Mathematic of state functions

Engel \& Reid chapter 3.1

The state functions are basically normal functions which depend on the variables P, T, and V. A simple example is the ideal gas law. ONLY two of the variables can be used simultaneously. Like P is defined by T and V.

$$
P=\frac{n R T}{V}
$$

we can take derivatives of P with respect of T or V while keeping the other constant

$$
\left(\frac{\partial P}{\partial T}\right)_{V},\left(\frac{\partial P}{\partial V}\right)_{T}
$$

An important quantity is the change of P with respect of $d T$ and $d V$.

$$
d P=\left(\frac{\partial P}{\partial T}\right)_{V} d T+\left(\frac{\partial P}{\partial V}\right)_{T} d V
$$

We can define isothermal compressibility κ and isobaric volumetric thermal expansion coefficients β as

$$
\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \quad \kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

For ideal gas $\beta=\frac{1}{T}$ and $\kappa=\frac{1}{P}$.
These can be measured experimentally and some values for solid and liquids are listed in Tables 3.1 and 3.2.

With the equation in the book the derivatives in dP can be written as

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{\beta}{\kappa}, \quad\left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{1}{\kappa V}
$$

and

$$
d P=\frac{\beta}{\kappa} d T-\frac{1}{\kappa V} d V \text { or } \Delta P=\int_{T_{i}}^{T_{f}} \frac{\beta}{\kappa} d T-\int_{V_{i}}^{V_{f}} \frac{1}{\kappa V} d V \approx \frac{\beta}{\kappa} \Delta T-\frac{1}{\kappa} \ln \frac{V_{f}}{V_{i}}
$$

Go through example 3.1.

Dependence of U on V and T

The change of U with respect of V and T is

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

The first derivative is the (constant volume) heat capacity

$$
\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}
$$

the second derivative is bit more complicated. It can be written as

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

and for ideal gas this term is $=0$ (use $P=n R T / V$). Clearly for gases the $d T$ term is larger.
integral of dU

$$
\Delta U=\int_{T_{1}}^{T_{2}} C_{V}(T) d T+\int_{V_{1}}^{V_{2}}\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

Note that for ideal gas U depend only on T
For van der Waals gas, $P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}, \quad\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R T}{V-n b}$

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P=\frac{n^{2} a}{V^{2}}
$$

and

$$
\Delta U_{T}=\int_{V_{1}}^{V_{2}}\left(\frac{\partial U}{\partial V}\right)_{T} d V=n^{2} a \int_{V_{1}}^{V_{2}} \frac{d V}{V^{2}}=n^{2} a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)
$$

For the size of the two terms for internal energy of N_{2} go through example 3.5.
The van der Waals parameters for N_{2} are: $b=3.87 * 10^{-5} \mathrm{~m}^{3} / \mathrm{mol}$ and $\mathrm{a}=0.137 \mathrm{~m}^{6} / \mathrm{mol}$. Initial $\mathrm{T}=200$ K and $P=5.0$ bar and final $T=400 \mathrm{~K}$ and $P=20.0$ bar. $n=1$ mol. Now initial $V_{i}=3.28 * 10^{-3} \mathrm{~m}^{3}$ and final $V_{f}=7.88 * 10^{-4} \mathrm{~m}^{3}$ (from the vdW equation, note this is a bit difficult calculation, one need to solve 3'rd order polynome)

$$
C_{v}=\left(22.50-1.187 * 10^{-2} \frac{T}{K}\right) \frac{\mathrm{J}}{K \mathrm{~mol}}
$$

The vdW part $\quad \Delta U_{T}=n^{2} a\left(\frac{1}{V_{i}}-\frac{1}{V_{f}}\right)=-132 \mathrm{~J}=-0.13 \mathrm{~kJ}$
the Cv part : $\int_{T_{1}}^{T_{2}} C_{V}(T) d T=\int_{200}^{400}\left(22.50-1.187 * 10^{-2} \frac{T}{K}\right) d T J=3.79 \mathrm{~kJ}$
The Cv part is much bigger (the numbers in example 3.5 are bit different since Cv approximation is better). One can mostly ignore the $\frac{\partial U}{\partial V}$ part.

