 (Appendix 

A) 

Note that the van der Waals (or the Redlich-Kwong) 

equation of state do not describe correctly the liquid-gas 

coexistence. It will produce unphysical decrease of 

pressure when compressing the system. Sensible results 

can be obtained with the Maxwell construction in which a 

straight line is drawn in the oscillatory part such that the 

positive and negative areas are the same.    

  

 

 

 

 

 

 

 

We see form the figure 7.2 that the ideal gas law gives too high pressure compared to experiments. 

We can define the compression factor as  

𝑧 =
𝑉𝑚

𝑉𝑚
𝑖𝑑𝑒𝑎𝑙

=
𝑃𝑉𝑚

𝑅𝑇
 

where Vm is the measured 

molar volume. Interestingly 

at low temperatures the z is 

often smaller than 1 

whereas at high 

temperatures >1.  

At low temperatures, the 

attractive interaction causes 

the less than 1 z values. At 

high temperatures the 

repulsive potential 

dominates. Note that the 

pressures are rather high, 

up to 300 bar.                                         Figure 7.5: data for N2.  
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The Boyle temperature is the temperature which the initial slope of z is 0 (See Table 7.3 some 

values),  𝑇𝐵 = 𝑎/𝑅𝑏. The Boyle temperature of N2 is 327 K. Figure 7.6. below shows that the 

behavior is different on different gases (here T = 400 K). Note oxygen Boyle temperature is 400 K.   

 

Question: does the ideal gas law 

describe air well around 300 K and 

pressures up to ca. 100 bar. Is the 

situation better or worse at 350 K. 

Even the gas molecules have 

interactions around Boyle 

temperature they cancel each other 

and the ideal gas law is better than 

it should be. Also, the ideal gas law 

is good at low pressures (up to few 

atm.)  

 

 

Figure 7.6: data for O2, ethane and H2 at 400 K (dots are experiments and lines from a van der Waals 

model) 

 

 

The gas behavior varies quite much form gas to gas but is there some universality in them? There is. 

We can use reduced temperature, pressure and molar volume by scaling them with the critical 

values:  

𝑇𝑟 =
𝑇

𝑇𝑐
, 𝑃𝑟 =

𝑝

𝑃𝑐
 , 𝑉𝑚,𝑟 =

𝑉𝑚

𝑉𝑚,𝑐
  .  

The reduced van der Waals equation is very convenient (the derivation is in the book)  

𝑃𝑟 =
8𝑇𝑟

3𝑉𝑚,𝑟 − 1
−

3

𝑉𝑚,𝑟
2  

this does not depend on the gas parameter a and b. It should valid for ALL gases. This is a rather 

surprising result, and we need to see how this work with real data. See the Figure 7.6 below. The 

agreement is very good. (Well, water is not there. That might differ from the universal curves.) 
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The data shows 

that most liquids 

behave quite 

similarly. This has 

also strong 

predictive power. 

One can predict 

properties of 

several gases with 

the same model. 

The main material 

parameters are 

the Tc. Pc and Vm,c.  

 

 

 

 

In the previous chapters we have always assume that the gases are ideal. As we have seen above 

that is not true. We can replace the pressure with quantity fugacity, f for example the chemical 

potentials  

𝜇(𝑇, 𝑃) = 𝜇𝑜(𝑇) + 𝑅𝑇 ln
𝑃

𝑃𝑜
 

now we replace pressure with fugacity  

𝜇(𝑇, 𝑃) = 𝜇𝑜(𝑇) + 𝑅𝑇 ln
𝑓

𝑓𝑜
 

How can we compute the fugacity. The ideal and real chemical potential different is  

𝜇𝑟𝑒𝑎𝑙(𝑇, 𝑃) − 𝜇𝑖𝑑𝑒𝑎𝑙(𝑇, 𝑃) = ∫(𝑉𝑚
𝑟𝑒𝑎𝑙 − 𝑉𝑚

𝑖𝑑𝑒𝑎𝑙)𝑑𝑃

𝑃

0

′ 

we can define the fugacity as  

ln 𝑓 = ln 𝑃 +
1

𝑅𝑇
∫(𝑉𝑚

𝑟𝑒𝑎𝑙 − 𝑉𝑚
𝑖𝑑𝑒𝑎𝑙)𝑑𝑃

𝑃

0

′ 

of using fugacity coefficient 𝛾,  𝑓 = 𝛾(𝑇, 𝑃)𝑃.  
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in small pressures the 𝑓 ≈ 𝑃 but at high pressures the 

difference can be quite large.  The fugacity coefficient is an 

easy way to deal with the non-ideal gases. In general it is 

quite linear to pressures up to 200 bar.  

