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Physics of Sound

Theword sound in English has two confusingly different meanings. It may refer to the physical
phenomenon or to the subjective percept. The old philosophical dilemma ponders, ‘If a tree in
the forest falls down and there is no observer, does it make a sound?’ Based on experimental
evidence and by making a clear distinction between these two meanings, we may say that a
falling tree causes a physical sound event that can be recorded and analysed every time, but it
does not make any sound in the sense of an auditory perception if there is no subject to hear
the event.
In this chapter, we look at the physical side of the concept of sound. Without a physical

basis there can be no sound event; the emergence of sound requires a physical substrate, and
its perception a physiological one. Although complicated in practice, the physics of sound has
a basis that is well formulated mathematically and is thus a widely studied topic in science
and engineering. We do not go deeply into physical acoustics here, but rather we present an
overview of the most basic concepts necessary or helpful to understand communication by
sound and voice. Finding more specialized textbooks and publications is easy, and this chapter
includes references tomany such sources for more information. This overview serves to refresh
the memory of those who have already studied physical acoustics and as a starting point for
those who have not.

2.1 Vibration and Wave Behaviour of Sound
Sound, from a physical point of view, is a wave physically propagating in a medium, usually
air, and in most cases is caused by a vibrating mechanical object. Exceptions can also be found,
such as the electrical discharge of lightning. Some sources of sound waves, interesting within
the scope of this book, are the speech organs of a speaker, the vibrating plates and the air
column of a guitar body, and the diaphragm of a loudspeaker.
Sound radiated frommachines is often considered undesirable sound, noise, that can degrade

the performance of human hearing if it is exposed to too loud a sound and for a long time.
Even not-so-loud sound may be annoying and disturbing, for example while sleeping or when
concentrating on a specific task. On the other hand, noise-like sounds also carry information
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that helps us to orientate and manage our complex environments. It is good to realize that the
energy level of sound is almost always so low that its physical effects can be neglected, but its
effects on humans and animals are the reason we are interested in sound.

2.1.1 From Vibration to Waves

The event that causes a sound or vibration is called excitation or the source. A sound wave
or vibration can propagate in a physical medium, it may be boosted by resonance effects
and attenuate due to losses that transform it into other energy forms (mostly to heat). Sound
waves and vibrations can be explained as an alternation between two forms of energy, potential
energy and kinetic energy, starting from a simple case and approaching a general case of sound
propagation.

2.1.2 A Simple Vibrating System

There are three basic variables that are used to describe the state of a physical particle:

• Position or displacement from a reference position. Let us denote this by y.
• Velocity, the time derivative of position or the ratio of the difference in position and interval
in time t in which the change in position occurs, v = dy/dt = ẏ.

• Acceleration, the time derivative of velocity or the second derivative of position, a = dv/dt =
d2y/dt2 = ÿ.

Note that for a particle of non-zero mass and size, there are three rotational variables that may
be important in some other contexts.
A mass (Figure 2.1a) and a spring (Figure 2.1b) can be combined to make the simplest

possible vibrating system, as shown in Figure 2.1d. The force acting on the mass due to
acceleration is

F = ma = mÿ, (2.1)

where F is force [kg m/s2] = [N, Newton], m is mass [kg] and a is acceleration, showing the
linear dependence of force and acceleration. For an ideal spring we can write

F = −Ky, (2.2)
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Figure 2.1 (a) A mass, (b) a spring, (c) a dashpot, (d) a mass–spring system and (e) a damped mass–
spring system.
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where K is the spring constant [N/m] and y is the displacement from the equilibrium posi-
tion when the force is zero. Figure 2.1c shows a dashpot that represents energy losses in
a vibrating system, typically converting energy to heat, which, in an ideal case, can be
expressed as

F = −Rv = −Rẏ. (2.3)

Here, R is a coefficient that relates force F and velocity v linearly. This linear relation does not
hold, for example, in the case of mechanical friction.
Figure 2.1e represents a simple vibrating system with a damping element. Assuming that

there are no external forces acting on the system, we can write

mÿ + Rẏ + Ky = 0 (2.4)

since the sum of the forces must be zero. If there are no losses (R = 0) and the mass is initially
displaced by y = A, the system starts to vibrate according to the expression

y(t) = A cosω0t = A cos 2π frest, (2.5)

where the maximum displacement A is called the amplitude, fres is the frequency (characteris-
tic frequency, resonance frequency, eigenfrequency), and ω0 = 2π fres is the corresponding
angular frequency of vibration. Curve a) in Figure 2.2 characterizes the oscillation of
Equation (2.5). If the initial state is zero displacement but non-zero velocity, the equation
has function sinω0t instead of cosω0t. In either case, such a vibration is called a sinusoidal
oscillation.
The eigenfrequency of a mass–spring system can be computed from its parameters:

fres =
1
2π

√
K
m
. (2.6)

For any periodic oscillation the relation between frequency f [Hz, hertz] and period T [s,
seconds], for the duration of one oscillation, is

f = 1/T . (2.7)
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Figure 2.2 The displacement of a simple mass–spring system as a function of time for (a) the lossless
case and (b) the lossy (damped) case.
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Figure 2.3 The resonance phenomenon in a mass–spring system. If the upper end of the string is
moved sinusoidally (excitation), the movement of the mass (response) is increased around the resonance
frequency (eigenfrequency).

In practice, losses damp the oscillation of real mass–spring systems, as a result of which the
amplitude of the oscillation decreases exponentially in time as

y(t) = Ae−αt cos(ωdt + φ) = A(t) cos(ψ(t)), (2.8)

where α is a damping coefficient and ωd is the angular frequency of the damped oscillation.
A(t) is the amplitude envelope and ψ(t) the instantaneous phase. The damped oscillation is
characterized by curve b) in Figure 2.2. Losses often mean energy conversion to heat, but the
energy may also be transferred to another kind of oscillation, such as electrical vibration (see
Section 4.1).
Mechanical vibration is typically the source of acoustic waves, and the radiation of sound

also drains some of the energy from the mechanical vibration system.