Dependence of Enthalpy on T at constant P
 Engel \&

Reid chapter 3.4

The enthalpy can be treated in similar way as U. Here we use the variables T and P

$$
d H=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P
$$

As discussed before

$$
\left(\frac{\partial H}{\partial T}\right)_{P}=C_{P}
$$

and in this system the P is constant so $\mathrm{dP}=0$.

$$
\Delta H=\int_{T_{1}}^{T_{2}} C_{P}(T) d T
$$

Go through example 3.6.
Note that the C_{p} model of graphite is quite complex, but it is needed because the C_{p} is not constant in the range of 300 to 600 K . With constant C_{p} the $\Delta H=30.8 \mathrm{~kJ}$ and with the better model 46.9 kJ . Rather large difference. In most cases the constant Cp model is OK .

Relation of C_{P} and C_{V}
 Engel \& Reid chapter 3.5

We note earlier that for ideal gas the $C_{p}-C_{v}=n R$ but the more general relations if more complex.

$$
C_{P}=C_{V}+T\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{P}=C_{V}+T V \frac{\beta^{2}}{\kappa}
$$

Joule-Thomson experiment

The Joule-Thomson experiment is a convenient way to measure the nonideality of gases. In this experiment gas, originally at P_{1}, V_{1}, T_{1} will be pressed through a porous membrane and at the end the P, T and V are P_{2}, V_{2}, T_{2}. The cylinder is isolated. P_{1} is usually larger than P_{2}. The porous membrane is needed to make the process slow.

The work done is

$$
w=w_{\text {left }}+w_{\text {right }}=-\int_{V_{1}}^{0} P_{1} d V-\int_{0}^{V_{2}} P_{2} d V=P_{1} V_{1}-P_{2} V_{2}
$$

The system is insulated so $\mathrm{q}=0$ and $\Delta U=U_{2}-U_{1}=w=P_{1} V_{1}-P_{2} V_{2}$ this can be rearranged as $U_{1}+P_{1} V_{1}=U_{2}+P_{2} V_{2}=>H_{1}=H_{2}$ so the enthalpy do not change. We are interested of the $\Delta T / \Delta P$. For real gases this is not zero. We can define the Joule-Thomson coefficient as

$$
\mu_{\mathrm{J}-\mathrm{T}}=\left(\frac{\partial T}{\partial P}\right)_{\mathrm{H}}
$$

the coefficient can be positive or negative. See table 3.3. We can also get the enthalpy pressure relation using the J-T coefficient. For isoenthalpic process

$$
\mathrm{dH}=\mathrm{C}_{\mathrm{P}} d T+\left(\frac{\partial H}{\partial P}\right)_{\mathrm{T}} d P=0
$$

and

$$
\mathrm{C}_{\mathrm{P}}\left(\frac{\partial T}{\partial P}\right)_{H}+\left(\frac{\partial H}{\partial P}\right)_{\mathrm{T}}=0 \quad=>\left(\frac{\partial H}{\partial P}\right)_{\mathrm{T}}=-\mathrm{C}_{\mathrm{P}} \mu_{J-T}
$$

TABLE 3.3	Joule-Thomson
Coefficients for Selected	
Substances at 273 K and 1 atm	
Gas	$\mu_{J-T}(\mathrm{~K} / \mathrm{MPa})$
Ar	3.66
$\mathrm{C}_{6} \mathrm{H}_{14}$	-0.39
CH_{4}	4.38
CO_{2}	10.9
H_{2}	-0.34
He^{2}	-0.62
$\mathrm{~N}_{2}$	2.15
Ne	-0.30
NH_{3}	28.2
O_{2}	2.69

Source: Linstrom, P. J., and Mallard, W. G., eds. NIST Chemistry Webbook: NIST Standard Reference Database Number 69. Gaithersburg, MD: National Institute of Standards and Technology. Retrieved from http://webbook.nist.gov.

Q 2013 Pearson Education, Inc

Thermochemistry is an important part of chemistry. It connects the thermodynamics to chemical reactions. Thermochemistry and reaction kinetics are essential tools for understanding the chemical reactions. We will discuss the kinetics later. In any chemical reaction, each compound has well defined enthalpy if the reaction happens in constant pressure.

Example: ammonia forming in gas phase $\quad 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})->\mathrm{NH}_{3}(\mathrm{~g})$

Q 2013 Pearson Education, Inc.

The total reaction enthalpy change is quite small, $-46 \mathrm{~kJ} / \mathrm{mol}$ but it is very difficult to break the N_{2} molecule. In reality, this reaction does not happen in gas phase. It needs some catalyst. The thermochemistry is not restricted to gas phase. The reaction can happen in solution, in solid material or on surface.

