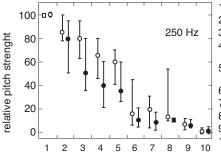


Communication acoustics Ch 10: Basic psychoacoustic quantities

Ville Pulkki and Matti Karjalainen

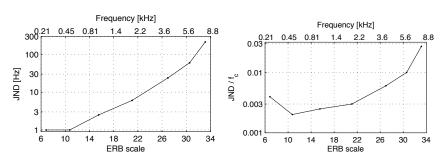
Department of Signal Processing and Acoustics Aalto University, Finland


September 13, 2022

This chapter

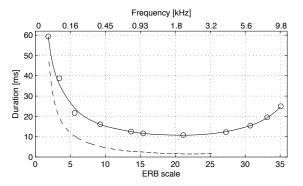
- Pitch
- Loudness
- Timbre
- Duration

Pitch


- "that auditory attribute of sound according to which sounds can be ordered on a scale from low to high" ANSI
- Pitch strength

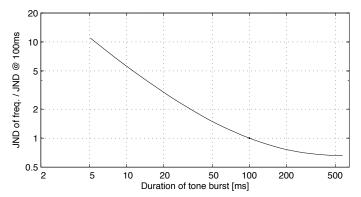
- 1. pure tone
- 2. low-pass harmonic tone (7 harmonics)
- 3. low-pass harmonic tone (all harmonics)
- AM modulated tone
- (mod. freq 250 Hz, $f_0 = 1$ kHz)
- 5. band-pass complex tone (f₀ = 250 Hz, harmonics btw 1 and 3 kHz)
- 6. band-pass noise (200 300 Hz)
- 7. low-pass noise (cutoff 250 Hz)
- 8. comb-filtered noise (delay 4 ms)
- AM modulated noise (mod.freq 250 Hz)
 high-pass noise (cutoff 250 Hz)

JND of pitch

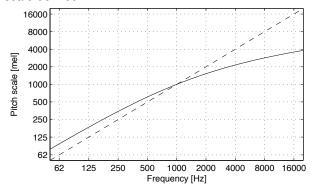

JND of frequency of two successive sinusoids

Adapted from Sek and Moore (1995)

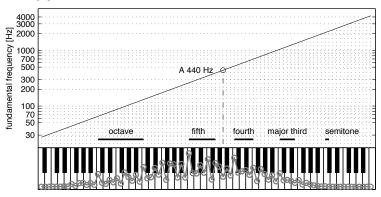
Pitch perception versus duration of sound


- Minimum length required for pitch perception
- Already very short tone bursts lead into perception of pitch

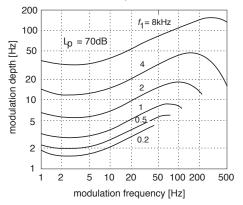
Adapted from Burck et al. (1935)


Pitch perception versus duration of sound

 The accuracy of pitch perception is enhanced during first 200 ms of sound


Mel frequency scale

- 'adjust the pitch of the test tone to be two times higher than the reference tone'
- Mel scale derived


Musical scale

- Musical pitch scale is logarithmic
- (Approximate) frequency ratios: Octave = 2:1, Fifth = 3:2, Fourth 4:3, Third 5:4

Detection of frequency modulation

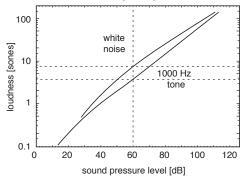
Curves have different carrier frequencies

Adapted from Demany and Semal (1989)

Virtual pitch

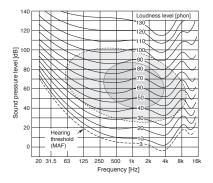
- lacktriangle Although lowest harmonics are missing, a pitch is perceived to f_0
- Compare: telephone band 300Hz + 4kHz, although male voice $f_0 < 100$ Hz

Pitch theories

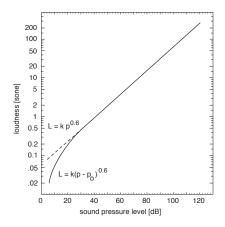

- Peak of activation at basilar membrane?
- Some kind of autocorrelation process after cochlea?
- Pitch theories have been debated for decades
- Neither theory explains fully perceptual phenomena

Loudness

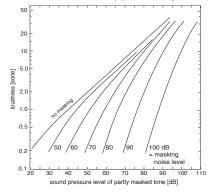
- 'that attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud" ANSI
- One of fundamental quantities in psychoacoustics
- Approach loudness with simple tests, and continue to more complicated ones


Loudness

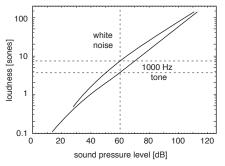
- Task: adjust sound to be 'twice as loud', lots of subjects, repetitions, and SPLs tested
- Define loudness scale with unit [sone]


