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Speech Technologies

Speech technology covers applications such as the recognition or synthesis of speech, speaker
recognition, and optimized coding and enhancement of speech. Major research efforts have
been invested in speech technology both in academia and in industry, which have led to sev-
eral breakthroughs. After several decades of research, coding, synthesis, and recognition of
speech are used extensively in several applications. The widespread adoption of speech tech-
nologies has been enabled by the advent of sufficiently powerful and relatively inexpensive
digital processors.
Many user interfaces based on speech exist. A computer may take commands by recording

the speech of the user, thus requiring speech recognition abilities, and it may deliver messages
to the user by producing intelligible speech, which requires speech synthesis technology. This
interaction was shown conceptually in Figure I.5 on page 5. In mobile communication, the
goal is often to present speech at as low a bit rate as possible, which has led to many methods
for speech coding, where the special characteristics of speech signals have been taken into
account.
This chapter provides a very brief overview of different technologies in speech coding, syn-

thesis, and recognition. The focus is very much on acoustics, signal processing, and audio, and
the linguistic and statistical aspects are, in many places, treated superficially. Overall, the aim
of this chapter is to give a general description of the main fields in speech technology and to
guide interested readers to more comprehensive sources.
Speech enhancement is a wide area, which covers such topics as error concealment, noise

reduction, bandwidth extension, and echo control in the context of speech communication
(Vary and Martin, 2006). The goal of noise reduction and echo control should be clear to
the reader. Bandwidth extension refers to techniques used to extend the bandwidth of trans-
mitted narrowband speech to deliver better speech quality to the user. Error concealment refers
to applications where the speech decoder is forced to ‘fill in’ missing data from the received
speech signal. For example, when some frames of speech are lost in communication, the con-
tent of missing frames has to be guessed through some intelligent solutions to maximize speech
quality. These techniques are not discussed in detail in this book.
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16.1 Speech Coding
The idea in speech coding is to transmit or store and replay speech signals using minimal
information capacity (number of bits) and with the best possible sound quality. In reality, this
implies optimization, which is a trade-off between quality and cost. For an essentially unre-
stricted channel capacity, the speech signal can be conveyed with such high quality that no
degradation is perceived, and there is no need to further improve quality. The transmission in
this case is said to be transparent. Unfortunately, digital transmission (and storage) of speech
requires, in practice, that the information capacity of the channel is limited. The number of bits
per second to be transmitted, the bit rate, can be reduced by using proper coding techniques –
the proper representation of the speech signal and quantization to a lower rate of bits. In wire-
less speech communication in particular, the channel capacity is limited, and cost vs. quality
optimization is important.
Early analogue telephony transmitted speech as an electrical signal over a wired network.

Although this seems a relatively straightforward approach, the system had some technical
challenges, and seminal psychoacoustic testing was performed to find the smallest frequency
region of speech that would still produce good enough speech quality for the receiver. The first
frequency region suggested for telephones ranged from 250Hz to 2750Hz (Martin, 1930), but
this was later altered to the range between 300Hz and 3400Hz, known as the telephone band.
The telephone band was found to be a good compromise between technical constraints and the
intelligibility of speech, and it is still in use today.
A basic technology for digital speech coding is the standardG.711, where the speech signal in

the telephone band is sampled at 8 kHz using pulse-code modulation (PCM) with logarithmic
quantization using 8 bits (ITU, 1988; Paez and Glisson, 1972). The first version of G.711 was
finalized in 1972, after which it has been used widely in communication networks.
The high levels of a signal are thus represented with larger quantization steps than the lower

levels. Logarithmic quantization generates unacceptable distortion in a music signal. However,
the artefacts are not prominent with speech signals, and logarithmic quantization, in practice,
gives a dynamic range of about 12 bits. Thus, when each sample is quantized using 8 bits, and
sampled at the rate of 8 kHz, the resulting rate of transmission is 64 kbit/s, which is acceptable
in wired communication, but relatively high for wireless telephony.
The demand for further reducing the data rate emerged when the technologies for digital