When tabulating the reaction enthalpy values the pressure is set to 1 atm, the temperature to $298.15 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and amount of material is 1 mol . This is called the standard enthalpy of reaction, ΔH_{R}^{o}. The reaction enthalpy is the difference of product and reactant enthalpies

$$
\Delta H_{R}^{o}=H_{p r o d}^{o}-H_{r e a c t}^{o}
$$

The reaction enthalpies are very useful quantities but there are so many reactions that they are not convenient to list. We can define standard enthalpy of formation ΔH_{f}^{o}. We choose for 1 mol of pure material at its most stable form the $\Delta H_{f}^{o}=0$. See Tables 4.1 and 4.2.

This needs an example: reaction $\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})->3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
here H_{2} is in it most stable form, so $\Delta H_{f}^{o}\left(H_{2}, g\right)=0$, and $\Delta H_{f}^{o}\left(O_{2}, g\right)=0$ the formation enthalpy of liquid water is

$$
\Delta H_{f}^{o}\left(H_{2} O, l\right)=H_{m}^{o}\left(H_{2} O, l\right)-H_{m}^{o}\left(H_{2}, g\right)-\frac{1}{2} H_{m}^{o}\left(O_{2}, g\right)=-285.8 \mathrm{~kJ} / \mathrm{mol}
$$

and the formation enthalpy of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is

$$
\Delta H_{f}^{o}\left(\mathrm{Fe}_{3} \mathrm{O}_{4}, s\right)=H_{m}^{o}\left(\mathrm{Fe}_{3} \mathrm{O}_{4}, s\right)-H_{m}^{o}(\mathrm{Fe}, \mathrm{~s})-2 H_{m}^{o}\left(\mathrm{O}_{2}, g\right)=-1118.4 \mathrm{~kJ} / \mathrm{mol}
$$

where $H_{m}^{o}(\mathrm{Fe}, \mathrm{s})=0$ and $H_{m}^{o}\left(\mathrm{O}_{2}, g\right)=0$ then $\Delta H_{f}^{o}\left(\mathrm{Fe}_{3} \mathrm{O}_{4}, s\right)=H_{m}^{o}\left(\mathrm{Fe}_{3} \mathrm{O}_{4}, s\right)$.
the reaction enthalpy is

$$
\Delta H_{R}^{o}=4 \Delta H_{f}^{o}\left(H_{2} O, l\right)-\Delta H_{f}^{o}\left(F e_{3} O_{4}, s\right)
$$

Is this positive or negative ? $\left.\left(-4^{*} 285.8+1118.4\right) \mathrm{kJ} / \mathrm{mol}=-24.8 \mathrm{~kJ} / \mathrm{mol}\right)$

In more general reaction

$$
v_{A} A+v_{B} B . . \rightarrow v_{X} X+v_{Y} Y .
$$

the reaction enthalpy is

$$
\Delta H_{R}^{o}=\sum_{i} v_{i} H_{f}^{o}(i), \text { where } \sum_{i} v_{i}=0
$$

we still have quite many enthalpies in the equations above. Note that the molar enthalpies of pure substances in its most stable form to 0 .

See Table 4.1 and 4.2

What is the formation enthalpy of diamond?

Hess's law

Engel \& Reid chapter 4.3

Even most of the pure substances enthalpies are known sometimes it is convenient to use other reaction and their enthalpies

$$
\begin{equation*}
2 \mathrm{C}(\text { graph })+3 \mathrm{H}_{2}(\mathrm{~g})->\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \tag{tot}
\end{equation*}
$$

one can also use the following oxidation reactions

$$
\begin{array}{lll}
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) & ->2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta H_{I}^{o} \\
\mathrm{C}(\mathrm{graph})+\mathrm{O}_{2}(\mathrm{~g}) & ->2 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H_{I I}^{o} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & ->\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta H_{I I I}^{o} \tag{3}
\end{array}
$$

the reaction (tot) can also be written as $2 *(2)-(1)+3 *(3)$
Exercise: From table 4.1 and 4.2 what are the enthalpies $\Delta H_{I}^{o}, \Delta H_{I I}^{o}$ and $\Delta H_{I I I}^{o}$
Go through example 4.1
There is a quiz of this. (What is the OH bond enthalpy of $\mathrm{OH}(\mathrm{g})$?)
The average OH bond enthalpy of water is $463.5 \mathrm{~kJ} / \mathrm{mol}$ and the average bond energy is $461 \mathrm{~kJ} / \mathrm{mol}$.
Why the difference is so small.