2.1.3 Resonance

The simple mass–spring combination oscillates most easily at its eigenfrequency given in
Equation (2.6) or in its vicinity. If the mass–spring damping system of Figure 2.3 is excited by a
constant-amplitude sinusoidal movement at different frequencies at the top end of the spring,
the response – the amplitude of the mass oscillation – follows the resonator response curve
also shown in the figure. When the vibration frequency is near fres, we say that the system is
in resonance or that it resonates. Such a system is called a resonator.
Resonance is a phenomenon found frequently in physical systems. It may be desired, undesir-

able, or even harmful, depending on the case. If the radiation of sound of a musical instrument
is too weak, then building a body or sound board with stronger resonances may help to increase
the loudness of the sound source. At the same time, the resonance colours the sound which, if
properly designed, can make it more appealing. On the other hand, resonances may amplify
noise or even cause a machine to malfunction due to strong resonant behaviour. In such a case,
damping helps to reduce undesired or dangerous vibration or harmful noise.
A simple but important type of resonator in acoustics is the Helmholtz resonator, which

is shown in Figure 2.4. The air inside a closed volume V , due to its compressibility, acts as
a mechanical spring, and the moving air in the tube or opening above behaves like a mass.
Together they make a mass–spring system that works as an acoustic resonator. For instance,
by properly blowing into the opening of an empty bottle, this effect can be easily demonstrated.
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Figure 2.4 Helmholtz resonator: (a) principle of structure and (b) response (e.g., pressure variation in
the bottle) as a function of frequency due to (external pressure) excitation.
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Figure 2.5 (a and b) Longitudinal and (c and d) transversal (vertical) vibration modes in a spring-
coupled, two-mass system.

The principle of Helmholtz resonance takes different shapes. The body of the violin or the
guitar is a good example where the air hole(s) and the body result in the lowest resonance
frequency of the instrument. A bass-reflex type of loudspeaker enclosure adds a desired boost
to the low-frequency response of the loudspeaker (see Section 4.1.1). The interior of a car
cabin, when a window is slightly opened while driving fast, may strongly amplify turbulent
noise at low or very low (infrasound) frequencies.

2.1.4 Complex Mass–Spring Systems

When several masses are coupled through springs, the resulting system shows more compli-
cated oscillatory behaviour. Figures 2.5a and 2.5b illustrate a case where two masses, coupled
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together by springs and attached to a fixed (non-movable) support, vibrate in the horizontal
direction. Such movement is called longitudinal vibration. The case of the same two spring-
coupled masses now moving in the vertical direction is depicted in Figures 2.5c and 2.5d.
The movement occurs perpendicular to the coupling spring direction and is called transversal
vibration.
In both cases each mass shows one degree of freedom to vibrate. If not limited to move

in some direction, each mass can move in three dimensions, thus exhibiting three degrees of
freedom (independent components of vibration).
If we expand the system to include three masses, we will have longitudinal vibrations as

shown in Figure 2.6a–c, or the vertical vibrations of Figure 2.6d–f.

2.1.5 Modal Behaviour

Since masses coupled through springs cannot vibrate independently, the resonance behaviour
of such systems is more complex than in the case of the simple mass–spring system of
Figure 2.3.
Figures 2.5 and 2.6 characterize vibration patterns that are called normal modes or eigen-

modes, or simplymodes. At and near a mode frequency (= resonance frequency), the vibration
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Figure 2.6 (a–c) Longitudinal and (d–f) transversal vibration modes in a three-mass system.
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response grows in amplitude when the system is excited, say, by moving one of the terminal
supports.
Such modal behaviour is characteristic of simple and complex resonators. As will be

explained below, for example the string, the air column, the membrane of a musical instrument,
or the human vocal tract show a multitude of mode frequencies. Three-dimensional systems,
such as rooms and concert halls, show the same kind of modal behaviour.
Modal frequency vibrations, such as those characterized in Figures 2.5 and 2.6, are only

a small subset of possible vibrations in these systems. The special role of modes is that all
other vibrations can be expressed as linear combinations of the modes, or, in other words, as
movements where the modal oscillations at each point are each summed together with proper
amplitude scaling.
The infinitely growing complexity of mass–spring systems is understood when analysing

the behaviour of a vibrating string, such as the guitar string, supported at both ends. Figure 2.7
illustrates the eight lowest modes of such a string. We can consider the string as a continuum
of infinitely small masses and springs. This means that, in theory, there are infinitely many
modal frequencies (see also Sections 2.3 and 2.4.4).

2.1.6 Waves

In a spatially distributed homogeneous mass–spring medium, a vibratory movement (excita-
tion, source) causes awave to propagate from the source. Figure 2.8a characterizes a transversal
one-dimensional wave starting to propagate from a moving source. The medium may be,
for example, a rope that is moved rapidly up and down by hand. Transversal means that
the movement of the particles in the medium is perpendicular to the direction of the wave
propagation.
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Figure 2.7 The eight lowest resonance modes of a vibrating string. In each mode, the string vibrates
between the ends shown by solid and dashed lines. Nodes are points where the vibration amplitude is zero.
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Figure 2.8 (a) Wave propagation in a continuously distributed mass–spring chain, such as a rope, (b)
the passing of two wave components travelling in opposite directions, and (c) the wave reflection at a
fixed termination.

