Aalto University
School of Electrical
Engineering

Communication acoustics
 Ch 11: Further analysis in hearing

Ville Pulkki and Matti Karjalainen

Department of Signal Processing and Acoustics
Aalto University, Finland
September 23, 2021

This chapter

■ Subcategories of timbre

- Sharpness
- Fluctuation strength
- Impulsiveness
- Roughness
- Tonality
- Sensitivity to magnitude and phase spectra
- Music
- Perceptual organization of sound

Sharpness

■ "How sharp is the sound?"

- Sharpness of narrowband noise (solid line), high-pass filtered noise (upper cutoff is at 10 kHz), and low-pass filtered noise (lower cutoff is at 200 Hz)
■ Unit: [acum]

Adapted from Fastl and Zwicker (2007)

Sharpness, modeling

- Sharpness can be modeled as weighted average of specific loudness (auditory spectrum)

$$
\begin{equation*}
S=0.11 \frac{\int_{0}^{42 \mathrm{ERB}} N^{\prime}(z) g(z) z d z}{\int_{0}^{42 \mathrm{ERB}} N^{\prime}(z) d z}, \tag{1}
\end{equation*}
$$

Fluctuation strength

- Amplitude and frequency modulation of sounds cause perception of "fluctuation"

Adapted from Fastl and Zwicker (2007)

Impulsiveness

- There is no clearly defined psychoacoustic concept of impulsiveness
- Impulsiveness is related to rapid onsets in signal
- If the repetition rate of impulses is $>10-15 \mathrm{~Hz}$, roughness is perceived
- In noise control, impulsiveness is considered to increase hearing damage risk compared to non-impulsive sound of same energy

Roughness

■ Fast (> 15 Hz) modulation is perceived as roughness [asper]

- Addition of two tones of different frequencies creates envelope fluctuation
- Unit of roughness is asper

■ Roughness of 1 kHz tone, $60 \mathrm{~dB}, 100 \%$ AM modulated at 70 Hz equals to 1 asper.

- When the frequency difference increases, tones start to segregate
- When the frequency difference is larger than a critical band, roughness disappears

Roughness

- Roughness for different carrier frequencies as a function of AM modulation frequency with 100% modulation.

Adapted from Fastl and Zwicker (2007)

Tonality

- Tonality (tonalness) = sound exhibits voiced component(s), periodicity
- Non-tonal sound is noise-like, non-periodic
- Do not mix with musical term "tonal"
- Non-tonal (noisy) signal masks a tonal one more easily than vice versa
- Measurement necessary especially in lossy audio coding
- Tonality with varying modal density, log. distribution of frequencies (approx/critical band):
Sounds with N partials per critical band:
$10 / C B \quad 20 / C B \quad 40 / C B \quad 80 / C B$

Sensitivity to magnitude spectrum

- Basic: magnitude spectrum of ear canal signal analyzed by the cochlea
- Complex adaptation processes
- Listeners try to adapt actively to acoustic transmission channel
- Similarly to visual after-effect, a negative picture is seen on black background after looking intesively to an image
- Adaptation in periphery?
- Adaptation in central brain processing?
- Mechanisms are not well known

Sensitivity to phase spectrum

- Noise-like signals: no sensitivity
- Many harmonic signals: no sensitivity

■ Certain "peaky" signals are sensitive

- Vowel voices, trombone, trumpet, sawtooth wave, impulse train

Zero-phase cosine signal

Randomphase version

Sensitivity to phase spectrum

- Effects can not be listened to in rooms
- Room reverberation destroys anyway phase spectrum
- Headphone listening, depends also on phase response of headphones
- Time-domain peaks in signal may lead into "buzzyness"

■ Low-frequency phase alteration changes perceived level of bass, "bassiness"

- Seems to be a distance cue in human localization process

Examples

Sound examples. $f_{0}=100 \mathrm{~Hz}, 100$ partials ($100 \ldots 10000 \mathrm{~Hz}$).

Saw Saw upside down Pulses Random phase

Response of cochlea to sawtooth with phase modifications

■ Sawtooth, Sawtooth time-inverted

Adapted from Laitinen et al. 2013

Response of cochlea to sawtooth with phase modifications

- Random phase, 3kHz sine polarity inverted

Neural firing rate

Time domain

Neural firing rate

Adapted from Laitinen et al. 2013

Consonance and dissonance of harmonic tones

- Roughness due to interaction of partials in a sound contribute to dissonance
- Ratios of small integers are most consonant (just intonation)
- Starting point: Consonance vs. dissonance of two sinusoids

Adapted from Plomp and Levelt (1965)

Consonance and dissonance of harmonic tones

- A harmonic tone contains a number of partials
- If the partials of different tones are too close -> added dissonance

Consonance and dissonance of harmonic tones

Consonance and dissonance of harmonic tones

- Level of consonance depending on separation btw two harmonic tone complexes

Adapted from Plomp and Levelt (1965)

