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Signal Processing and Signals

Sound and voice cause vibration or wave propagation in a medium. If we register the value of
a vibration of a wave field variable in a spatial position as a function of time, the result is a
sound signal. This can be performed using a microphone or a vibration sensor, resulting in an
electrical signal that can be processed and stored. Sound signals in electrical form can also be
reconverted to sound by using loudspeakers.
Signal processing is the branch of engineering that provides efficient methods and techniques

to analyse, synthesize, and transform signals. This chapter presents briefly signal processing
fundamentals with regard to sound and voice signals.

3.1 Signals
Signals that use electrical or electronic circuits and work with signal values on a continuous
scale are called analogue signals and methods that process them are called analogue sig-
nal processing. Such signals are, in most cases, considered to be continuously observable in
time and thus are called continuous-time signals. If such a continuous-time signal is sampled
properly at specific moments in time, a discrete-time signal is obtained. When these samples
are further converted to discrete numbers, the result is called a digital signal. Methods and
techniques to cope with such number sequences are called digital signal processing, or DSP
for short.

3.1.1 Sounds as Signals

A signal, such as a wave or vibration variable as stated above, is a function of time that
can be represented or approximated in different ways. A sound signal can be any of the
following:

• Mathematical function, for example a sinusoidal signal, a pure tone

y(t) = A sin(2π ft) = A sin(ωt), (3.1)
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where A is the amplitude or maximum deviation from zero, f is the frequency or the number
of vibration cycles in a second, ω is the angular frequency, and t is time. Another example
is a noise signal

n(t) = rand(t), (3.2)

where rand(·) is a function that yields a randomized value for each time moment.
• Discrete-time numeric sequence, for example

x(n) =
[
0.1 2.2 3.5 4.0 3.1 −0.9 2.1 0.5 −1.1 −2.1 −0.8 0.2

]
, (3.3)

where n is a discrete-time index. In matrix notation, the sequence in Equation (3.3) is
typically given as a column vector instead of a row vector.

• Graphical presentation, for example Figure 3.1, where the mathematical signals of
Equations (3.1) and (3.2), the numerical sample sequence of Equation (3.3), a short interval
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Figure 3.1 Graphical presentations of signals: (a) a sinusoidal or a pure tone signal, (b) random noise,
(c) a discrete-time sample sequence, (d) a portion of recorded speech signal, (e) the unit impulse at time
moment n = 3, and (f) a discrete-time pulse of finite duration.
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of a recorded vowel speech signal, a unit impulse δ(n − n0), n0 = 2, and a pulse of finite
duration are presented. In the figures, the horizontal axis is either time or the sample index
and the vertical axis is the value of the signal variable.

The first two mathematically expressed signals are continuous in time while the sample
sequence, the unit impulse, and the pulse are discrete-time signals. All signals in Figure 3.1
are, in fact, discrete-time sample sequences in the computer memory, although some of them
are plotted as continuous curves.

3.1.2 Typical Signals

• Pure tone: as in Equation (3.1)
• Amplitude-modulated tone:

p(t) = A [1 + m sin(ωmt)] sin(ω0t), (3.4)

where m ∈ [0...1] is the modulation index, ωm is the frequency of modulation, and ω0 is the
angular frequency of the tone.

• Frequency-modulated tone:

p(t) = A sin[ω0t + k sin(ωmt)t], (3.5)

where k is the width of modulation.
• Tone burst: a tone which has been set to zero outside the time span [t, t + $t].
• Sine wave sweep: where a sine wave is generated with instantaneous frequency that glides
linearly or logarithmically from an initial value to a final value, for example over the entire
audible range.

• Chirp signal: a signal where a fast frequency sweep is carried out.
• Unit impulse or the Dirac delta function δ(t) or δ(n): a signal that has the value zero every-
where else except at the temporal position zero, where it has the value one, i.e., δ(n) = 1
when n = 0. It holds that

∫ ∞

−∞
δ(t)dt = 1. (3.6)

• Pulses: examples are Gaussian waveforms or wavelets, and pulse trains made of them.
• White noise: a signal where the average spectrum is flat.
• Pink noise: a signal that has a spectrum with a 3-dB/octave decay towards high frequencies.
• Uniform masking noise: a signal that has a similar spectrum to pink noise but flattens at
frequencies below 500 Hz.

• Modulated noise (amplitude and frequency modulation) and noise bursts.
• Harmonic tone complexes:

p(t) =
∑

n

An sin(n2π f0t + φn), (3.7)

where An is the amplitude of each harmonic, f0 is the fundamental frequency of the tone
complex, and φn is the starting phase of each harmonic. All partials of the complex are thus
integer multiples of the fundamental frequency, or have a common denominator.
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• Complex combination sounds:

p(t) =
∑

i

Ai sin(2π fit + φi), (3.8)

where fi are the arbitrarily chosen frequencies, and φi the starting phases of the partials.
• Sawtooth wave: a signal that, in the time domain, has linear rises and subsequent steep drops,
thus having a shape reminiscent of the teeth of a saw. It can be mathematically written as

p(t) = t mod T , (3.9)

where T = 1/f , mod is the modulo operator, and f is the frequency of repetition of the
sawtooth wave.