In Figure 2.8c, the mass–spring medium (such as a rope) is terminated rigidly. The dis-
continuity of the medium causes a reflection of the wave at the termination. As will be
shown below, any discontinuity of the medium can result in full or partial reflection of a
wavefront.
In mathematical terms, a wave in a homogeneous and lossless medium follows a simple rule

called the wave equation:

ÿ = c2y′′. (2.9)

Here y is displacement, c is the velocity of propagation of the wavefront, ÿ is the second
time derivative of displacement equalling ∂2y/∂t2, and y′′ is the second position derivative
of displacement equalling ∂2y/∂x2.
One-dimensional wave propagation, as characterized in Figure 2.8, obeys the general

solution of the wave equation for a wave propagating in a homogeneous medium,

y(t, x) = g1(ct − x) + g2(ct + x), (2.10)

where y is a physical wave variable (such as displacement), c is the propagation velocity of the
wave, t is time, and x is a position coordinate. This equation states that any wave, here y(t, x),
can be expressed as a sum of two waveforms, g1 travelling in the negative x-axis direction and
g2 in the positive x-axis direction. This travelling-wave solution was published by d’Alembert
in 1747.
Figure 2.8b illustrates an interesting case where two waves of the same form but opposite

polarity pass each other in opposite directions. It may first appear illogical that the waves
do not cancel each other totally. Remember, however, that the energy of the waves cannot
disappear; it is just in kinetic form in the middle situation and reappears as potential energy
after passing.
For a periodic waveform, the distance between equal phase points in the wave (for example,

peaks) is called the wavelength. The wavelength λ is related to the frequency f and the wave
propagation velocity c by

λ = c/f (2.11)
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The frequency f in hertz [Hz] is the number of oscillations per second. A more general case,
such as sound propagating in air, is a three-dimensional phenomenon. Concepts related to wave
behaviour are discussed further in Section 2.3.
When a sound wave encounters a discontinuity, such as a new medium, the simple wave

equation, Equation (2.10), for undisturbed propagation of a waveform is not valid anymore.
Often, the case is similar to the one in Figure 2.8c where the termination of a medium causes
reflection of a wave. In this specific case, the displacement is bound to be zero at the termi-
nation, so that the reflecting wave component must be equal to the arriving wave but opposite
in sign.
The vibration modes of the string with a distributed mass–spring in Figure 2.7 can also be

explained through wave propagation and reflection. It can be shown that two sinusoidal wave
components having the same mode frequency but travelling in opposite directions on the string
result in a standing wavewhere no net energy transfer takes place. Each subwave reflects back
from the terminations and the vibratory energy remains ‘in place’. As Figure 2.7 shows, there
are points of maximum vibration as well as points of zero (or minimal) vibration called nodes.

2.2 Acoustic Measures and Quantities
Acoustics is the branch of physics studying mechanical vibrations. Acoustics uses a set of
concepts, variables, quantities, and measures to characterize waves, fields, and signals. Some
of the physical measures and quantities most important in the field of communication acoustics
are mentioned here. Hearing-related concepts are discussed in later chapters.

2.2.1 Sound and Voice as Signals

When the value of a physical variable is registered at a specified spatial point as a function of
time, a signal is obtained. Signals and signal processing discussed in more detail in Chapter 3.
We first need to define some concepts that are needed to characterize sounds as physical

phenomena:

• A pure tone is a sinusoidally varying sound signal, such as the cosine-form vibration of
Equation (2.5) and Figure 2.2a. Thus, it consists only of a single frequency component.
Although generating an ideal pure tone is not possible in practice, it can be approximated
and is a useful abstraction.

• A combination tone consists of a set of pure tones called partials, each having its own
frequency, amplitude, and phase.

• In periodic sound signals, the waveform repeats itself, and the signal consists of partials that
have a harmonic relationship. The lowest frequency is called the fundamental frequency,
often denoted f0. Partials are called harmonics, and their frequencies are integer multiples of
the fundamental, fn = n f0. Most musical instruments in Western music generate harmonic
or almost harmonic signals.

• Non-periodic sounds may consist of discrete frequencies that are not in harmonic relation-
ships or of a continuous distribution of partial frequencies. In the latter case the signal sounds
noise-like.

The ‘strength’ or ‘intensity’ of a signal can be characterized bymanymeasures. For a periodic
signal, such as a sine wave, the maximum value of the waveform, called the amplitude, is often
used. If the signal is not symmetric about the abscissa, the negative peak value may have a
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larger absolute value than the positive and is sometimes used as the amplitude value. Also, if
the average value of a signal is not zero – this is often referred to as the DC value (direct current
value, due to the analogy from electrical engineering) – the amplitude may be expressed as the
maximum deviation from the average (DC) level.
Another common measure is the root mean square or RMS value, also called the effective

value. It is defined, for example, for pressure p(t) as

prms =
1

t2 − t1

√∫ t2

t1
p(t)2 dt, (2.12)

where the time range of integration can be over one period for a periodic signal or a long
enough – ideally infinite – time span for non-periodic signals. For a pure tone (sinusoidal
signal), the peak value p̂ =

√
2 prms.

2.2.2 Sound Pressure

The most important physical measure in acoustics is sound pressure. Pressure, in general, is
the force applied per unit area in a direction perpendicular to the surface of an object. Its unit
is the Pascal [Pa] = [N/m2]. Sound pressure, on the other hand, is the deviation of pressure
from the static pressure in a medium, most often air, due to a sound wave at a specific point in
space. Sound pressure values in air are typically much smaller than the static pressure. Sounds
that human hearing can deal with are within the range of 20 · 10−6 to 50 Pa.
Sound pressure is also an important measure due to the fact that it can be measured easily. A

good condenser microphone (see Section 4.1.2) can transform sound pressure into an electrical
signal (voltage) with high accuracy.

2.2.3 Sound Pressure Level

Because sound pressure varies over a large range in Pascal units, using a logarithmic unit,
the decibel [dB], is more convenient. The ratio of two amplitudes, A1 and A2, in decibels is
computed from

L = 20 log10(A2/A1), (2.13)

and it is used widely in acoustics, electrical engineering, and telecommunications. Some
decibel values that are worth remembering are given in Table 2.1.

Table 2.1 Some values in decibels worth remembering.