mobile phones were developed in the 1980s. A more effective speech coding principle was
developed, which takes advantage of the knowledge of speech production mechanisms. In
principle, the method finds the parameters of a simple source–filter model of speech produc-
tion and transmits only the model parameters, possibly with a residual signal not produced
by the model (Kleijn and Paliwal, 1995). The filter parameters are often modelled using linear
predictive coding, and the source is modelled as noise (unvoiced phonation) or an impulse train
(voiced phonation). The linear predictive coding fits an all-pole filter, or an IIR filter, to the
signal, as explained in Section 3.3.5 on page 59, and in parallel to this the parameters of the
source signal are found, such as pitch, gain, and voicing of the excitation. The parameters of
the source and the filter are adapted by measuring how well the system output fits the signal.
The parameters are then transmitted and are used at the receiving site to synthesize speech, as
shown in Figure 16.1.
There are many kinds of speech codecs designed for different purposes, such as the 13-kbit/s

codec with regular pulse excitation with long-term prediction (RPE-LTP) for the first genera-
tion GSM mobile phones (ETSI, 1992). RPE-LTP uses an 8th-order linear prediction filter to
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Figure 16.1 A schematic diagram of speech encoding and decoding. The parameters of the source–
filter model are estimated iteratively, and the residual-error signal can be weighted perceptually to adapt
the system to the most relevant features of speech. The transmitted data consist of filter and source
parameters, and possibly the residual signal as well.

model the formant structure of speech, and a single-tap pitch predictor is used to model the
periodic structure of voiced speech. Speech compression is achieved by 3:1 downsampling of
the residual. Currently, different variants of the code-excited linear prediction (CELP) codec
are used widely. In CELP, the residual signal is not sent as a signal, only a few parameters
describing the residual are transmitted, which gives a significantly better speech quality at
low bit rates. In VoIP applications, the codec commonly used is the conjugate-structure alge-
braic code-excited linear prediction (CS-ACELP) codec specified in standard G.729 (Salami
et al., 1998). The adaptive multi-rate (AMR) codec is commonly used in mobile phones (ETSI,
2011). It was standardized by the European Telecommunications Standards Institute (ETSI) in
1999. It is based on the ACELP technique, and is also able to use in transmission eight different
bit rates ranging from 4.75 kbps up to 12.2 kbps. This enables adaptive allocation of bit stream
resources to maximize the quality of experience.
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The 64-kbit/s data rate obtained with the PCM codec described above can be reduced to
rates of 8–12 kbit/s with parametric coding of speech, which is a tolerable data rate in wireless
communication. The perceptual quality of speech does not drop noticeably when no strong
background sounds are present (Kleijn and Paliwal, 1995).
A trend in speech coding is wideband coding, where ‘wideband’ typically refers to the

acoustic bandwidth from 50Hz to 7000Hz. This bandwidth gives a substantially better speech
quality with ‘brighter’ and ‘fuller’ sound compared to narrowband speech. Wideband coding
requires, naturally, a higher transmission rate than narrowband codecs, and the use of such
codecs is made possible by faster VoIP connections and more powerful mobile networks. In
addition to wideband coding, superwideband, with a 14-kHz bandwidth, and fullband, with a
20-kHz bandwidth, have also been introduced. A review of codecs with these wider frequency
ranges is given by Cox et al. (2009).
Speech transmitted by parametricmethods is rated to be intelligible to a high degree, although

the listeners may characterize it as being a bit ‘synthetic’. Relatively often, the obtained quality
depends on the speaker.With some codecs the quality obtainedwithmale speakers is better than
with females (Vary andMartin, 2006, p. 285). Since the encodermakes a strong assumption that
the encoded sound is a human voice, a natural consequence is that the quality of reproduction
degrades for some other signals, such as with music. This also leads to a situation where, in
conditions of strong background noise, the encoder may make wrong assumptions with regard
to the parameters of the source–filter model, and the speech reproduced may turn out to be
unintelligible. However, some codecs are designed to use source–filter models of speech only
when the sound evidently is speech; the codec changes the mode of operation to coding of a
waveform if the input signal is not single-source speech (Neuendorf et al., 2013).
Speech coding methods thus use the principle behind the vocoder (short for voice encoder),