• Triangle wave: a signal that, in the time domain, has alternating linear rises and falls. It can
be expressed mathematically as

p(t) = T/2 − |(t mod T) − T/2|, (3.10)

where T = 1/f and f is the frequency of repetition of the triangle wave.
• Square wave: a signal that, in the time domain, has alternating steep rises and falls that are
evenly spaced. Mathematically it can be expressed as

p(t) = sign[(t mod T) − T/2], (3.11)

where T = 1/f , f is the frequency of the square wave, and the sign function returns −1 for
a negative argument and +1 for a positive argument. Sawtooth, triangle, and square waves
have a harmonic spectrum, and they can be expressed using Equation (3.7).

3.2 Fundamental Concepts of Signal Processing
Signal processing includes a set of methods that are important for understanding communica-
tion by sound and voice. Among these are, for example, linear time-invariant (LTI) systems
and processes and the Fourier transform and related signal analysis and synthesis, including
spectrum analysis. A special topic in digital signal processing is digital filtering, an efficient
method to implement LTI systems. The short presentation of these methods below is intended
to refresh thememory of thosewho have already studied these topics and as a brief overview for
those who have not. The mathematics here are kept simple, and the formulas may be skipped
entirely by concentrating on the text and the graphical examples if the reader is unfamiliar with
such mathematics.
In addition to the basic signal processing, this section includes an overview of some adap-

tive and learning computational methods (evolutionary computation), such as hidden Markov
models.

3.2.1 Linear and Time-Invariant Systems

In signal processing, we are typically interested in the input–output relationship of the system
under study (see the black-box formulation in Section 1 of the Introduction). If the output signal
y(t) of a system as a function of time depends only on the input signal x(t), their relationship
can be expressed generally as y(t) = h{x(t)}. A system is linear and time invariant (LTI) if the
following is true:

h{a x1(t) + b x2(t)} = a h{x1(t)} + b h{x2(t)}, (3.12)
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Figure 3.2 The linear and time-invariant (LTI) system as a black box with the related mathematical
concepts in the time domain (lower case symbols) and in the frequency domain (upper case symbols).

where a and b are two constants and x1(t) and x2(t) are two input signals. In words, the response
of an LTI system to the sum of two input signals is equal to the sum of the responses to the
individual inputs separately, and the corresponding input and output signal values can be scaled
linearly by a constant gain factor. Furthermore, if we apply an input to the system now or T
seconds from now, the output will be identical except for a time delay of T seconds. The
analysis and implementation of LTI systems is typically easier and more efficient than for
systems that do not have or approximate this property. An LTI system also guarantees that it
does not create any new frequency components that do not exist in the input signal, i.e., it does
not generate non-linear distortion. Thus, a pure tone (a sinusoidal signal) remains a pure tone
when propagating through an LTI system.
An LTI system can be represented in the time domain with its impulse response h(t) or h(n)

and in the frequency domainwith its transfer function H(ω) orH(k).While the time domain is a
more intuitive way of representing signals, the frequency domain has specific useful properties
that are discussed throughout the book.
The systemmay be represented graphically as a black box, as shown in Figure 3.2. Variable t

in these formulations refers to time as a continuous-valued variable and n is used as a discrete-
time index variable. In the transfer functions, ω is the angular frequency used in continuous-
time signals and k is a similar discrete frequency index variable corresponding to the discrete-
time representations.
Examples of systems where linearity is of importance are audio recording and reproduction

equipment. Amplifiers can be designed to have low non-linear distortion, but, for example,
loudspeakers at relatively high power levels and at low frequencies can be highly non-linear.
Linearity is a goal in signal processing, although in some tasks, such as perceptually motivated
processing, non-linear processing methods are necessary.

3.2.2 Convolution

The relation between the input and output signals of an LTI system can be expressed
mathematically using the convolution operation denoted by ∗ and defined as

y(t) = x(t) ∗ h(t) =
∫ +∞

−∞
x(τ ) h(t − τ ) dτ or (3.13a)

y(n) = x(n) ∗ h(n) =
+∞∑

i=−∞
x(i) h(n− i). (3.13b)

The first expression is for continuous-time signals and systems, and it is called the convolution
integral, while the second, the convolution sum, is for discrete-time signals and systems. For
practical signals, the limits of t and n in the integral and the sum are finite.
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Although formally simple, convolution is a surprisingly complicated operation to compre-
hend. It may also be a computationally demanding operation if the response sequences are
long. Using the LTI concept, if an arbitrary input signal is considered to be a sequence of
impulses with different amplitudes, the output is the combined response of the responses to all
of these input impulses.
The impulse responses h(t) or h(n) for a real-time system are always causal; that is, h(·) = 0

when t or n < 0. This means that a physically realizable system does not have information on
the future values of its input signal.
If a system does not meet the LTI condition of Equation (3.12), it is time-variant if its

response properties change as a function of time, or it is non-linear if its transfer properties
depend on the signal passing through it. In both cases the system can generate new frequency
components that do not exist in the input signal. The analysis, modelling, or synthesis of such
systems is typically substantially more difficult than for an LTI system. A slightly non-linear
system can be approximated using a linearized model if the error is tolerable.
A good example of a highly non-linear and time-variant system is human hearing. As a result,

modelling of the auditory system is a complex task, and only some of its peripheral parts may
be modelled in the LTI sense.