Ratio Decibels Ratio Decibels

1/1 0√
2 ≈ 1.41 ≈ 3.01 ≈ 3

√
1/2 ≈ 0.71 ≈ −3.01 ≈ −3

2/1 ≈ 6.02 ≈ 6 1/2 ≈ −6.02 ≈ −6√
10 ≈ 3.16 10

√
1/10 ≈ 0.316 −10

10/1 20 1/10 −20
100/1 40 1/100 −40

1000/1 60 1/1000 −60
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The concept of the decibel in acoustics is used in a special way. If the denominator A1 in
Equation (2.13) is a fixed reference, decibels are then absolute level units. The reference sound
pressure p0 = 20 · 10−6 Pa is used so that the sound pressure level (SPL) Lp [dB] is

Lp = 20 log10(p/p0) (2.14)

This value of p0 is selected so that it roughly corresponds to the threshold of hearing, the
weakest sound that is just audible, at 1 kHz. Human hearing is able to deal with sounds in the
range 0–130 dB, from the threshold of hearing to the threshold of pain (for more details, see
Chapters 7 and 9). SPL values in dB are more convenient to remember than sound pressure
values in Pascals.
SPL values can be converted to sound pressure from the inverse of Equation (2.14):

p = p0 10Lp/20. (2.15)

2.2.4 Sound Power

Sound power P, like physical power in general, is defined in watts [W] as the physical work
done in one second. In acoustics, sound power is considered to be the property of a sound
source radiating energy along with the sound wave it creates.
Only a fraction of the primary power of a sound source is transformed into acoustic power.

The efficiency η of a sound source is

η = Pa/Pm, (2.16)

where Pa is the radiated sound power and Pm is the primary power, such as mechanical or
electrical power.
Sound power can also be expressed using a logarithmic measure. The sound power level LW

in decibels is defined as

LW = 10 log10(P/P0), (2.17)

where P is sound power [W] and P0 is the reference power of 1 ·10−12 W. Note the coefficient
10 for power instead of 20 for pressure. This follows simply by expressing power P in terms
of pressure p, 10 log10(P1/P2) = 10 log10(p

2
1/p

2
2) = 20 log(p1/p2), in Equation (2.14).

2.2.5 Sound Intensity

Sound intensity I [W/m2], as a physical measure, is defined as the sound power through a
unit area, describing the flow of sound energy. Mathematically speaking, it is a vector – it has
magnitude and direction, as will be further discussed in Section 14.4.7. Sound intensity level
LI is defined as

LI = 10 log10(I/I0), (2.18)

where the reference I0 = 1 · 10−12 [W/m2].

2.2.6 Computation with Amplitude and Level Quantities

When two or more sounds contribute to a sound field, they can affect the total field in different
ways. At any single moment in time, the pressure values add up. This linear superposition of
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waves is valid in air at normal sound levels. Non-linearities may appear elsewhere, for example
in sound reproduction systems.
The resulting amplitude or RMS values and level quantities can be categorized as follows:

1. Sound sources are coherent if they or their partials have the same frequencies. Depending
on their phase difference they can:
• add constructively if they have the same phase;
• add destructively if they are in opposite phase; or
• in other cases the result depends on the amplitudes and phases of the components.

2. Sound sources are incoherent if their frequencies do not coincide, in which case the powers
of the signals are summed.

When two coherent signals with the same amplitude A are added constructively, the resulting
signal has the amplitude 2A, which means an increase in level of 20 log10(2A/A) ≈ 6 dB. If
two incoherent signals with the same amplitude are added, the resulting level will increase by
10 log10(2A

2/A2) ≈ 3 dB.
In the general case of incoherent sounds with sound levels L1 and L2, the resulting level,

based on the addition of powers, will be

Ltot = 10 log10

(
P1 + P2
P0

)
= 10 log10

(
10L1/10 + 10L2/10

)
. (2.19)

2.3 Wave Phenomena
Sound waves behave similarly in gases and liquids. Such a medium is called a fluid. In an ideal
fluid, only longitudinal wave propagation is possible, there will be no transversal propagation.
Each medium where sound waves propagate has a characteristic sound velocity. For air, the

most important medium in acoustics, the sound velocity cair depends on temperature:

cair(T) = 331.3 + 0.6T , (2.20)

where T is temperature in ◦C and velocity is in m/s. This approximation of cair is valid for
typical room temperatures.
When a vibrating body generates a sound field in the surrounding fluid, the geometry of

the field depends on the form of the sound source and its size compared to the wavelength.
In practical cases, the sound field is so complex that it cannot be solved analytically and can
only be approximated numerically. With some simplifying assumptions, the characteristics
of a radiated sound field can, in many cases, be understood quite easily. The two simplest
idealizations are spherical and planar wave fields.

2.3.1 Spherical Waves

A pulsating sphere as a sound source emits a spherical wave field that propagates from the
source at the velocity of sound c, as illustrated in Figure 2.9. The sound pressure in the
wave is inversely proportional to the distance r from the mid-point (symmetry point) of the
source,

p(r) ∝ q/r. (2.21)



Physics of Sound 27

c

λ

Figure 2.9 Wave propagation from a spherical, sinusoidally vibrating source. The greyscale outside
the spherical source denotes the pressure of the sound field; a darker colour means a higher value. The
disturbances propagate at the velocity of sound c, and the distance between pressure maxima is the wave
length λ.
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Figure 2.10 Plane wave propagation in a homogeneous tube.

In this formula, q is the volume velocity, a concept defined later. Note that the size of the sphere
does not have an effect on the wave field, although a larger sphere is a more efficient radiator.
As a mathematical idealization, a point source is a useful abstraction.
Any form of sound source that is small in dimension compared to the wavelength and vibrates

quite homogeneously can be approximated as a spherical or point source. Thus, at low frequen-
cies such sources, like typical loudspeakers or human speakers, are practically spherical wave
sources.