which was developed in the 1930s (Dudley, 1940). In the original implementation, the input
speech signal was passed through a filter bank, and the signal in each band was passed through
an envelope follower. The control signals from the envelope followers was communicated to
the decoder. The decoder applied these (amplitude) control signals to corresponding filters in
the synthesizer. Since the control signals changed only slowly compared to the original speech
waveform, the bandwidth required to transmit speech was reduced, and the parameters could
be modelled statistically. Nowadays, the term vocoder is used to mean the principle where
speech is dissolved into relatively simple parameters, and synthesized back to a perceptually
similar speech signal.

16.2 Text-to-Speech Synthesis
Synthetic speech, in the sense of artificially created speech signals, has a relatively long his-
tory, including the acoustic–mechanical speech production by Kratzenstein and Von Kempelen
(Schroeder, 1993) in the late 18th century, a mechanically controlled electronic synthesizer
called the Voder by Dudley in 1939, and more advanced electronic synthesizers since the
1950s (Karjalainen and Laine, 1977; Karjalainen et al., 1980; Klatt, 1987; Schroeder, 1993).
These electronic models of human voice generation then evolved to be controlled by computer,
enabling intelligible text-to-speech synthesis.
The main principle of speech synthesis is to use a signal model of speech production, such as

the source–filter method discussed in the previous section, and to control the parameters of the
model to create speech, realizing the text input of the system as understandable and providing
as natural speech as possible. The success of the source–filter approach, or vocoder approach,
in speech synthesis proves that good-quality speech can be synthesized if the parameters are
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derived from natural speech. Unfortunately, deriving the parameters from text input is far from
an easy task, as will be shown below.
This section first reviews the early knowledge-based synthesis methods, where complex rule-

based systems were built for speech synthesis. Although such methods have been abandoned,
they might still be of interest for historical and educational purposes, and for this reason they
are discussed here.
Data-based synthesis methods have largely been adopted in academia and in industry since

the 1990s. The increase in power and resources of computer technology has enabled the
building of natural-sounding synthetic voices based on the utilization of large, single-speaker
databases of natural speech (Zen et al., 2009). In contrast to knowledge-based synthesis, each
phonetic unit need not be crafted for each applicable context anymore, but the information in
the database is used to train the system on how to produce correct-sounding speech.
Data-based methods can be divided into two subclasses: unit-selection synthesis and statisti-

cal parametric synthesis. Unit selection synthesis does not perform actual ‘synthesis’ of sound,
but the output signal is composed of audio samples taken from the database (Beutnagel et al.,
1999). Statistical parametric synthesis, on the other hand, synthesizes the speech signal using a
model, the parameters of which are controlled using a system trained with real speech samples.

16.2.1 Early Knowledge-Based Text-to-Speech (TTS) Synthesis

The source–filter signal models of human voice were discussed in Section 5.3 on page 90. In
principle, any static voice produced by the human speech organs can be produced with such
source–filter models. The goal of text-to-speech synthesis is actually much more complicated,
as the system should be able to produce words, sentences, and complete utterances that are
not only intelligible, but also indistinguishable from human speech in the ears of a listener.
The first efforts to synthesize speech created sets of rules on how to go from text to control
parameters of the signal model of voice and finally to intelligible speech.
An overall structure of knowledge-based text-to-speech synthesis is characterized in

Figure 16.2. The first phase is to read text in and parse it into an internal representation in
terms of phonetics and linguistics of the language to be synthesized. Various methods are
applied here depending on the complexity and degree of linguistic processing. A simple case
might have only text normalization, such as expanding abbreviations, numbers, and possibly
some application-specific rules. Letter-to-phoneme mapping is always needed, which is sim-
ple in some languages (Finnish is an example) and complex in others (like English or French).