© 2013 Pearson Education, Inc.

What are the bond energies of HF, $\mathrm{FF}, \mathrm{HC}, \mathrm{HN}, \mathrm{HO}$ bonds. Is N_{2} more stable than O_{2} ? Note: what is the bond order in N_{2} and O_{2}.

We can estimate the enthalpies from this table but it is better to use the table 4.2 and 4.3 values. They are more accurate.

Temperature dependence of reaction enthalpy
 Engel \& Reid chapter 4.4

The standard conditions are 1 atm pressure and room temperature but how to compute the reaction enthalpies at other temperatures. We can use the heat capacity.

$$
\Delta H_{R}^{o}(T)=\Delta H_{R}^{o}(T=298.15 K)+\int_{T_{1}}^{T} C_{P}\left(T^{\prime}\right) d T^{\prime}
$$

Go through example 4.2
Note that in this example the temperature dependence of heat capacity is taken into account. If this is not known we can assume that the C_{p} is constant (and it is listed in table 4.1 and 4.2).

Calorimeter

Engel \& Reid chapter 4.5

Calorimeter is a device that can be used to determine enthalpies. A simple example is the measurement of dissociation enthalpies of salts. We can add know amount of salt to water and measure the temperature change of the surrounding water. The whole system needs to be thermally insulated from the environment. The top cap of the container is not tight, so the system is in constant pressure (so we measure the enthalpy).

$$
\Delta H=\mathrm{n}_{\mathrm{s}} \Delta H_{\text {react }}+n_{\text {water }} C_{P, m}(\text { wat }) \Delta T+C_{\text {calor }} \Delta T=0
$$

The bomb calorimeter (tight top cap and strong container -> constant V) can be used to measure combustion (=oxidation) internal energies.

$$
\Delta U=\mathrm{n}_{\mathrm{s}} \Delta U_{\text {react }}+n_{\text {water }} C_{V, m}(\text { wat }) \Delta T+C_{\text {calor }} \Delta T=0
$$

Go through example 4.3

We need the heat capacity of the calorimeter. In the process both water and calorimeter will warm up. Any reaction with known reaction enthalpy can be used as reference. Here the is combustion of cyclohexane is used as reference. 0.972 g of c-hex will heat the water 2.98 C . There is 1.812 kg of water and
 $C_{P, m}($ wat $)=75.3 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$. The c-hex combustion energy is $3913 \mathrm{~kJ} / \mathrm{mol}$.

The $C_{\text {calor }}=7.59 \mathrm{~kJ} / \mathrm{K}$
if 0.872 g of benzene will heat the water 2.36 C , what is the combustion energy.
U (benzene) $=-3260 \mathrm{~kJ} / \mathrm{mol}$.
Go through example 4.4
This is like example 4.3. The calorimeter constant is the heat capacity of the calorimeter.

Examples

The combustion enthalpy of benzene is $-3268 \mathrm{~kJ} / \mathrm{mol}$ and for cyclohexane $-3920 \mathrm{~kJ} / \mathrm{mol}$. Why they are different?

Hint: wrote the reaction equations.
There is a quiz of this.
Find from Table 4.2 the combustion enthalpy of ethanol. Why it is smaller than the benzene one?
The density of these liquids is roughly the same (see Table 2.4). Is ethanol less effective fuel than benzene? Make a rough estimate of how many moles there are in 1 L of liquid and multiply this with the combustion enthalpy.

There is a quiz of this.

Sugars are an important energy form for animals. Find the combustion enthalpy of glucose and sucrose. Compare the enthalpy of glucose to hexane.

Fatty acids are long hydrocarbon chains with acid groups. Examples: Palmitate $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{COO}$ - , Behenate $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{COO}$ - and linoleate $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COO}$ -

Why the fatty acids contain more energy than sugars?
Compare the combustion enthalpies of sugars and hydrocarbons. Note: in cells (in body) these molecules are fully oxidated but the reactions are complex (several steps and catalysed by enzymes).

In human the fatty acids can produce ca. 6 time more energy than sugars (per weight).

Chapter 4.6 is not discussed here, but if you have time try to read it.