2.3.2 Plane Waves and the Wave Field in a Tube

Another important special case of wave fields is a plane wave. A large and homogeneously
vibrating planar surface emits a plane wave. In a lossless medium, the planar wavefront
preserves its waveform (see Figure 2.8) and propagates without attenuation.
In a homogeneous tube, as shown in Figure 2.10, at frequencies where the cross-sectional

dimensions are smaller than the wavelength, only a plane wave can propagate.
Two physical variables are used to fully describe a wave in a tube: sound pressure p and

volume velocity q in m3/s. The volume velocity characterizes the flow of the medium through
a cross-sectional area in unit time. The relation between pressure and volume velocity is

p = Za q, (2.22)
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Figure 2.11 Reflection and transmission of a plane wave at a discontinuity in a tube.

where Za is the acoustic impedance. It can be obtained from the physical properties of the
medium as

Za = ρc/A, (2.23)

where ρ is the density of the medium [kg/m3], c is sound velocity, and A is the cross-sectional
area [m2].
Another related concept is the characteristic impedance Z0, which is an inherent property of

the medium in which the wave is travelling. It is defined as the ratio of pressure and particle
velocity in a plane wave,

Z0 = ρc. (2.24)

If the cross-sectional area or any acoustic parameter of the medium in a tube changes at any
position so that the acoustic impedance Za changes, the simple propagation of a wavefront
is disturbed. At such a discontinuity, an arriving wave is split so that part of it reflects back
and part of it propagates through the discontinuity. In Figure 2.8c, the wave in a rope reflects
back completely due to the fixed termination. In the tube of Figure 2.11, when a plane wave
p+ meets a change in acoustic impedance from Z1 to Z2, the wave component p+r that reflects
back is

p+r = Rp+, (2.25)

and the component p+f that propagates through the junction is

p+f = Tp+ = (1 − R) p+. (2.26)

Here, R is the reflection coefficient

R =
Z2 − Z1
Z2 + Z1

(2.27)

and T = 1 − R is the transmission coefficient. Figure 2.11 also shows a wave p− propagating
to the left and being reflected by the factor −R and transmitted by the factor T = 1 + R. From
Equations (2.25)–(2.27), it can be concluded that if Z1 = Z2, which means that there is a perfect
impedance match, the reflection coefficient R = 0 and no reflection occurs. If impedances Z1
and Z2 are very different (impedance mismatch), a strong reflection occurs.
For a tube terminated in a rigid wall, the impedance of the termination Z2 >> Z1, the

impedance of the tube, which implies from Equation (2.27) that R → 1. When the termination
is an open end, the impedance Z2 is very small (at low frequencies) and R → −1.
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Figure 2.12 The behaviour of the lowest modes in a tube with (a) open ends and (b) one end closed.
The pressure p of each mode is shown as a curve below the tube, and the volume velocity q is shown as
a colouring of the tube, with darker colour shades denoting higher velocity. nmeans a nodal point where
the volume velocity is minimal. Adapted from Rossing et al. (2001).

Table 2.2 The velocity of longitudinal
waves in some media.

Medium Velocity [m/s]

Air (20 ◦C) 343
Helium 970
Water 1410
Steel 5100
Glass 12000–16000

In a tube of finite length, the terminations reflect waves back so that standing waves appear,
resulting in modes and resonance frequencies. Figure 2.12 depicts the lowest modes in a tube
that is left open at both ends and in another tube that is closed at one end. The first case is
approximated, for example, in the flute, generating all harmonics, and the second case in the
clarinet, where (low order) even harmonics are weak due to lack of resonance.

2.3.3 Wave Propagation in Solid Materials

The behaviour of solid matter deviates from that of fluids since transversal (shearing) forces
are possible in solids, which results in the possibility of transversal waves forming in addition
to longitudinal waves. The velocity of longitudinal waves in several media is listed in Table 2.2.
Transversal waves appear, for example, in a string under tension (Figures 2.7 and 2.13) or in

a bar (Figure 2.14). In a non-stiff string (a wire where negligible force is needed to bend it),
the velocity ct of the transversal wave depends on the string tension T in N and mass density
µ in kg/m as

ct =
√

(T/µ). (2.28)
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Figure 2.13 (a) The initial displacement of a string when plucked in the middle and (b) the harmonic
content of the vibration. When the string is plucked asymmetrically (one fifth of L from the end), the
initial displacement is shown in (c) and the harmonic components in (d). Source: Rossing et al. 2001.

Figure 2.13 depicts the behaviour of a string when plucked (a) in the middle and (c) one fifth
of the length of the string from the end. The spectra consist of harmonic components, but with
every Nth harmonic missing for N = L/Lpp, where L is the length of the string and Lpp is the
plucking point distance from the end.
An example of transversal waves that resemble string behaviour but which are not purely

one-dimensional and harmonic in spectral content is wave propagation in a bar. Due to bending
stiffness, the transversal waves are dispersive, implying that different frequencies propagate at
different velocities (higher frequencies propagate faster than lower ones). This results in modal
frequencies that do not have a harmonic relationship. Figure 2.14a illustrates the lowest modes
in a free bar and Figure 2.14b the case where the bar is clamped at one end. The resulting
sounds are strongly inharmonic. Some degree of inharmonicity can also be found in string
instruments, especially in the piano at low frequencies, due to the stiffness of the strings.
Membranes and plates are also often used as sound sources. For example, the membrane

of a drum under tension is a two-dimensional equivalent of the vibrating string. Some of the
lowest modal patterns of a circular membrane are shown in Figure 2.15. The patterns show
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Figure 2.14 Modal patterns and frequencies of a bar: (a) freely vibrating (unsupported) and (b) rigidly
clamped at one end. The nodes of vibration are shown with vertical dashed lines. Adapted from Rossing
et al. (2001).
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Figure 2.15 Modal vibration of a circular membrane supported at the edge: membrane shapes at
moments of maximal displacement (top row) and nodal patterns and corresponding relative resonance
frequencies (two lowest rows). Adapted from Rossing et al. (2001).

different symmetries, both circular and diametral. Once again, the modal frequencies are not
in harmonic relationships, and it is characteristic that the density of mode frequencies increases
towards high frequencies.