3.2.3 Signal Transforms

A useful mathematical approach in signal processing is based on transforming signals into
another form that makes processing or interpreting them easier. A particularly useful set of
transforms yields a mapping between the time- and frequency-domain representations, the
Fourier transform described below being the most important one.
Mathematical tools that are needed for frequency-domain representations are complex num-

bers and complex-valued functions. A complex number c is composed of a real part x and an
imaginary part y written as

c = Re {c} + j Im {c} = x + j y, (3.14)

where Re {·} means the real part of, Im {·} the imaginary part of, and j, often also denoted by i,
is the imaginary unit j =

√−1. A fundamental equation for operating with complex numbers
is the Euler relation for complex exponentials

ejφ = cosφ + j sinφ (3.15)

that ties the phase angle φ to the real and imaginary components:

c = x + jy = |c|ejφ (3.16a)

|c| =
√
x2 + y2 (3.16b)

& c = arg{c} = φ = arctan(x/y), (3.16c)

where | · | means the absolute value of or the magnitude of and & and arg{·} mean the phase or
argument of.
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3.2.4 Fourier Analysis and Synthesis

The analysis of an LTI system is mathematically simplified if it is represented in the frequency
domain, and the signals are described as functions of frequency instead of time. This can be
done using the Fourier transform

X(ω) = F{x(t)} =
∫ +∞

−∞
x(t) e−jωt dt (3.17a)

X(k) = Fd{x(n)} =
N−1∑

n= 0

x(n) e−jk(2π/N)n. (3.17b)

The transform in Equation (3.17a) is valid for continuous-time signals and systemswhile Equa-
tion (3.17b) is for discrete-time cases. The reader is referred to a standard textbook, such as
Proakis (2007), for a more thorough discussion on the mathematical details and applications
of the Fourier transform.
The continuous-time and discrete-time transform operators are denoted here by F{·} and

Fd{·}. The latter form, Equation (3.17b), is called the discrete Fourier transform (DFT). It is
defined for a finite length sequence (n = 0 . . .N − 1), and it can be computed very efficiently
using the fast Fourier transform (FFT) (Proakis, 2007). The FFT is applicable for periodic
signals, one period being the index range of the summation similar to Equation (3.17b).
An interpretation of what the Fourier transform does is that it is a correlation (a kind of

similarity comparison, defined by Equation (3.26a)) of the signal x(·) to be transformed with
a pair of sinusoids, a sine and a cosine, together expressed as a complex exponential e−jωt

or e−jk(2π/N)n. When applying this rule to each frequency (ω or n), the result represents the
frequency content of x(·). See Figure 3.3 for an example.
The inverse transforms for Equations (3.17a) and (3.17b) are

x(t) = F−1{X(ω)} = 1
2π

∫ +∞

−∞
X(ω) ejωt dω (3.18a)

x(n) = F−1
d {X(k)} = 1

N

N−1∑

k = 0

X(k) ejk(2π/N)n, (3.18b)

which map the signal from the frequency domain back to the time domain. The transforms
in Equations (3.17a) and (3.17b) may be interpreted as Fourier analysis and the transforms
in Equations (3.18a) and (3.18b) as Fourier synthesis. Figure 3.3 illustrates how a sawtooth
waveform is constructed as a linear combination of its sinusoidal components. Any signal that
meets certain continuity requirements can be represented with arbitrary precision as a sum of
sinusoidal components of different frequencies. These components are often called partials.
An important advantage of using the Fourier transform is that it converts the computationally

expensive convolution in the time domain into a much simpler multiplication in the frequency
domain.

F{x(t) ∗ y(t)} = X(ω) · Y(ω) (3.19a)

Fd{x(n) ∗ y(n)} = X(k) · Y(k), (3.19b)
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Figure 3.3 The decomposition of a sawtooth waveform into its sinusoidal frequency components.
Putting together these components is called Fourier synthesis, and breaking up a waveform into its
components is called Fourier analysis.

where the lower case symbols x and y denote time signals and the upper case symbols X and Y
their frequency-domain transforms. Note that the definition of the Fourier transform involves
the assumption of infinite periodicity of the signals x(n) and y(n). However, by appending
the signals with sequences of zeros, the equivalent of a linear time-domain convolution is
nevertheless obtained. The process of appending zeros to the start or end of the signal is often
called zero padding. Having accounted this for, the FFT and the inverse fast Fourier transform
(IFFT) can be utilized in the efficient computation of convolution in the following way:

x(t) ∗ y(t) = F−1{X(ω) · Y(ω)} = F−1{F{x(t)} · F{y(t)}} (3.20a)

x(n) ∗ y(n) = F−1
d {X(k) · Y(k)} = F−1

d {Fd{x(n)} · Fd{y(n)}}. (3.20b)

3.2.5 Spectrum Analysis

Representing signals in the frequency domain, as decompositions into their frequency com-
ponents, is important not only as a powerful signal processing technique but also because it
resembles the way the human ear analyses signals. Audio signals that we are able to hear as
sounds are thus often analysed by means of frequency transforms in order to find their audi-
ble features and cues. The result of the Fourier transform (Equations (3.17a) and (3.17b))
is complex-valued. Such a complex transform can be equivalently expressed by a pair of
separately plotted spectra, the magnitude spectrum on the logarithmic decibel scale

|X(ω)|dB = 20 log10 |X(ω)| (3.21a)

|X(k)|dB = 20 log10 |X(k)|, (3.21b)
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and the phase spectrum

ϕ(ω) = & X(ω) = arg{X(ω)} (3.22a)

ϕ(k) = & X(k) = arg{X(k)}. (3.22b)