 

As far as I know there is no simple general model for 

fugacity. We can used vdW or Redlich-Kwong parameters. 

There are several more complex model and there are 

programs that can compute fugacities for several componds.   

 

 

An interesting fugacity calculator for water. It will show the 

fugacity and fugacity coefficient (in the web page φ) on different pressures and volume. Try low 

pressures, like 0.5 MPa (5 bar). 

https://demonstrations.wolfram.com/FugacityFromEquationOfStateForWater/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://demonstrations.wolfram.com/FugacityFromEquationOfStateForWater/


 

The phase diagrams describe the behavior of 

materials with respect of temperature and pressure. 

As we all know the material can be solid, liquid or 

gas phase. There can be several solid phases. 

Thermodynamically it is convenient to use the 

chemical potential (or molar Gibbs energy) to 

describe the phases. The difference of chemical 

potential can be written as (T and P as variables)  

𝑑𝜇 = −𝑆𝑚𝑑𝑇 + 𝑉𝑚𝑑𝑃  

and  

(
𝜕𝜇

𝜕𝑇
)

𝑃
= 𝑆𝑚     and   (

𝜕𝜇

𝜕𝑃
)

𝑇
= 𝑉𝑚     

The entropy and volume are always positive. If the 

pressure changes are small the 𝜇 decrease with T. 

The entropy of different phases increases  

𝑆𝑚
𝑔𝑎𝑠

>  𝑆𝑚
𝑙𝑖𝑞

>  𝑆𝑚
𝑠𝑜𝑙𝑖𝑑  

(The slopes in figure 8.1)  Fig 8.1. Tm is the melting temperature and 

Tb boiling temp.  

 

The pressure effect can be described easily. Typically, the   𝑉𝑚
𝑔𝑎𝑠

≫  𝑉𝑚
𝑙𝑖𝑞

≈  𝑉𝑚
𝑠𝑜𝑙𝑖𝑑, so the gas 

chemical potential is sensitive to the pressure change but liquid and solid less. In all cases the 𝜇 will 

increase with the pressure. Below the left figure correspond a case where 𝑉𝑚
𝑙𝑖𝑞

>  𝑉𝑚
𝑠𝑜𝑙𝑖𝑑 and the 

right on the opposite case, 𝑉𝑚
𝑙𝑖𝑞

<  𝑉𝑚
𝑠𝑜𝑙𝑖𝑑. 
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Fig 8.2. the solid lines correspond to pressure P1 and dashed to higher pressure P2. In left figure 

𝑉𝑚
𝑙𝑖𝑞

>  𝑉𝑚
𝑠𝑜𝑙𝑖𝑑 and right 𝑉𝑚

𝑙𝑖𝑞
<  𝑉𝑚

𝑠𝑜𝑙𝑖𝑑 

Note that the boiling temperature always increase with the pressure but the direction of the melting 

temperature depends on the liquid and solid molar volumes. 

 

 

The most convenient way to look the phase changes is to use the P-T phase diagram. It contains a lot 

of information. Typically, the phase changes with increasing temperature goes from solid to liquid 

and then to gas, line a, but also solid to gas transition is possible, line b. A good example of the later 

is CO2 at normal pressure.  When increasing pressure, we can also see gas-liquid-solid transition, 

line c. The case near the critical point is interesting. Cooling the gas below the critical point is will 

liquefy normally, line d but we can go around the critical point along the blue line. We end up to a 

liquid but without any clear phase transition.  
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The evaporation temperature dependence of pressure is rather large but the melting temperature 

do not change much (very steep slope). The slope can be positive or negative. For water it is 

negative so with increasing pressure the melting temperature decrease. (That’s why we can skate 

and ski.)  The triple point is a unique P-T point where the gas, liquid and solid coexist. In Table 8.2 

here are several parameters of different substances 



One need to note that the liquid and gas coexist. 

