

ELEC-A7200 Signals and systems

5 op Fall 2023

General information and course arrangements

Course personnel and prerequisites

- Responsible teacher
 - Riku Jäntti (Riku.Jantti@aalto.fi)
- Exercises
 - Head assistant: Pasi Lassila (Pasi.Lassila@aalto.fi)
 - Student assistants:

Linnea Haapio Stella Levander Milja Harju Jori Laesvuori Sanni Mäkinen Quang Ngo

- Prerequisite information
 - 1st year math (calculus, matrices, basic probability)

Course objectives

- What is covered in the course?
 - basic concepts of signals and systems
 - basic methods of signal and system analysis
 - basics of signal transmission
 - basics of signal measurement
- Where is this information needed?
 - when something is measured
 - when a signal is transmitted
 - when the signals are filtered
 - when the signals are generated
 - when any system is controlled

Course materials

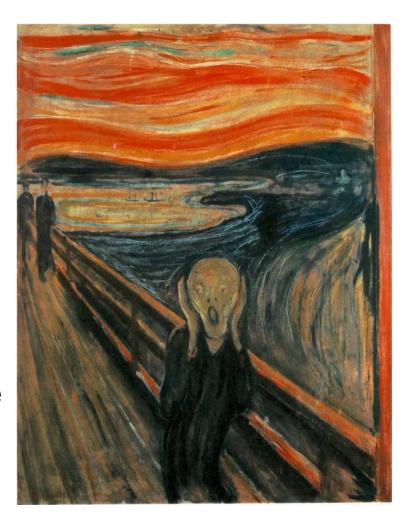
- All study material is in A+ (opens on Mon 4.9.2023)
 https://plus.cs.aalto.fi/elec-a7200/autumn-2023/
 - Lecture videos and slides
 - Lecture handout material and exercises
 - Sketches of model solutions to exercises
- Mycourses
 - General information, announcements
 - Results from midterm exams, normal exams and final assessment

Course language

- Course content in A+, lecture slides and videos in English
- Digital lecture handout without exercises is available as a single pdf file in Finnish in A+ (as reference material with terminology in Finnish)
- In exercises you can get support in Finnish and English
- In all exams you can answer in Finnish, English or Swedish

Teaching events

- Lecture
 - Only this opening lecture!
- Exercises
 - 4 sessions / week
 - Assistants are present to support you in solving the weekly exercises
 - No need to enroll to sessions, you can freely come to any session
- Midterm exams
 - Week 42 (Fri 20.10.2023) and 49 (Fri 8.12.2023)


Course schedule and working methods

- Course schedule
 - Spans 12 weeks and each week corresponds to a chapter in course material in A+
 - Note! Amount of work to complete weekly exercises may vary, i.e., some chapters require more work than others
 - Typical experience is that material during period I is more challenging
- Learning happens (mostly) individually through the lecture videos and studying the material in A+ and solving exercises
- Ideal weekly schedule for a student:
 - Monday/Tuesday: go through the lecture videos associated with the chapter
 - Then start reading the chapter in A+ and solve the exercises to get practice and points
 - Attend exercise sessions to solve exercises together with other students and to get support

How to study?

- The course is demanding!
 - Allow enough time (approx. 10 h /week) for reading, understanding and completing the assignments.
 - As you read the material, try to understand everything!
- If you don't understand, just ask
 - Friends
 - Assistants during exercises
 - Professor
 - in Zulip
- Give feedback also during the course
 - We will try to improve the material based on your feedback

Contents and weekly schedule

- Chapter 01: Introduction Signal Power and Energy (week 36)
- Chapter 02: Special Signals and Convolution (week 37)
- Chapter 03: Signal Space (week 38)
- Chapter 04: The Fourier Series (week 39)
- Chapter 05: Fourier Transform I (week 40)
- Chapter 06: Fourier Transformation II (week 41)
- Midterm exam 1 (week 42)
- Chapter 07: Sampling and Discrete Fourier Transform (week 43)
- Chapter 08: LTI Systems in time domain (and Laplace transform) (week 44)
- Chapter 09: LTI Systems in the frequency domain.(week 45)
- Chapter 10: Linear Filtering of Signals. (week 46)
- Chapter 11: Modulation and Memoryless Nonlinear Systems (week 47)
- Chapter 12: Random Signals (week 48)
- Midterm exam 2 (week 49)

Weekly exercises

MON	TUES	WED	THURS	FRI
	8.15-10.00			
	U5 +			
			14.15-16.00	
			U3 -	
	16.15-18.00		16.15-18.00	
	U351 —		U351	

More about exercises

- Working methods generally
 - Students can freely organize into groups or work individually
 - Can work on any problem in any order
 - Assistants are present to give support
 - Don't be afraid to ask questions!
- Tue 16:15 18:00 session
 - Main assistant (Pasi Lassila) will also be present
 - Idea is to go through briefly the weekly exercises and discuss them
 - Starting week 37! (not yet this week)

Assessment

- You get points from weekly exercises in A+
 - 100 points / week
 - Max points = 1200 + 10 points (from introduction)
- 2 midterm exams
 - Each midterm exam contains 3 problems, each 6p (max 18 points / midterm exam)
 - Max points: $2 \times 18 = 36$ points

•	In the final grade, weekly exercises have weight
	30% and midterm exams have weight 70%

_	Normalized grade (NG) is obtained from your total weekly exercise points (WEP) and
	midterm exam points (MEP) by

$$NG = 0.3 \times (WEP / 1210) + 0.7 \times (MEP / 36)$$

- Final grade (FG) is then given by the table on the right
- Threshold for passing is that NG ≥ 0.4

Normalized grade (NG)	Final grade (FG)
NG < 0.4	0
$0.40 \le NG < 0.52$	1
0.52 ≤ NG < 0.64	2
0.64 ≤ NG < 0.76	3
0.76 ≤ NG < 0.88	4
0.88 ≤ NG ≤ 1	5

Assessment

- If you miss one midterm exam or just want to raise your score, you can do it at any of the retake exams
 - 2 possibilities in a year (29.1.2024 and 25.3.2024)
- Alternatively, you can also substitute both midterm exams by doing the full exam at retake exam dates
 - Retake exam consists of 6 problems, 3 for midterm exam 1 and 3 for midterm exam 2
 - To take the full exam, student solves 5 problems out of 6
 - In this case, max points in computing normalized grade for exams is 30 points (see previous slide)
 - However, if grade is better without exercise points (i.e., 100% weight for exam) then your grade is given by this

Assessment

- Points from exercises and midterm exams are only valid for 1 academic year!
- After 1 year, student can take the full exam which will be evaluated as a standalone activity (100% weight) or enroll again to the course
- In all exams, you can answer in Finnish, English or Swedish