In principle, ϕ(k) can be unequivocally solved from Im {X(k)} and Re {X(k)} using
Equation (3.16c). Unfortunately, the expression for the phase spectrum cannot be
expressed explicitly. In many computer languages, such as in Matlab, ϕ(k) = angle(X(k)) =
atan2(Im {X(k)} ,Re {X(k)}).
For sound signals, the concept of spectrum analysis typically refers to a representation of the

magnitude spectrum only, because, as is well known, the auditory system is relatively insensi-
tive to the phase of a signal. The motivation to use the logarithmic dB scale for the magnitude
spectrum comes from the fact that we perceive the level of a signal more logarithmically than
linearly. The dB scale is also appropriate for the graphical representation of spectra. However,
as will be shown in later chapters, the detailed behaviour of the auditory system deviates from
the simple Fourier spectrum analysis in many ways.
The phase spectrum ϕ(·) from Equations (3.22a) and (3.22b) is cyclically limited between

−π and π , exhibiting discontinuous jumps between these boundaries. If a continuous phase
spectrum is desired, a phase unwrapping operation is necessary.
Often a more useful representation than the phase function itself involves the group delay τg

and the phase delay τp

τp(ω) = −ϕ(ω)/ω, (3.23a)

τg(ω) = −dϕ(ω)/dω. (3.23b)

The phase delay represents the delay of a frequency component when propagating through
a system. Group delay, as the frequency derivative of the phase, describes the delay of the
modulation, such as the amplitude envelope, of a frequency component. From the point of view
of the auditory system, the group delay is the most relevant of these phase representations.
In practice, spectrum analysis must be localized in time, since the spectral properties of

sound signals typically vary over time. Windowing is used to accomplish this by multiplying
the signal with a window function which is then Fourier analysed:

X(ω) =
∫ te

tb
w(t) x(t) e−jωt dt (3.24a)

X(k) =
ne∑

n=nb

w(n) x(n) e−jk(2π/N)n, (3.24b)

where w(t) is a window function (weight function) that is non-zero only in the time span
denoted by the limits of integration and summation in Equations (3.24a) and (3.24b) and zero
elsewhere.
Some frequently applied window functions are the Hamming, Hann (a.k.a. Hanning

window), Blackman, and Kaiser windows (Mitra and Kaiser, 1993). Note that cropping a span
from a signal and zeroing elsewhere corresponds to using a rectangular window. Figure 3.4
illustrates an example where a sinusoidal signal is analysed with different windows, includ-
ing rectangular and Hamming windows, with and without synchrony to the periodicity of the
sine wave.
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Figure 3.4 Spectrum analysis using the Fourier transform and windowing. (a) A sine wave and (b) its
magnitude spectrum with a very long window. (c) A rectangular window that is synchronized with the
periodicity of the sine wave. The ending of the sinusoid in the window and the starting of it join together
circularly continuously in amplitude and slope. (d) The corresponding spectrum with no artefacts. (e) A
rectangular window that is not in periodicity synchrony with the signal, showing as a discontinuity in
amplitude between the starting and ending positions. (f) The resulting spectrum that shows the spreading
of the spectrum. The Hamming window (dashed envelope line) in (g) always removes most of the spectral
spreading far from the peak, but the spectrum peak itself will be broadened, as shown in (h).

The selection of a window function is always a compromise between spectral and temporal
resolution. The longer the window, the better the spectral resolution and the worse the temporal
resolution, and vice versa. Theoretically, the resolutions in time ($t) and frequency ($f ) are
bound by the equation

$t · $f ≥ 0.5. (3.25)
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Figure 3.5 The waveforms and spectra of three instrument sounds.

For audio signals, the length of the window is often motivated by the time-vs.-frequency res-
olution of the auditory system. If only a single window length is used, the value is typically
selected to be between 10 and 30 milliseconds, which, using Equation (3.25), limits the fre-
quency selectivity to between 50 and 17Hz. Noting the non-linear scale of auditory perception,
the selection of the window length is especially relevant for analysis in the lowest frequencies.
Examples of real audio signals of musical instruments and their magnitude spectra are shown

in Figure 3.5. See Figure 5.7 on page 87 for spectra of vowels and consonants.

3.2.6 Time–Frequency Representations

A time–frequency representation is obtained, for example, by applying a window, such as a 20-
ms Hamming window, to a portion of a signal, taking the Fourier transform, and then moving
to the next portion of the signal and repeating the procedure. This spectral sampling interval,
called the hop size, is typically about 10ms for analysing speech and other audio signals.
Such a frame-based analysis of spectra is called short-time Fourier analysis, and its graphical
representation is called a spectrogram.
Since a spectrogram is a three-dimensional mapping – the magnitude level as a function of

time and frequency – it cannot be illustrated by a single curve. One typical graphical repre-
sentation is as an intensity map where the grey shade or colour at each point stands for the
magnitude (see Figure 3.6). Another representation is the ‘waterfall’ or mesh plot with a set of
curves, as shown in Figure 6.5 on page 105.
Short-time Fourier analysis is a special case of a time–frequency representation. Other

choices are wavelet analysis and Wigner distributions. In wavelet analysis (Cohen, 1995;
Vetterli and Kovacevic, 1995), the frequency and time resolution are not uniform but vary
so that at high frequencies the time resolution, is better with a coarser frequency resolution,
and vice versa at low frequencies. A method related to wavelet processing is the constant-Q
transform (Holighaus et al., 2013; Schörkhuber et al., 2013), where the signal is divided into
time-frequency tiles of equal area, but the bandwidth increases with frequency to maintain a
constant Q (Equation (3.30)). The temporal length of the tiles decreases with increasing fre-
quency, which makes the processing a bit more complicated. However, perfect reconstruction
processing has been achieved with constant-Q methods.
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Figure 3.6 The spectrogram of a spoken word (top) aligned in time with the original waveform (bot-
tom). Higher magnitude levels are shown with a darker shade of gray in the spectrogram. The voiced
parts the formant resonances are darker horizontal stripes, while in the noise-like fricative part only rela-
tively high frequencies have noticeable energy. Matti Karjalainen utters the word ’kaksi’, meaning ’two’
in Finnish, which he often used to test audio and speech techniques. The uttered phones are shown, where
‘#’ denotes silence.