At low temperatures, the gas density is very low 

but near the critical point the gas and liquid 

densities approach each other.  

 

 

When a phase transition happens, some enthalpy 

is consumed. In evaporation this is called heat of 

evaporation Δ𝐻𝑣𝑎𝑝  and in melting heat of fusion  

Δ𝐻𝑓𝑢𝑠. It is easy to have phase mixing at the 

melting and evaporation temperatures. Good 

example is water-ice mixture.  We can add quite 

a lot of heat to water-ice mixture before the ice 

melts.  

 

 

 

 

 

The phase diagrams can be very complex. Water is an excellent example. It has 11 know phases of 

ice. At extremely high pressures we can have ice(VII) at 600 K! See some other examples in the book.  



 

Phase diagramm of sulphur. It will have three triple points (three phase coexistent points) at 95.1 C, 

5.1x10-6 atm,  at 115.2 C, 3.2x10-5 atm,  and at 153 C, 1420 atm.   
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An alternative way to look the phase changes is to use 

the P-V phase diagram. The P-V diagram is particularly 

handy for phase coexistence. On the right there is a 

phase diagram of substance which 𝑉𝑚
𝑙𝑖𝑞

>  𝑉𝑚
𝑠𝑜𝑙𝑖𝑑 . If we 

follow the constant pressure line a, there is first solid, 

then solid-liquid coexist up to volume 𝑉𝑚
𝑙𝑖𝑞

, the starting 

volume for the coexist is 𝑉𝑚
𝑠𝑜𝑙𝑖𝑑. Then liquid, then 

liquid-gas and finally just gas.  

Illustration of the liquid-gas coexist.  

 

The red line c is constant volume pressure line. At high pressure the system is in solid+gas phase 

then it reach to liquid+gas phase and finally to gas.   

In P-T diagram you do not see the phase coexist since the pressure and temperature do not change. 

(Think of ice in water glass.) Finally, we can use the P-V-T diagram. It is very complex, but it is the 

most complete picture of the phases.  

In the lecture I try to explain this a bit better.    

Take a look of the a to f line. It corresponds to the f line in PT diagram and the a line we just 

discussed.  
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The Clapeyron equation is a useful way to estimate the slopes in the P-T diagrams. At phase 

transition the 𝜇𝛼(𝑃, 𝑇) = 𝜇𝛽(𝑃, 𝑇)  and small variations in P and T have to keep the chemical 

potentials equal 𝜇𝛼(𝑃, 𝑇) + 𝑑𝜇𝛼 = 𝜇𝛽(𝑃, 𝑇) + 𝑑𝜇𝛽     =>   𝑑𝜇𝛼 =  𝑑𝜇𝛽  and  𝑑𝜇𝛼 =  −𝑆𝛼,𝑚  𝑑𝑇 +

𝑉𝛼,𝑚𝑑𝑃,  𝜇𝛼 =  −𝑆𝛽,𝑚  𝑑𝑇 + 𝑉𝛽,𝑚𝑑𝑃  =>    (𝑆𝛽,𝑚  − 𝑆𝛼,𝑚  )𝑑𝑇 = (𝑉𝛽,𝑚 − 𝑉𝛼,𝑚)𝑑𝑃   

𝑑𝑃

𝑑𝑇
=

Δ𝑆𝑚

Δ𝑉𝑚
 

Next, we need to find the Δ𝑆𝑚 and  Δ𝑉𝑚. The Δ𝐺𝑓𝑢𝑠𝑖𝑜𝑛 = Δ𝐻𝑓𝑢𝑠𝑖𝑜𝑛 − 𝑇Δ𝑆𝑓𝑢𝑠𝑖𝑜𝑛 = 0  so the entropy 

can be computed form the enthalpy.  

For solid-liquid transition a typical entropy change is 22 J/(K mol) , the volume change is very small, 

for material like Ag, K , AgCl the volume change is around 4*10-6 m3/mol. Water the volume change 

is negative and around -2*10-6 m3/mol.  

Now the dP/dT change is 55 bar/K for Ag etc. and -55 bar/K for water so if we increase the pressure 

by 1 bar the melting temperature increase (or for water decrease)  by 1/55=0.02 K.  