Text reading
and parsing

Speech signal
synthesis

• Text normalization
• Application-specific rules
• Letter-to-sound mapping
• Logic rules
• Morphosyntactic analysis

• Prosody generation
• Phone parameterization
• Trajectory generation
• Signal synthesis

 Phonetic and
    linguistic
representation

Text Speech

Natural language processing Signal processing

Figure 16.2 A general description of knowledge-based text-to-speech synthesis (TTS).
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In a more advanced case, the parsing may include morphological and syntactic analysis of the
language being synthesized. These functions are examples of natural language processing.
The second phase of knowledge-based text-to-speech synthesis, depicted in Figure 16.2,

converts the phonetic and linguistic representation to a speech signal. This part, consisting
largely of signal processing, gives a parameterized representation of the phonemes (phones)
and attaches prosodic features to them. Continuous-time parameters are produced which con-
trol the final speech signal synthesis that may be based on any synthesis model, such as those
discussed in Section 5.3.
Figure 16.3 illustrates an example of the organization of the synthesis, and shows the multi-

level structure of information and data in speech generation. In this specific case, the linguistic
pre-processing is simple, resulting in a phoneme string representation using letter-to-phoneme
rules. The linguistic analysis also contains a simple analysis of the syllabic and sentence struc-
ture of the message. Based on these representations, the synthesis process proceeds to prosodic
feature and segmental parameter computation for the segments of the phonemes. The next step
is to convert the segmental parameters into continuous-time trajectories for synthesis model
control.
The largest problem with rule-based text-to-speech synthesizers is the quality of speech.

When unlimited text is automatically transformed into speech, the synthesized speech almost
always sounds ‘robotic’ and is barely intelligible. These methods have been largely abandoned
after the introduction of data-based speech synthesis, which will be discussed below. However,
in some special cases, knowledge-based speech synthesizers have their uses. For example, in a
situation where data-based speech synthesis would require far more computational power than
is available and where a lower quality of speech could be tolerated, the rule-based solutions
could still be used.

16.2.2 Unit-Selection Synthesis

A database consisting typically of tens of hours of recorded speech has first to be created for
unit-selection synthesis. During the creation of the database, each recorded utterance is seg-
mented into some or all of the following: individual phones, diphones, half-phones, syllables,
morphemes, words, phrases, and sentences. The segmentation can be done using automatic
systems, although often the segments have to be manually fine-tuned.
The units in the speech database are then indexed, and the segments are associated with

both phonetic and prosodic information. The phonetic information labels the phone and also
describes its phonetic context as the position of the phone in the syllable, word, and sentence.
The prosodic parameters are then the acoustic parameters analysed from the phone, such as
the fundamental frequency (pitch), voicing, and spectral structure. The prosodic context then
describes the prosodic parameters in neighbouring segments.
At run time, the text to be synthesized is given, and a set of required units is formed based

on the text. The desired target utterance is created by determining the best chain of candidate
units from the database, which is the unit selection process. An important concept is the tar-
get cost, which measures how well a candidate unit from the database matches the required
unit. It is basically a distance measure. Similarly, the concatenation cost defines how well two
units combine when presented successively. This evaluation can be performed using a specially
weighted decision tree, where the cost is to be minimized. The best-matching units are then
concatenated, as shown in Figure 16.4.
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Figure 16.3 Knowledge-based text-to-speech synthesis (TTS) as multi-level information processing.

When designing an implementation of unit-selection synthesis, the size of the units may be
set to be shorter or longer. If they are made shorter, more joining points will be available to
select the next unit. Since there are more possibilities to select the joining point, there will
be a smaller concatenation cost, which leads to better quality. However, too short a length for
the units may also cause problems. Kishore and Black (2003) tested the optimal length for the
Hindi language, and the best result was obtained with the unit length equalling that of syllables.
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Figure 16.4 An overview of the general unit-selection scheme. The solid lines represent target costs
and the dashed lines concatenation costs. Adapted from (Zen et al., 2009), and reprinted with permission
from Elsevier.