Consonance and dissonance of harmonic tones

- Demos with different intervals

Fifth $3 / 2 \quad$ Fifth $\sqrt[(7 / 12)]{2}$
Dim. fifth $\sqrt[(6 / 12)]{2}$
Fourth 4/3 Fourth 4/3
Third 5/4 Third $\sqrt[(5 / 12)]{2}$

Scales, tuning

- Just intonation, triads tuned as 4:5:6 and octaves 2:1
- Pythagorean scale, greatest number of pure fifths and octaves.
- equal temperament, pure octave is divided into 12 semitones having frequency ratio $\sqrt[12]{2} \approx 1.05946$

Adopted from Rossing et al., 2001

Scales, tuning

	do	re	mi	fa	so	la	ti	do2
Just:	100							200
Pyth:	100							200
Equ:	100							200

Scales, tuning

	do	re	mi	fa	so	la	ti	do2
Just:	100							200
Pyth:	100							200
Equ:	100							200

	do	re	mi	fa	so	la	ti	do2	
Just:	100		125					200	do-mi
Pyth:	100				150			200	do-so
Equ:	100	112.2						200	do-(di)-re

Scales, tuning

	do	re	mi	fa	so	la	ti	do2
Just:	100							200
Pyth:	100							200
Equ:	100							200

	do	re	mi	fa	so	la	ti	do2	
Just:	100		125					200	do-mi
Pyth:	100				150			200	do-so
Equ:	100	112.2						200	do-(di)-re

	do	re	mi	fa	so	la	ti	do2	re2	
Just:	100		125		150			200		do-so
Pyth:	100	112.5			150			200	225	so -re2-re
Equ:	100	112.2	126.0					200		re-(ri)-mi

Scales, tuning

	do	re	mi	fa	so	la	ti	do 2	re2	mi 2	
J	100	112.5	125		150		187.5	200	225		so-ti-re2
P	100	112.5	126.6		150	168.8		200	225	253.2	re-la-mi2
E	100	112.2	126.0	133.5	149.8			200			mi - so

Scales, tuning

	do	re	mi	fa	so	la	ti	do2	re2	mi 2	
J	100	112.5	125		150		187.5	200	225		so-ti-re2
P	100	112.5	126.6		150	168.8		200	225	253.2	re-la-mi2
E	100	112.2	126.0	133.5	149.8			200			mi - so

	do	re	mi	fa	so	la	ti	do 2	re 2	mi 2	
J	100	112.5	125	133.3	150	160	187.5	200	225		do2-la-fa
P	100	112.5	126.6	133.3	150	168.8	189.9	200	225	253.2	mi-ti, do2-fa
E	100	112.2	126.0	133.5	149.8	168.2	188.8	200			so-ti

- Rhythm is a complex concept which refers to different temporal structures in music
- Heart beat, walking
- Some concepts in rhythm
- Note value, length of note in time
- Measure or bar: A rhythmic 'placeholder' which indicates a prototype repeated rhythm in music
- Tempo: The speed of presentation
- Beat: The accenting of specific temporal positions in a bar.
- Not very well understood dimension of music

Perceptual organization of sound

- The hearing mechanism involves certain inborn capabilities to analyse the summed sounds of the auditory environment arriving from multiple sources with or without room reflections and reverberation
- Auditory events are connected to internal representations of sources based on many cues
- Spectral, temporal cues
- Direction, distance cues

Pattern formation

Gestalt laws of grouping

- Principle of proximity.
- Principle of similarity.
- Principle of closure. In the case of a pure tone being interrupted sequentially by bursts of white noise, the human auditory system assumes the pure tone continues uninterrupted during the noise bursts.
- Principle of continuity. For example, the smooth pitch variations and smooth formant changes in speech imply to the listener that the speech originates from the same speaker and is organized into a single stream.
- Principle of common motion. If sensory elements move in the same direction at the same rate, they tend to be grouped as parts of a single stimulus.
- Principle of belongingness.

Sound Streaming and Auditory Scene Analysis

- Formation of melody line
- With slow tempo, notes with very large intervals are bound to single stream
- With fast tempo, several streams are formed with same notes

Demos

Slow tempo Fast tempo

References

These slides follow corresponding chapter in: Pulkki, V. and Karjalainen, M. Communication Acoustics: An Introduction to Speech, Audio and Psychoacoustics. John Wiley \& Sons, 2015, where also a more complete list of references can be found.
References used in figures:
Fastl, H. and Zwicker, E. (2007) Psychoacoustics - Facts and Models. Springer.
Plomp, R. and Levelt, W.J. (1965) Tonal consonance and critical bandwidth. J. Acoust. Soc. Am., 38, 548-560.

Roederer, J.G. (1975) The Physics and Psychophysics of Music: An Introduction. Springer.
Rossing, T.D., Moore, F.R., and Wheeler, P.A. (2001) The Science of Sound, 3rd edn. Addison-Wesley.