3.2.7 Filter Banks

A filter bank is a set of band-pass filters that is fed the same input, where the centre frequencies
of the filters vary over desired ranges of frequencies. It thus separates a broadband input signal
into multiple time-domain narrowband signals, which are called sub-bands. This is similar to
the functioning of hearing, as will be discussed later in Chapter 7.
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Figure 3.7 Examples of cross- and autocorrelations: (a) A random signal x(t), (b) the same delayed
signal y(t) = x(t−100), and (c) the cross-correlation rxy(τ ) showing a peak that indicates the time delay.
(d) A voiced speech signal s(t), and (e) its autocorrelation rs(τ ) indicating the periodicity (the inverse of
the fundamental frequency).

Filter banks have a number of uses. For example, when used as an equalizer, the signals
in sub-bands are amplified according to the desired equalization curve, and they are then
combined to form the equalized signal. Since sometimes perfect reconstruction is desired,
the filters must be designed so that the original signal can be recovered when the sub-band
signals are combined. Filter banks have various applications in audio effects, audio coding,
and spatial audio reproduction, as will be discussed later in Chapter 15.

3.2.8 Auto- and Cross-Correlation

The similarity of two waveforms can be analysed by computing their cross-correlation

rxy(τ ) =
∫ +∞

−∞
x(t) y(t + τ ) dτ (3.26a)

rxy(k) =
N−1∑

i= 0

x(i) y(i + k). (3.26b)

Figures 3.7a–c depict a case where the cross-correlation of a signal and its time-delayed
counterpart indicate the amount of delay. A special case of correlation is autocorrelation, where
a signal is compared to itself in order to find the periodicity, or repeatability, of the waveform.
In this case x(·) = y(·) in Equations (3.26a) and (3.26b). In the example of Figures 3.7d–e,
the autocorrelation of a voiced speech signal has a peak corresponding to its periodicity.
The autocorrelation function is periodic, showing maxima also for integer multiples of the
fundamental period.
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3.2.9 Cepstrum

The cepstrum (Oppenheim and Schafer, 1975) is a transform that shows some resemblance to
autocorrelation. It is computed as the inverse Fourier transform of the logarithmic magnitude
spectrum,

cx(t) = F−1{log |F{x(t)}|}. (3.27)

This resemblance can be understood from the fact that the logarithmic magnitude spectrum is
a real-valued function and that the inverse Fourier transform is an operation very similar to the
Fourier transform, as is evident from Equations (3.17a) and (3.18a). The computation of the
cepstrum thus treats the magnitude spectrum similarly to a time-domain signal. The result can
be thought to be ‘the spectrum of amagnitude spectrum curve’. The logarithm of themagnitude
spectrum provides a particular representation for differentiating specific processes affecting a
speech spectrum: the harmonic response of the glottis is represented by a fast-changing, peri-
odic log-spectrum, while the formants produced by the vocal tract are represented by a longer
and smoother envelope and convey the information of which phoneme is uttered. The inverse-
Fourier-transform operator projects these two envelopes to different points in the cepstrum
cx(t), providing a representation that is practical for processes such as speech recognition.

3.3 Digital Signal Processing (DSP)
Digital signal processing (DSP) means discrete-time numerical processing of signals (Mitra
and Kaiser, 1993; Oppenheim et al., 1983; Strawn, 1985). If a signal to be processed is orig-
inally in analogue form, i.e., continuous in time and amplitude, it must first be converted to a
number sequence by analogue-to-digital conversion (A/D-conversion). Conversely, a digital
signal (a number sequence) can be converted back to continuous-time form by digital-to-
analogue conversion (D/A-conversion). Signal processing itself is carried out by a digital
signal processor, which can be a special digital circuit, a programmable digital signal pro-
cessor, or a general purpose processor or computer. A generic structure for such a system is
shown in Figure 3.8.

3.3.1 Sampling and Signal Conversion

When converting between analogue and digital signals, the sampling theorem (or the Nyquist
theorem) requires that the sampling rate must be at least twice as high as the highest signal
component to be converted. Otherwise aliasing will occur, whereby signal components of
frequency higher than the Nyquist frequency (half of the sampling rate) will be mirrored to
below the Nyquist frequency, thus distorting the signal. To avoid aliasing, an A/D-converter
normally includes a low-pass filter that yields enough attenuation above the Nyquist frequency.