The units can also be made to have variable lengths, which may at least partly mitigate this
issue (Segi et al., 2004).
In principle, unit selection produces a very natural result, because it does not change

significantly the recorded speech. The output from the best unit-selection systems can be
indistinguishable from real human voices, especially in applications for which the system has
been tuned (Beutnagel et al., 1999). Unfortunately, achieving the most natural results typi-
cally requires unit-selection speech databases to be very large, representing tens of hours of
speech, which can be a limiting factor in some applications. The method does not itself pro-
vide strong means to modify the type of speaker nor to change prosodic features dynamically,
since in principle it is based on the playback of catenated speech samples. Also, the quality
of the system may severely deteriorate if the phonetic and prosodic contexts required in a
sentence are under-represented in a database (Zen et al., 2009), and the errors caused by
mismatches between concatenated phones reduce the intelligibility of speech.

16.2.3 Statistical Parametric Synthesis

Statistical parametric synthesis methods try to utilize the best properties of signal models and
statistical models of natural speech. The source–filter models of speech are often used in sta-
tistical parametric synthesis, and they will be used to illustrate the techniques in this section.
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Figure 16.5 A block diagram of statistical parametric speech synthesis implemented with hidden
Markov models (HMM). Adapted from Zen et al. (2009), and reprinted with permission from Elsevier.

The basic idea behind this type of synthesis does not, in principle, limit the choice of modelling
technique; for example, sinusoidal modelling of speech has also been used in the same con-
text (Erro et al., 2014; Masuko et al., 1996). The driving idea is to derive the parameters for
source–filter synthesis by training the system using large speech databases. The promise is
that the speech synthesized from text should have better quality than with knowledge-based
synthesis, but in addition, the flexibility and adaptivity to modify the characteristics of voice
obtainable with source–filter synthesis should be gained.
A block diagram of the statistical parametric system based on hiddenMarkovmodels (HMM)

is shown in Figure 16.5. Before the training part, a large speech database is collected, where,
again, a data structure of phonemic and prosodic context is associated with each segment of
speech. The size of the speech database is typically much smaller than with unit-selection
synthesis, as, with just one hour of speech data, decent synthesis results can be obtained
(Yamagishi et al., 2009). The structure contains information such as the current phoneme and
its position, adjacent phonemes, the current syllable and its position, adjacent syllables, and
information on nearby syllables. The structure may also contain similar data about words,
phrases, and utterances in the context of each segment.
In the HMM-based speech synthesis framework, each context-dependent phoneme is mod-

elled as a sequence of HMM states (commonly 3 or 5). Each state models the vocoder
parameters using a single Gaussian distribution for each parameter. In the training of the sys-
tem, the principle of the vocoder is utilized: the most suitable parameters for excitation and
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spectral filtering are computed that are assumed to produce an output perceptually similar to
the original segment when applied to the source–filter model in synthesis. This is done by
first decomposing the speech data into vocoder parameters, and then estimating the Gaussian
statistics (mean and variance) of the vocoder parameters and the duration for each state for all
context-dependent phonemes. Using multi-stream HMM training (Gales and Young, 2008),
the system can model the spectrum, excitation, and duration of each segment in a unified
framework.
The parameters utilized in the source and filter depend on their actual implementation. For

example, the spectral parameters may be represented as mel frequency cepstral coefficients
(Fukada et al., 1992) or as line spectral frequencies (Soong and Juang, 1984), and the fun-
damental frequency of the voiced excitation is often presented as the logarithm of f0. The
computation of mel cepstra was discussed in Section 13.1.1. The logarithm of f0, in turn, corre-
sponds to the frequency scale used in music (see Section 11.6.2). Commonly, a simple impulse
train is used for exciting voiced speech, but the waveform of a voiced glottal excitation, inverse
filtered from natural speech, may also be used to improve naturalness (Raitio et al., 2011).
The STRAIGHT method is nowadays commonly used as a speech vocoder (Kawahara, 2006),
and in other speech processing besides data-based speech synthesis. In STRAIGHT synthesis,
the source signal is generated using mixed excitation consisting of impulses and a noise com-
ponent acting as the aperiodic component of voiced speech. Finally, the pitch-synchronous
overlap add (PSOLA) method (Moulines and Charpentier, 1990) is used to reconstruct the
excitation signal, which is then applied to excite the filter.
The synthesis part performs an operation that resembles the inverse of speech recognition