Loudness level

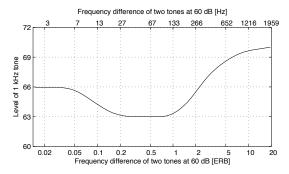
- Loudness level defined with reference values located at 1 kHz with 10 dB spacing in the sound pressure level
- Unit: [phon]


Connection between sound pressure, loudness and loudness level

- N = loudness [sone]
- L_L = loudness level [phon]
- $N = 2^{(L_L-40)/10}$
- $L_{\rm L} = 40 + 10 \log_2(N)$
- $N = k \cdot (p p_0)^{0.6}$
- Doubling loudness in sones means 10phon (= 10dB @ 1kHz) change in loudness level (or SPL)


Loudness of tone in presence of noise

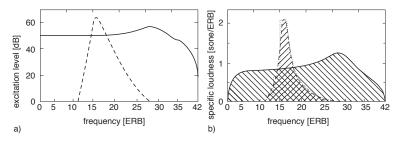
- White noise as masker with different SPLs
- Loudness decreases fast when approaching the masking threshold


Loudness with broad-band signals

- Loudness is often affected, if the spectrum of sound changes and SPL is kept equal
- This was already seen in basic loudness listening test with sinusoids and noise

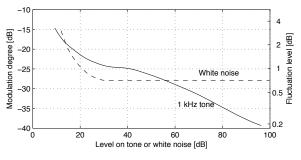
Loudness with two sinusoids

- The level of a reference tone adjusted to match the loudness with a pair of tones
- Frequency difference shown in x-axis

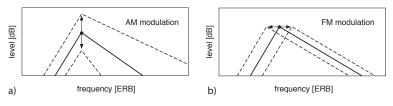


A theoretic view of loudness process

- Input signal S(f) is warped to auditory frequency scale z
- $S'(z) = S[f(z)] \frac{df}{dz}$
- Signal also spreads in frequency due to frequency masking, B(z) is spreading function
- $\blacksquare E(z) = S'(z) \star B(z)$
- Compute specific loudness N'(z), kind of loudness function over frequency
- $N'(z) = c E(z)^{0.23}$
- Integrate over frequency for loudness N
- $N = \int_0^M N'(z) dz$

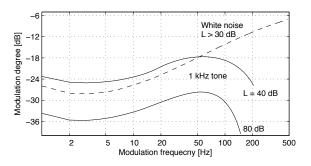

Excitation pattern and specific loudness

- a) excitation patterns. b) Specific loudness.
- (dashed) sinusoid, (continuous) noise

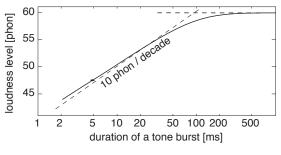

Difference threshold of loudness

- The just noticeable level of amplitude modulation, about 1 dB with noise
- Why 1kHz value decreases continuously? Similar FM-tone JND result did not show this kind of result.

Difference threshold of loudness


- AM causes periodic change of width of excitation pattern, especially at higher levels
- With FM this is not available
- Explains why larger level causes smaller difference thresholds

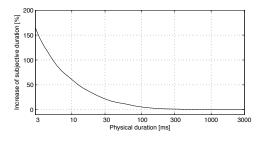
Adapted from Fastl and Zwicker (2007)


JND threshold of amplitude modulation

Curves for tones with two levels and noise

Loudness vs duration of sound

- The dependence of loudness level on duration
- Tone burst with frequency of 2kHz and a sound pressure level of 57dB



Timbre

- When two sounds have the same pitch, loudness, and duration, timbre is what makes one particular sound different from another
- Humans recognize the sound source mostly with timbre
- Closest physical explanation is magnitude spectrum and its variation with time
- Also phase spectrum has an effect
- Complex phenomenon, not well understood or modeled
- Simple specific loudness models explain only steady noise-like sounds

Perceived duration of sound

- 1-kHz tone at an SPL of 60 dB with duration shown in x-axis
- Adjust the duration to "twice" or "half"
- Subjective duration [dura]

References

These slides follow corresponding chapter in: Pulkki, V. and Karjalainen, M. Communication Acoustics: An Introduction to Speech, Audio and Psychoacoustics. John Wiley & Sons, 2015, where also a more complete list of references can be found.

References used in figures:

Burck, W., Kotowski, P., and Lichte, H. (1935) Die horbarkeit von laufzeitdifferenzen. Elek. Nachr.-Techn., 12, 355 362.

Fastl, H. and Stoll, G. (1979) Scaling of pitch strength. Hearing Res., 1(4), 293 301.

Fastl, H. and Zwicker, E. (2007) Psychoacoustics – Facts and Models. Springer.

Sek, A. and Moore, B.C. (1995) Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am., 97, 2479 2486.

Canteretta, E.C. and Fridman, M.P. (eds)(1978) Handbook of Perception. Academic Press.