A/D D/A
Digital
signal

processor

Analogue
input
signal

Analogue
output
signal

Figure 3.8 A block diagram for the digital signal processing of analogue signals, including an A/D-
converter, a digital signal processor, and a D/A-converter.
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D/A-conversion also typically includes a low-pass filter (reconstruction filter) to make the
output continuous in time and free from frequencies above the Nyquist frequency. This means
that digital signal processing deals with band-limited signals.
Sampling rates common in audio technology are 44.1 kHz (compact disc), 48 kHz (profes-

sional audio), 32 kHz (less demanding audio), and for very demanding audio 96 kHz or even
192 kHz. Speech technology uses the sampling rate 8–16 kHz. The telephone bandwidth of
300–3400Hz requires a sampling rate of about 8 kHz.
Numerical samples from A/D-conversion may be coded in various ways. The most straight-

forward representation is to use PCM coding (pulse-code modulation). Each sample is
quantized into a binary number where the number of bits implies the precision of the result.
Figure 3.9 illustrates the principle of such a conversion using four bits, which corresponds to
16 levels. Sample values of an analogue signal are mapped onto binary numbers so that there
are 2n discrete levels when the number of bits is n.
Quantization with finite precision generates an error called quantization noise. The signal-

to-noise ratio (SNR, see Section 4.2.6) describes the level of the signal compared to the level
of noise, and for quantization noise it improves by 6 dB for each added bit, so that 16 bits,
often used in audio, yield a maximum SNR of about 96 dB. Because the dynamic range of the
auditory system is about 130 dB, even more than 22 bits may be needed.
Digital signal processing has many advantages compared to analogue techniques. It is pre-

dictable, and a single DSP processor may be programmed to compute any DSP program
that does not exceed its processing capacity. For example, real-time spectrum analysis can
be implemented using the FFT.

3.3.2 Z Transform

The z transform is a fundamental mathematical tool for describing LTI systems in digital signal
processing. The z transform of a digital signal (sample sequence) x(n) is

X(z) = Z{x(n)} =
∞∑

n=−∞
x(n) z−n (3.28)
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Figure 3.9 Quantization and PCM representation of a sinusoidal signal with 4 bits (16 levels):
(a) characteristics of the quantization curve, (b) sinusoidal analogue input, and (c) quantized signal
waveform.



58 Communication Acoustics

The complex variable z used in the transform is related to the unit delay between two adjacent
samples as

Z{x(n− 1)} = z−1X(z). (3.29)

3.3.3 Filters as LTI Systems

A filter modifies the magnitude or phase spectrum of an input signal. Often, filters are applied
to attenuate some frequencies and leave others untouched. In most cases, the processing also
changes the phase spectrum. In some cases, the filters do not change the magnitude spectrum,
but only the phase spectrum.
There are several types of filters:

• A low-pass filter is one that leaves low-frequency signals unmodified and attenuates signals
with frequencies higher than the cutoff frequency. In the design of such filters, the response is
often set to be 0 dB for frequencies in the passband (frequencies below the cutoff frequency),
−3 dB at the cutoff frequency, and to lower values in the stopband (frequencies higher than
the cutoff). The response in the stopband depends on the filter type and design.

• A high-pass filter is the opposite of a low-pass filter, meaning that the passband is located at
frequencies higher than the cutoff and the stopband correspondingly at lower frequencies.

• A band-pass filter leaves a band of frequencies unmodified and attenuates all other fre-
quencies. It can be implemented as a combination of a low-pass and a high-pass filter in a
cascade. The bandwidth $f is defined as the difference between the upper and lower cutoff
frequencies $f = fu − fl. The Q value of a band-pass filter is then defined as

Q = fc/$f . (3.30)

A high Q value thus implies a narrow band-pass filter, and vice versa.
• A band-reject filter is the opposite of a band-pass filter: it removes a certain band of fre-
quencies and leaves the rest unmodified. It can thus also be implemented as a combination
of low-pass and high-pass filters, but this time in parallel.

• An all-pass filter leaves the amplitude of all frequencies unchanged, but changes their phase
relationships.

• Arbitrary-response filters are designed to have an arbitrary response both in magnitude and
in phase.

Most commonly, filters are implemented as digital filters using DSP structures, or as ana-
logue filters using electronic circuits. Many acoustic phenomena can be interpreted as filters.
For example, the effect of atmospheric absorption of sound is effectively a low-pass filter, and
the acoustic effect of a room can also be considered as a filter with an arbitrary response.

3.3.4 Digital Filtering

Digital filtering (Haykin, 1989; Jackson, 1989; Parks and Burrus, 1987) is a fundamental
technique in digital signal processing. The input–output relationship of any band-limited LTI
system (Figure 3.2) can be represented and implemented using a digital filter. Since algorithms
for computing digital filters can be well optimized, this approach is useful when simulating or
solving LTI engineering problems.
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Figure 3.10 FIR filtering as a signal-flow graph. Elements z−1 represent unit delays, and multipliers
bn correspond to the coefficient values (tap coefficients) of the impulse response.

The twomain types of digital filters are the finite impulse response (FIR) filter and the infinite
impulse response (IIR) filter.
An FIR filter is computed using the principle in Figure 3.10 as a linear combination of

delayed versions of the input signal; that is, by a convolution of the input and the impulse
response of the filter. Each block z−1 is a unit delay, and the tap coefficients bn before sum-
mation are directly the coefficient values of the impulse response h(n). The transfer function
of an FIR filter is simply

HFIR(z) =
N−1∑

n= 0

bn z−n = b0 + b1 z−1 + · · · + bN−1 z−(N−1) (3.31)

FIR filter design and signal processing with them is relatively straightforward, but FIR filters
may be computationally expensive.
The transfer function of an IIR filter is

HIIR(z) =

∑N−1
n= 0 bn z

−n

1 +
∑P−1

p= 1 ap z
−p =

b0 + b1 z−1 + · · · + bN−1 z−(N−1)

1 + a1 z−1 + · · · + aP−1 z−(P−1) (3.32)

One typical signal-flow graph formulation of an IIR filter, the direct form II, is depicted in
Figure 3.11. It is different from an FIR filter in that there are feedback paths throughmultipliers
an. An IIR filter may be unstable if it is not designed properly, which means that it can produce
arbitrarily large output values for a finite input signal if a frequency is exponentially amplified
in the feedback structure. The stability criterion for an IIR filter is that the poles of the transfer
function, that is, the roots of the denominator polynomial of Equation (3.32), must be inside
the unit circle on the complex plane |z| < 1. The zeros (roots of the numerator) don’t have
such a limitation.