2.3.4 Reflection, Absorption, and Refraction

When a wavefront encounters the surface of another medium, such as a hard wall, a fraction of
the wave energy reflects back and the rest propagates into the other medium or transforms into
thermal energy. Figure 2.16 illustrates these phenomena when a plane wave hits a wall with
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Figure 2.16 (a) Reflection of a plane wave at a hard surface, and (b) refraction (bending) of the
wavefront when entering another medium with a different sound velocity.

an incidence angle α1. In an ideal case, the angle of reflection is equal to α1. If the reflecting
surface is not perfectly flat, spreading of the wave in directions around this mirror image angle
will occur (diffuse reflection).
The fraction of sound energy that is not reflected is absorbed from the sound field of the

first medium. The ratio of absorbed energy to the incident energy is called the absorption
coefficient. When the reflection of the wave is described by the coefficient R, as defined in
Equation (2.25), the absorption coefficient a is obtained from the equation

a = 1 − |R|2. (2.29)

Refraction is the phenomenon of the wavefront bending when entering a medium with a
different sound velocity. Figure 2.16b characterizes this when the sound velocity is lower in
the second medium. According to Snell’s law, c1 sinα2 = c2 sinα1, where c1 and c2 are sound
velocities as defined in Figure 2.16b.

2.3.5 Scattering and Diffraction

When a wave interacts with a geometrical discontinuity like a boundary, scattering occurs.
Reflection can be interpreted as the simple case of backscattering from a boundary layer. More
general scattering in acoustics is called diffraction. It is a complex phenomenon that is difficult
to analyse and model. A solid object or its edge acts as a kind of secondary source. Huygens’
principle interprets a wavefront as a set of directed secondary sources that maintains a regular
wave propagation. A geometrical discontinuity disturbs this propagation and makes diffraction
the secondary observable source.
Figure 2.17 shows a typical case where a noise barrier is used to mask noise sources, such as

vehicles on a highway, to decrease disturbance in the environment. At high frequencies, where
the wavelength is small compared to the barrier, shadowing due to the barrier is efficient. At
low frequencies, however, the sound waves propagate around the barrier so that the desired
masking remains relatively small.
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Figure 2.17 Diffraction of sound at the edge of a sound barrier.
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Figure 2.18 Doppler effect (a) when the receiver moves and the source is immobile, (b) when the
receiver is immobile and the source moves.

2.3.6 Doppler Effect

Imagine a free-field condition with a single receiver and a single sound source emitting one
sinusoid with frequency f . If the distance between the source and the receiver diminishes with
time,meaning that the sourcemoves towards the receiver or vice versa, as shown in Figure 2.18,
each successive wave is emitted from a position closer to the receiver than the previous wave.
Therefore, the time between the arrival of successive waves at the observer decreases, causing
an increase in the frequency compared to the static situation.
Conversely, if the wave source moves away from the observer, each wave is emitted from

a position farther from the observer than the previous wave, thus increasing the arrival time
between successive waves and reducing the frequency. The distance between successive wave-
fronts is increased, so the frequency of the sinusoid is lower. This can be observed when
a vehicle producing a harmonic tone (such as an ambulance) passes by at high speed, the
perceived pitch of the tone lowers rapidly when the vehicle goes past the observer. This
phenomenon is called the Doppler effect.
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The frequency of the sinusoid observed by the receiver f can be computed as

f =
(
c + cr
c + cs

)
f0, (2.30)

where the velocity of the receiver is cr, which is positive if the receiver moves towards the
source and negative in the other direction. The velocity of the source is cs, which is positive if
the source moves away from the receiver and negative in the other direction.

2.4 Sound in Closed Spaces: Acoustics of Rooms and Halls
A major part of communication by sound and voice takes place in spaces constrained by walls
or surfaces, such as living rooms, auditoria, offices, concert halls, etc. The surfaces reflect
impinging sound waves, and in a fraction of a second there are thousands of reflections which
result in reverberation that gradually decays. Reflections and reverberation make sound and
voice louder in the more distant parts of the room. They may also render the sound more
‘colourful’ and pleasant if the room has proper acoustics but, on the other hand, may make
it difficult and annoying to communicate if the acoustic properties are not well matched to
the form of communication. Background noise is another common reason for problems in
communication.
In this section, we study the basic physical properties of closed space acoustics – rooms,

auditoria, and concert halls. Subsequent sections will discuss some related aspects, and finally
in Chapter 17 we study the subjective and objective quality factors, especially those related to
performing spaces.

2.4.1 Sound Field in a Room

In a roomwith simple geometry, sound propagation from a source to a receiver (listener) can be
characterized as shown in Figure 2.19. The first wavefront arrives along the direct path (if the
source is visible), and soon after this the first reflections from walls, ceiling, and floor arrive.

Direct path

Early reflections

Figure 2.19 Paths of direct sound and the few first reflections in a rectangular room from a speaker to
a listener, assuming specular reflections from walls.
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Figure 2.20 (a) The different components of an impulse response measured from the source to the
receiver in the case of Figure 2.19, consisting of direct sound, early reflections, diffracted components,
reflection clusters, and reverberation. (b) The impulse response measured with a laser-induced pressure
pulse in a listening room.

If the source sends an impulse-like sound, the response at the point of the receiver is as
depicted in the reflectogram of Figure 2.20. Direct sound is followed by early reflections,
diffracted components, and then by reverberation, where individual reflections may not be
separately visible. Early reflections, for speech up to about 60ms and for music up to about
100ms, increase the loudness of sound. Early reflections also strongly contribute to spatial
perception, such as in the estimation of room size and source distance. Late reverberation, if
too loud, decreases intelligibility of speech or fast passages of music.
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Figure 2.21 Decay of reverberation computed from an impulse response. Due to noise in the measure-
ment, the computed curve does not follow exponential decay. The extrapolated reverberation time T60,
the time taken for the response to decay 60 dB, is approximately 0.4 s.

For comparison with the principle in Figure 2.20a, Figure 2.20b plots a measured impulse
response of a relatively damped listening room. Note that the reflections have the same polarity
as the direct sound, but the diffracted components may have either positive or negative polarity,
depending on the geometry (Svensson et al., 1999). Also, the reverberation has both positive
and negative polarities. This is also shown in the measured impulse response. Measured room
impulse responses can be downloaded, for example, from OpenAIR (2014).