(Zen et al., 2009). A given word sequence is first converted into a sequence of context-
dependent labels. After this, the HMM of an utterance is constructed by concatenating the
context-dependent HMMs following the label sequence. Then, smooth sequences of spectral
and excitation parameters are generated from the utterance HMMs using the mean and vari-
ance values of each state. Finally, a speech signal is synthesized using excitation generation
and a speech synthesis filter.
With regard to the quality of speech obtained with statistical parametric synthesis, Zen

et al. (2009) conclude with the words, ‘Although even the proponents of statistical paramet-
ric synthesis feel that the best examples of unit-selection synthesis are better than the best
examples of statistical parametric synthesis, overall it appears that the quality of statistical
parametric synthesis has already reached a level where it can stand in its own right.’ The
speech quality obtained with statistical parametric synthesis is thus not on the same level
with unit-selection synthesis, but better quality is obtained than with knowledge-based speech
synthesis.
One benefit of statistical parametric synthesis is that the source–filter-type synthesis of

speech signals provides possibilities for changing the characteristics of voice, such as speak-
ing styles and prosodic features, and possibly even provides multilingual support (Zen et al.,
2009). With the unit-selection method, such modifications are a bit complicated, as voice con-
version techniques have to be utilized (Stylianou et al., 1998), which may degrade the quality
of the speech.
However, although understandable speech is obtained with statistical parametric synthesis,

its major drawback is still in the quality of speech. The speech is perceived as less authentic than
with unit-selection synthesis, and several possible factors affecting this and various suggested
refinements are reviewed by Zen et al. (2009).
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16.3 Speech Recognition
The goal of speech recognition (Rabiner and Juang, 1993) is to capture the acoustic human
speech signal and process the spoken language into text. It is one of the biggest challenges in
speech technology. Evolution and culture have built speech into a fast and robust communica-
tion channel over adverse acoustic channels, tolerant to relatively high background noise levels.
Speech is not only a rich container of information added to words and non-speech voices, it also
carries the identity, age, and gender about the speaker and prosodic features carrying emotions
and other meanings. Additionally, the speed of speech may vary substantially, and the vast
number of languages, dialects, and speaking styles and disorders make the problem even more
challenging.
In principle, speech recognizers should simply mimic brain functions to perform the task

as well as humans do. Note that the goal of processing is different in brains and in speech
recognizers. Brains turn speech into neural code and speech recognizers to written text. Speech
recognition conducted by humans is based strongly on the high-level functions of the brain,
such as language, awareness of environment, and assumptions about the content of speech
based on previous utterances. Auditory models and models of the brain are clearly not at the
level where such functions can be emulated. Thus, the most successful speech recognition
techniques are based on generic principles of pattern recognition and data processing.
The complexity of a speech recognition task depends heavily on the definition of the task.

The simplest task is to recognize speech from one known speaker uttering temporally separated
words from a small, known vocabulary. The current methods perform well in such tasks. The
task becomes harder when the vocabulary is made larger or not restricted at all, when words
are not separated by silences, when multi-language speech is allowed, and when the content
of speech is not limited to any specific topic. Even harder tasks are those involving multiple
speakers, and when the level of background noise is high.
The speech recognition process can be divided into different phases. The first phase is to

pre-process the speech signal to remove unnecessary redundancy and to describe the signal
with features. Given the acoustic models of speech sounds, the statistical language models,
and the lexicon of words, the next phase is a pattern recognition task where the decoder turns
the sequence of features directly into the most likely sequence of words in the language.
The most common speech recognition systems are based on HMMs (Rabiner, 1989).