3.3.5 Linear Prediction

A signal, or the system that has generated it, can be modelled in the LTI sense using lin-
ear prediction (LP) (Markel and Gray, 1976). In the literature the term linear predictive
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Figure 3.11 IIR filtering as a signal-flow graph. Coefficients bn correspond to non-recursive FIR-like
substructures (Figure 3.10), and an are the coefficients for recursive feedback.

coding and especially its abbreviation LPC is used as a general concept, but a more systematic
approach is to use the term linear prediction for modelling and LPC only for coding purposes
where LP analysis is quantized or otherwise coded. LP modelling also has other names, such
as autoregressive (AR) modelling in estimation theory.
In LP modelling, we can imagine that the signal to be analysed is generated by an IIR system

(Figure 3.11), where in the numerator of Equation (3.32) the coefficient b0 = 1 and all the other
coefficients bn = 0 for n ≥ 1. This is called an all-pole type IIR system. LP analysis yields
optimal values in the least mean square sense for the denominator polynomial coefficients ap,
so that the resulting all-pole IIR filter system is the best one for predicting a new signal sample
as a linear combination from the previous samples.
The most frequently used form of LP analysis is the autocorrelation method, where the

coefficients ap are solved from a linear matrix equation (normal equations)




r0 r1 r2 · · · rP−1
r1 r0 r1 · · · rP−2
r2 r1 r0 · · · rP−3
...

...
...

. . .
...

rP−1 rP−2 rP−3 · · · r0









a1
a2
a3
...
aP




=





r1
r2
r3
...
rP




, (3.33)

where P is the order of LP analysis, that is, the order of the all-pole filter, and rk are
autocorrelation coefficients rx(k) from

rx(k) =
N−1−k∑

i= 0

x(i) x(i + k) (3.34)

for the signal frame under study consisting of N samples.
The IIR filter 1/A(z) is called the synthesis filter, where A(z) = 1 − ∑

apz−p and ap are
the coefficients from Equation (3.33). The FIR filter A(z) itself is called the inverse filter. If it
acts on the original signal, a residual signal that is spectrally flattened (whitened) is obtained.
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Figure 3.12 (a) A voiced speech signal (vowel) as a function of time. (b) TheHammingwindow (dashed
line) and a Hamming-windowed frame of the signal (solid line), (c) its Fourier spectrum, and linear
prediction spectra for LP orders of (d) 4 , (e) 8, and (f) 12. A sampling rate of 8 kHz has been used.

Naturally, if this residual is used as the excitation signal for filter 1/A(z), the original sig-
nal is synthesized, hence the name synthesis filter. In Section 5.3 we discuss the modelling
of speech using source–filter models, whereby linear prediction is a natural choice and an
effective technique.
LP analysis makes it possible to easily compute spectral envelopes or the LP spectrum that

is, to remove the spectral fine structure of a speech or audio spectrum. Especially for speech
signals, LP analysis is an effective way to separate the source (excitation) and filter (vocal
tract transfer properties) in a source–filter model (see Figure 5.11 on page 91). Figures 3.12d–f
illustrate LP spectra computed from the speech signal in Figure 3.12a, first windowed to obtain
the signal in Figure 3.12b. As a reference, a Fourier spectrum of the speech frame is shown
in Figure 3.12c. When the LP order is increased, the LP spectrum resolution improves. The
LP order 8 (Figure 3.12e) already yields a fairly good approximation, and orders 10–12 are
considered high enough for speech with a sample rate of 8 kHz. More generally, an order equal
to the sample rate in kHz plus two is recommended for speech, since it is enough to represent
speech formants and the general shape of the spectrum.
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Figure 3.13 An example of adaptive filtering, where filterHa(n) adapts to the input–output relationship
of target system Ht(n), thus modelling the target system.

3.3.6 Adaptive Filtering

Digital filters with constant coefficients are an efficient and flexible approach for modelling
LTI systems and signals. However, real world signals and systems can change their parameters
as a function of time. There is a need for signal processing systems and algorithms that are able
to adapt to changing conditions, or that are able to learn or can be trained to behave in a desired
manner. Often there exists a rule that can be applied to change the parameters of a DSP system
to adapt to the environment, or there are examples of desired behaviour that can be taught to
the system. In such cases it would be preferable if the DSP system could automatically adapt
to the external conditions. Sometimes it is enough to do the adaptation or learning only once
or every now and then in a controlled manner.
In adaptive filtering (Haykin, 1989, 2005;Widrow and Stearns, 1985), the goal is that a signal

processing function using digital filters can adapt to properties of the input signal in a mean-
ingful way. Technically, adaptation means that the transfer function of the filter is controlled by
changing the filter coefficients. Thus, the filter is no longer time-invariant. This time-variance
problem can be formulated in different ways.

• A digital filter can be adapted so that the output signal is as close as possible to a target
signal, so that their difference, for example in the least-squares sense, is minimized. After
successfully adapting a filter to transform the input of a target system to the output of the
target system, the filter can be used as a model of the target system (see Figure 3.13).