2.4.2 Reverberation

Figure 2.21 plots the decay of the sound pressure level in a room, assuming that a steady-state
sound field of white noise is first injected into the room and then interrupted at moment t0.
The curve is plotted on a logarithmic dB scale against a linear time scale. The decay of the
sound energy is exponential, which is characteristic of many physical resonator systems (see
Equation (2.8)), and corresponds to linear decay on a logarithmic decibel scale.
The single most important parameter describing the acoustics of a room is the reverberation

time. It is defined as the time period T60 during which the sound pressure level decays 60 dB,
and it can be estimated from Sabine’s formula (Sabine, 1922):

T60 = 0.161
V
S
, (2.31)

where V is the volume of the room [m3] and S is the total absorption area of the room surfaces.
There are other formulations, such as Eyring’s formula, that can be more accurate in specific
conditions (Kuttruff, 2000). Notice that in many textbooks symbols S and A are used in roles
opposite to those here. Here, area is A for consistency with other formulas. The absorption area
of room surfaces can be computed from

S =
∑

aiAi (2.32)
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Table 2.3 Absorption coefficients of materials in different frequency bands.

Frequency 125 250 500 1000 2000 4000

Glass window 0.35 0.25 0.18 0.12 0.07 0.04
Painted concrete 0.10 0.05 0.06 0.07 0.09 0.08
Wooden floor 0.15 0.11 0.10 0.07 0.06 0.07

by summing the product of the absorption coefficient a (Equation (2.29)) and the surface area
A in m2 over each surface i. There exist tables giving the absorption coefficient for different
materials as a function of frequency, for example, in octave bands, as shown in Table 2.3. Note
that each person inside a room adds to the absorption area S by approximately 0.5 m2.
Recommendable T60 values are about 2 seconds for a large concert hall, about 1.4 seconds

for a chamber music hall, 0.5–1.0 seconds for a speech auditorium, and about 0.35 seconds
for a listening test room. The acoustic parameters for concert halls and auditoria, and their
measurements, are discussed further in Section 17.9.2.

2.4.3 Sound Pressure Level in a Room

The amplifying effect of reflections and room reverberation can be understood easily by con-
sidering the summation of direct and reverberant sound. The direct sound pressure is inversely
proportional to the distance between source and receiver, as stated in Equation (2.21). The level
of the reverberant field is approximately constant in the whole room, and it can be considered
to be approximately incoherent with the direct sound. Based on the summing of two power
levels, the total sound pressure level Lp in dB will be

Lp = LW + 10 log10

(
Q

4πr2
+
4
S

)
, (2.33)

where LW is the sound power level (Equation (2.17)) of the source in dB,Q is the directivity of
the source, r is the distance of the source from the receiver in metres, and S is the absorption
area in m2 of room surfaces (see Equation (2.32)). The directivity Q of an omnidirectional
source (a source that radiates equally in all directions) is 1.0 and for other sources it can have
larger or smaller values, depending on the direction.
The first term inside the logarithm of Equation (2.33) corresponds to the intensity caused

by the direct sound, it being proportional to directivity and inversely proportional to the
area of a sphere of radius r. The second term corresponds to the reverberant field, which
is inversely proportional to the absorption area of the room. Note that this expression says
that the reverberant field is equal in the whole room. This formula is derived from a statisti-
cal formulation of reverberation and it may not be a valid approximation for complex room
geometries.
Figure 2.22 characterizes the SPL dependency on the distance r separately for direct sound,

reverberant sound, and the total sound level. The direct sound pressure level decreases by 6 dB
for every doubling of the distance. At a certain distance, called the reverberation distance or
the radius of reverberation, the direct and reverberant fields have the same level, and this is
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Figure 2.22 The theoretical behaviour of the sound pressure level in a room for a steady-state sound as
a function of the source–receiver distance due to (a) a direct sound in a free field (solid line), (b) a rever-
berant field (dotted line), and (c) the total sound field (dashed line). The distance rr is the reverberation
distance, and Lr is the sound pressure level caused by the reverberant field.

obtained from Equation (2.33) by equating the two terms inside the logarithm and solving
for rr:

rr =
1
4

√
QS
π

. (2.34)

Beyond the reverberation distance the total field remains approximately constant, so that
the perceived loudness does not essentially decrease, but the sound is perceived to be more
reverberant since the direct sound level decreases.

2.4.4 Modal Behaviour of Sound in a Room

While Figures 2.19 and 2.21 characterize the temporal evolution of a sound field in a room,
another picture is obtained by looking at sound transfer properties in the frequency domain. A
hard-walled room can be understood as a three-dimensional resonator where a large number
of modal frequencies can be found in the audible frequency range. For a rectangular room with
hard walls, the frequencies of normal modes can be computed analytically from

f (nx, ny, nz) =
c
2

√(
nx
Lx

)2

+
(
ny
Ly

)2

+
(
nz
Lz

)2

, (2.35)

where c is the sound velocity; Lx, Ly, and Lz are the dimensions of the room in the three
directions; and integer variables nx, ny, and nz are given all the combinations of the values 0, 1,
2, . . . The lowest modes correspond to plane-wave standing wave resonances between opposite
walls, such as with nx = 1, ny = 0, nz = 0, in Equation (2.35). Cross-modes, such as for nx = 1,
ny = 1, and nz = 1, are not as easy to conceive or visualize.



Physics of Sound 39

0 20 40 60 80 100 120 140
10

20

30

40

50

60

Frequency [Hz]

Le
ve

l [
dB

]

Figure 2.23 Magnitude response measured in a hard-walled room from a source to a receiver. (Below a
strong mode at 39Hz the level of modes is lower due to the roll-off of the loudspeaker response.) Towards
higher frequencies the modes start to overlap more and the field is characterized as diffuse.