For liquid-gas transition the entropy change is around 90 J/(K mol) and the volume change is much 

larger. In gas the molar volume is 22.4 L/mol so the volume change is ca. 22*10-3 m3/mol. The dP/dT 

change is 0.041 bar/K. Now 1 bar change will change the boiling point ca. 24 K.  

We can also use the Clapeyron equation to estimate the temperature change of the pressure change 

in solid-liquid transition   

∫ 𝑑𝑃

𝑃𝑓

𝑃𝑖

= Δ𝑃 =  ∫
Δ𝑆𝑚

Δ𝑉𝑚
𝑑𝑇 

𝑇𝑓

𝑇𝑖

= ∫
Δ𝐻𝑚

Δ𝑉𝑚

𝑑𝑇

𝑇
  

𝑇𝑓

𝑇𝑖

≈
Δ𝐻𝑚

Δ𝑉𝑚
ln

𝑇𝑓

𝑇𝑖
 

for liquid-gas transition  Δ𝑉𝑚 ≈ 𝑉𝑔𝑎𝑠,𝑚 ad we use the ideal gas law  

d𝑃 =
Δ𝐻𝑚

Δ𝑉𝑚

𝑑𝑇

𝑇
=

Δ𝐻𝑚

Vgas

𝑑𝑇

𝑇
=

PΔ𝐻𝑚

𝑅

𝑑𝑇

𝑇2
    =>  

𝑑𝑃

𝑃
=

Δ𝐻𝑚

𝑅

𝑑𝑇

𝑇2
 

∫
𝑑𝑃

𝑃

𝑃𝑓

𝑃𝑖
=

Δ𝐻𝑚

𝑅
 ∫

𝑑𝑇

𝑇2

𝑇𝑓

𝑇𝑖
  =>  ln

𝑃𝑓

𝑃𝑖
= −

Δ𝐻𝑣𝑎𝑝𝑜𝑟

𝑅
(

1

𝑇𝑓
−

1

𝑇𝑖
)   

so the gas vapor pressure will increase exponentially with temperature.  

 

Vapor pressure depend on applied pressure          Engel & Reid 

chapter 8.7 

read the chapter  
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So far, we have always assumed the surface to be flat. This is not always 

the case. Any system dislike the interphase and the interpahse cause 

energy cost. At contant V and T we can write  

𝑑𝐴 = 𝛾𝑑𝜎 



where A is Helmholtz energy and σ is the change of area (sorry of the notations, A is not surface). For 

a sphere 𝜎 = 4𝜋𝑟2 and 𝑑𝜎 = 8𝜋𝑟𝑑𝑟 the work done in the surface change is 𝛾𝑑𝜎 and we can get the 

force (dw=Fdr) 𝐹 = 8𝜋𝑟𝛾 and now we can compute the pressure in- and outside the bubble.  

𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡 +
𝐹

𝐴
= 𝑃𝑜𝑢𝑡 +

2𝛾

𝑟
 

so the pressure inside the bubble is larger. If the bubble is very large or the 

surface is flat the difference disappears. On the other hand, in very small 

bubbles the effect is big. For water the nm size droplet internal pressure is 2.7 

times the external one. This makes the very small droplets unstable and also 

the droplet forming very difficult.  

The pressure difference also makes foams unstable. There is higher pressure in 

small foam bubbles and if they can get contact to larger ones they will 

disappear. The real mechanisms in the foams are more complex than in 

bubbles since the foam bubbles are not spherical.   

The surface tension also explains the capillarity effect. Water can rice quite 

high in a narrow (glass)tube. The curved surface will cause lower pressure on 

the top of the tube and that is compensated with the weight of the water pillar 

of height h. We assume that water surface is spherical. This assumes that 

water likes the tube material and it wets the glass. If the liquid do not like the 

tube the curvature can be negative and the capillary effect will push the liquid 

down.  This is the case with mercury and glass. (and probably with Teflon and 

water).  

The height of the capillary rise is  

ℎ =
2𝛾

𝜌𝑔𝑟
 

where ρ is the density of the liquid, and g is the gravitational acceleration.  

 

Go through problem 8.4  

 

 

 