The early techniques in speech recognition were dynamic time warping (Vintsyuk, 1968)
and neural networks (Kohonen, 1988), but they were largely abandoned in the late 1990s.
However, recently, deep neural networks have been proposed for use in speech recognition
(Dahl et al., 2012).
The main parts of a typical speech recognizer are shown in Figure 16.6. The speech input

is turned into feature vector sequences first. After this, the probability of the vectors or vector
sequences belonging to linguistic classes is computed using HMMs. The probability sequences
are then decoded into text using a vocabulary and a model of language. Prior to using the
recognizer, the HMM has to be trained with natural speech, and the vocabulary and model of
language have to be constructed.
Speech recognizers commonly window the input signal at a rate of about 100Hz and utilize

window lengths of about 20ms. The features computed from the signal segment are typically
mel-frequency cepstral coefficients. Differentials between temporally subsequent features are
also commonly utilized and have been found to improve the accuracy of recognition.
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Figure 16.6 A simplified block diagram of speech recognition.

If the recognition task is limited to a small vocabulary and to isolated words, it is possible
to construct separate HMMs for all the different words without sharing parameters between
the models. The number of states in a word HMM is then determined with some heuristics,
such as relating it to the number of phonemes or the average number of observations (Rabiner,
1989). As the size of the vocabulary increases, a word-level approach becomes infeasible due
to the large number of states and parameters. Instead, a small set of segments, such as phones
or diphones, is modelled with unique HMMs. The word models can then be formed by a sim-
ple concatenation of these units. A three-state, left-to-right HMM (Schwartz et al., 1985) is
commonly used for the model of a phoneme.
The sequences of probabilities of phonemes are then turned into written text using knowl-

edge about the language they were spoken in. Some information about the language is already
embedded in the HMMs of the units of speech, either in the form of word models or as the
phone inventory. However, an extensive knowledge of language must be embedded in the rec-
ognizer. Most commonly, the grammatical constraints are learned as statistical dependences
in the context of words from large text databases (Goodman, 2001). When the vocabulary is
small, it may be feasible to make a list of allowed words and define their HMMs. However,
when the size of the vocabulary is larger, acoustically similar words are hard to distinguish dur-
ing recognition. Detecting boundaries of words in continuous speech is also difficult, which
adds to the challenge. It becomes necessary to utilize either task-specific or general constraints
to overcome these problems.
Speech recognition has already been adopted in many applications. For example, some tele-

visions and handheld devices can already be controlled by voice, and telephone customer
services may use speech recognition in automated tasks. Speech recognition is effective in
browsing the contents of spoken speech databases (Chelba et al., 2008). One application that
is also actively being studied is a telephone service that translates the language of a speaker
into another language. Although this service has not yet been achieved, translation in lim-
ited cases has been possible. Optimally, the characteristics of the voice of the original speaker
should be preserved in the translated speech output. The biggest challenges are, however, in
the processing of language, and not in the processing of speech signals.

Summary
Speech coding is perhaps themost mature of the speech technologies. Very good speech quality
can be obtained with low bit rates when signal models of speech production mechanisms are
utilized. The methods are relatively simple, and no large databases are required.
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Speech synthesis and recognition techniques have also been developed fairly extensively.
When compared with speech coding, a clear difference is that the systems must have access
to large databases of natural language and/or speech in order to obtain good results. Speech
synthesis and recognition thus require that the computer has knowledge of the recognized or
synthesized language at some level, something that is not needed in speech coding. The perfor-
mance of the synthesis and recognition techniques is still far from that of human performance,
although multiple commercial applications already exist.

Further Reading
The synthesis and recognition of speech is described in more detail by Huang et al. (2001),
Jurafsky andMartin (2008), and Saon andChien (2012). A public domain toolkit for research in
automatic speech recognition is available, and its documentation also serves as a good expla-
nation of speech recognition (Young et al., 2006). Hidden Markov models are explained in
detail by Gales and Young (2008). The enhancement, coding, and error concealment in speech
transmission are discussed by Vary and Martin (2006), and more information on audio coding
can be found in Chu (2004).
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