The density of modes increases rapidly as a function of frequency, and is proportional to
the square of the frequency. Note that the density of modal frequencies df is approximately
constant for one-dimensional acoustic systems, such as strings (Figure 2.13) and tubes
(Figure 2.12), directly proportional to the frequency (df ∝ f ) for two-dimensional acoustic
systems, such as a membrane (Figure 2.15), and proportional to the square of the frequency
(df ∝ f 2) for three-dimensional acoustic systems, such as rooms.
Figure 2.23 plots the magnitude response measured in a hard-walled room. The magnitude

response (see Section 3.2.5) describes how each frequency component is emphasized or atten-
uated (in dB) when transferred from the source to the receiver. The lowest modes are quite
separate peaks, but at higher frequencies the modes start to overlap and fuse. A transition
frequency between these regions is called the critical frequency fc (Schroeder, 1987), defined as

fc = K
√
T60/V , (2.36)

where K = 2000 . . . 4000, T60 is the reverberation time, and V is the volume of the room.
Above the critical frequency the acoustic field is said to be diffuse. A diffuse field is composed
of a large number of wavefronts travelling in all directions with equal probability, contributing
to the high density of reflections and the high density of modes. Thus, a diffuse field can be
modelled by statistical means, as the group behaviour of modes in the frequency domain and
reflections in the time domain.

2.4.5 Computational Modelling of Closed Space Acoustics

The acoustic behaviour of real rooms, auditoria, and concert halls is very complex. This can
be understood when estimating the possible number of degrees of freedom for vibration in the
sound field. At the highest audible frequencies the wavelength is about 1 cm. Each such cube
has three degrees of freedom to vibrate. Thus, a hall with dimensions 20× 40× 10 metres has
about 3 · 2000 · 4000 · 1000 = 24, 000, 000, 000 degrees of freedom to vibrate! Only for very
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Figure 2.24 The principle of image source modelling. The mirrored rooms surrounding the real room
and the related image sources (i.s.) are computed to find the paths of sound waves arriving at the receiver
point in the real room. Only four first-order reflections are illustrated.

simple geometries, such as a shoebox with hard walls, can the field behaviour be computed by
analytical means.
To meet the needs of computing and designing acoustics for complex spaces, a number of

approximate numerical techniques have been developed. A conceptually simple technique is
based on the image source method. Figure 2.24 illustrates a rectangular room with a source
and a receiver. According to wave reflection laws, as illustrated in Figures 2.16 and 2.19, the
reflections can be modelled as coming from image sources in image rooms. Each reflection
in the real room corresponds to penetrating a wall between image rooms. Each path has an
attenuation due to the 1/r distance law and damping for each reflection, and the wave will
be delayed by the propagation time of the wave from the (image) source to the receiver. The
frequency-domain room response in Figure 2.23 has been computed using the image source
method as applied to a shoe-box-shaped room. If the room is not rectangular, the method can
still be used, although the visibility of each image source has to be validated in each case
(Kristiansen et al., 1993).
Another commonly used numerical computational technique is the ray-tracing method. A

large number of ‘sound rays’, analogous to light rays, are sent from the source in different
directions. Each ray is traced through reflections from surfaces until the energy of the ray is
below a certain threshold. The receiver can be modelled as a volume, such as a sphere or a
cube, and each traced ray that hits it adds to the response record. The ray-tracing technique is
statistical, but if the number of rays is sufficiently large and the receiver is small enough, the
result may yield a good approximation of the room response.
In a roomwith a complex shape, both image-source and ray-tracing methods are problematic

at low frequencies. Features like corners, object edges, and curved surfaces exhibit phenomena,
such as diffraction, that are not easily simulated with these techniques. Different element-based
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techniques are more accurate in such cases. The finite-element method (FEM) (Thompson,
2006; Zienkiewicz and Taylor, 1977) assumes the space is a set of finite-sized elements having
mass, spring, and damping properties. Given the geometry of a room and the sound source(s),
the sound field at any point can be solved.
A variation of the element method is the boundary-element method (BEM) (Gumerov and

Duraiswami, 2005), where only the boundaries of the space are taken into account in the first
phase, and later the sound field at any point in the space can be solved. One more element-
oriented technique is the finite-difference time-domain method (FDTD) (Botteldooren, 1995).
The problemwith all element-based methods is that the number of elements grows very rapidly
when the wavelength of the highest frequency of interest decreases.

Summary
This chapter presented an overview of fundamental concepts in physical acoustics that are
considered important in understanding communication by sound and voice, including the wave
behaviour of sound in a free field, at material boundaries, and in closed spaces. References are
given for further study on these issues, if needed.
While in physical acoustics such properties of sound as spatial distribution, two-way inter-

action between subsystems, energy behaviour, and specific physical variables are important,
in the next chapter we make abstractions that simplify these issues. In a signal processing
approach, we are more interested in looking at sound signals as abstract variables and their
relationships as transfer functions and one-way interactions.

Further Reading
To better understand the general fundamentals of acoustics and wave equations, the reader is
referred to such books as Beranek and Mellow (2012) and Morse and Ingard (1968).
Physical acoustics contains many subfields and requires concepts that are not discussed

above. General linear acoustics deals with sound and vibration in fluids (gases and liquids)
and solid materials with different geometries and structures, assuming that the condition of
linearity (Section 3.2.1) is valid. If an acoustic system is non-linear, it is typically much more
difficult to study. The subfield of non-linear acoustics deals with waves having high pressure
levels, such as shock waves (Pierce, 1989; Raspet, 1997) and cavitation (Lauterborn, 1997).
Among other popular topics in acoustics research are underwater acoustics, also called

hydroacoustics (Crocker, 1997, part IV); ultrasound, which studies sound above normally
audible frequencies (Crocker, 1997, part V); infrasound, which concerns itself with sounds
below normally audible frequencies (Gabrielson, 1997); noise control (Crocker, 1997, part
VIII); room, building, and architectural acoustics, including concert hall acoustics (Ando,
2012; Barron, 2009; Beranek, 2004); acoustics of musical instruments (Fletcher and Rossing,
1998) and the singing voice (Sundberg, 1977); and acoustic measurement techniques (Beranek,
1988; Crocker, 1997, part XVII).
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