• When the input and output of the adapted system are interchanged, the adaptive filter
attempts to make an inverse filter of the system to be modelled. The inverse filter can be
used in series with the system so that modelled to equalize the total response so that it is
close to the ideal one.

• An adaptive filter can be formulated to predict future values of the input signal byminimizing
the prediction error. This is close to the idea of linear prediction, as described above.

• Adaptive filtering can also be used to cancel noise in a signal, thus enhancing signal quality.
An important subproblem is echo cancellation (Sondhi et al., 1995), where an echo in a
system, acoustic or electronic, is attenuated.

3.4 Hidden Markov Models
Statistical modelling is used extensively in speech processing in particular, where a speech
signal is interpreted as a sequence of units, each unit consisting of one or more states and
having transition probabilities between states. Typically, a separable unit of speech is a speech
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Figure 3.14 An example of a hidden Markov model having six states.

sound, for instance a phone, and a state in a phone represents a statistically stable segment in
it, say the beginning, middle, or the end part. In speech recognition (Section 16.3) the problem
is how to find such a sequence of units, given a speech signal or feature vectors describing it.
A hidden Markov model (HMM) (Lee, 1989) is a popular learning method to do this.
An example of an HMM is illustrated in Figure 3.14 as a state transition diagram consisting

of six states, X = 1, 2, . . . 6, and transition probabilities aij. Some of the transitions return
to the same state but others proceed to the next. If the model is used as an event generator,
each state transition emits an observation vector O = oi. In our case, traversing through states
X = 1 . . . 6, the model emits an observation vector sequence o1 . . . o6. Here, the initial and
final states do not emit observation vectors and states X = 2 and X = 5 emit two observations
due to one transition returning to the same state. Such a model may be applied to represent any
size of speech or sound event: a phone (Section 5.2), a syllable, a word, a longer message, or
a sound or a passage in music.
If an HMM is used for recognition rather than generation of observations, the problem is that

only observations, typically the feature vectors analysed from a speech signal, are known. The
joint probability that the known observationO = o1, o2, . . . oN is emitted by modelM and state
sequence X = 1 . . . 6 is the product P(O,X|M) = a12b2(o1) a22b2(o2) . . .. A simple way to
use HMMs in pattern recognition is to select the recognition result for the modelM that gives
the highest probability P(O,X|M) for the feature vector sequence O = oi. The name ‘hidden’
Markov model comes from the fact that the state sequence Xi is hidden, not known.

3.5 Concepts of Intelligent and Learning Systems
There are several useful formulations for learning principles that may be combined to develop
complex signal and information processing. Artificial intelligence is a commonly used term
for the development of information and knowledge processing systems that try to mimic what
is considered human intelligence. Some specific topics in intelligent and learning systems are
the following:

• Artificial neural networks (ANNs) (Haykin, 1994; Kohonen, 1990; Lippmann, 1987; Luo
and Unbehauen, 1997) are signal and information processing techniques that learn or are
trained to acquire a targeted behaviour, typically an input–output relationship of interest.
Some principles of ANNs are found by trying to simulate the behaviour of biological neural
nets, but the similarity is not very strong, and true neural networks, for example in the brain,
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maywork in quite different ways. Learning ability and simple self-organization are, however,
important properties that ANNs can provide.

• Pattern recognition is the general idea of reducing complexity of signals in order to find the
essential information carried by them (Duda et al., 2012). Pattern recognition is typically a
classification (categorization) process whereby irrelevant and redundant information is dis-
carded and a signal is represented by features or classifications. Neural networks and hidden
Markov models are among the most popular methods of pattern recognition, especially in
speech recognition.

• Fuzzy systems are used to form logically operable representations for recognition and control
but without the true/false dichotomy of classical logic (Wang, 1994). Using words and con-
cepts that have a flexible yet quantitative interpretation allows for making fuzzy inferences
and control.

• Knowledge-based systems utilize different paradigms of artificial intelligence, the idea being
to process information in a way that resembles human conceptual processing (Hayes-Roth
et al., 1983). Rule-based systems are often combinations of logic processing and object
methodology (Gupta et al., 1986). Expert systems are knowledge engineering systems that
try to simulate human expert capabilities.

• Genetic algorithms and evolutionary systems tend to mimic the principles of biological
evolution (Goldberg and Holland, 1988). Genetic algorithms simulate evolution through
mutation and selection of the best candidates for further evolution towards an optimal
solution of a given problem.

Summary
The purpose of this chapter has been to gather concepts that are fundamental in signal process-
ing. This topic has become amajor cornerstone both for understanding human communications
and for developing engineering solutions to improve communications. Signal processing and
its applications will be present throughout the later chapters of this book in one form or another.

Further Reading
Since this book is not particularly about signal processing, this chapter serves only as a brief
introduction to the subject, and also familiarizes the reader with the notation used in the field.
There are numerous more detailed introductions and textbooks on signal processing, for exam-
ple (Mitra and Kaiser, 1993; Strawn, 1985; Oppenheim and Schafer, 1975; Proakis, 2007;
Steiglitz, 1996; Templaars, 1996).
There are many important topics and applications on signal processing that the interested

reader can study elsewhere. The reader is encouraged to read more on signal processing as
applied to audio techniques in general in Zölzer (2008). There is also a rich literature on adap-
tive and learning systems, as well as in information processing by artificial intelligence, as has
been referred to above.
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