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 Machine learning basics  
 
There are several machine learning (ML) courses in Aalto so this 

lecture will not be very broad or deep. 

  

Almost all science is fitting models to datasets. Experiments are 

designed to collect data from which knowledge is extracted by 

using accepted theories. The experimental data is fitted to 

theories if they exist (natural science vs. human science).  

 

Now we can have a lot of data that is not connected to theories, 

like images, but there is some information in this data. How can 

we find information or correlations from vast data sets. Answer: 

Machine learning  

 

ML is used in many fields, like pharmaceutical industry and gene 

studies (bioinformatics), image and speech recognition, machine 

translation, etc..  

 

We meet the ML every day in applications like Apple Siri and in 

many net advertising sites. There has been a lot of fuss of the 

language models like Chat-GPT, Microsoft bing. But here we focus 

on chemistry related ML.  

 

Huge amount of ML methods have been collected to a python library 

Scikit-learn. This is a very convenient way to do ML computations.  

 
The sklearn is easy to use in python or in Jupyter notebooks  

 
import sklearn  
from sklearn.model_selection import KFold  
from sklearn.model_selection import GridSearchCV, train_test_split  
from sklearn.ensemble import GradientBoostingRegressor  
from sklearn.ensemble import RandomForestRegressor  
from sklearn.kernel_ridge import KernelRidge  
import matplotlib.pyplot as plt  
 
 
 

Machine learning classes  
 
I used the https://www.ibm.com/cloud/learn/machine-learning web-page.  
 



 

 

Supervised learning (SL): The aim is to learn known outputs and find 

good descriptors for the system. This is the most relevant ML for 

materials science. This is also a relatively easy ML problem.  

 

 
 

 
   

 

                         

 

 

 

Unsupervised learning (UL): The aim is to classify data and find 

patterns in it. Example: understanding hand-written text. This is 

more difficult and usually a lot of data is needed. Typically, the UL 

methods will cluster data with some similarity methods. 

 

A very simple 2D example: Find clusters.   

 

 
A more complex clustering using UMAP method. The clustering can be 

done in several dimensions. Simple visualization is possible only 

in max 3D.  
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Semi-supervised learning: A mixture of the two methods above. For 

example, in some cases the output is known. Example: we can know 

some of the hand-written letters. If the data set has 100 000 

examples and we know 1000 of them. The machine needs to learn the 

rest of them.  

 
There are several ML methods, like neural networks, decision 

trees, regression algorithms. We came to them a bit later.  
 

Data quality is an important aspect. Is the data balanced, free of 

major errors, is there duplicated data, are there outliers, what 

is the “noise level” in the data, etc. These are usually difficult 

questions and hard to answer before the analysis. One still need 

to make sure that the data quality is as good as possible.  
 

How large the data set should be? As large as possible, but in  

materials science the data set are usually not very large. Data 

size of below 100 is useless since all ML methods rely on 

statistic. 1000 is OK and larger sets are even better.  



 

 

 
The quality of the data set can be tested in many ways. One simple 

way is to test the predictions with ever enlarging data sets. Below 

blue is the training error and red is the test error. (The analysis 

is based in 10-fold cross validation, sorry of the low quality 

figure) 

 

 

 

Validation  
 
One of the main topic in ML is the method validation. To that end the 

original data set is divided into training and test set. The training 

set is used to teach the ML methods and the data in the test set is 

NOT use in the training. The test set size is typically 5-20 % of the 

data. The test set is chosen randomly to form the data. This 

procedure can be repeated with many data divisions. 

 



 

 

 

Cross validation: One can make the training/test data partitioning 

several times. This approach produces several ML models and test 

and in this way quality of the ML models can be tested better than 

on single data partitioning. 

 

 

 

 

 

Each training data set will give different fit the model. With 

cross validation we can get statistic of the fit.  

 

One can also leave some data out of the cross-validation data and 

use that as second level test set or publication set. The 

publication set is never used in training. 

 

 

 

 

 

Even better is to use some new and quite different data to test the 

ML method. In real applications, the ML method needs to work on new 

data. If the external data is “similar” the ML methods should work 
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but if the external data is very different from the training data the 

predictions are probably bad.  

if you train your system with cats and dogs it cannot recognize a 

fish.    

(This wiki page is very good: https://en.wikipedia.org/wiki/Cross-validation_(statistics) )  

 

ML methods parameter optimising  
 
All ML methods contain parameters and they need to be optimized to 

ensure that the ML methods is working optimally. In sklearn the 

default parameters are quite good (if the data set is reasonably 

large). The teaching is simple if one is using GridSearchCV methods. 

There are more sophisticated methods. (for all this see the Sklearn 

manual, https://scikit-learn.org/). 

model = RandomForestRegressor()  
 
parameters = {"n_estimators": range(20, 80, 10), "min_samples_split":[2,3]} # for RF  
 
clf = GridSearchCV(model, parameters, cv = 10, verbose=2)  
output : score, parameters 

-0.4466248626907848 {'min_samples_split': 3, 'n_estimators': 30}  

-0.45742261440125276 {'min_samples_split': 3, 'n_estimators': 50}  

-0.4587929994651951 {'min_samples_split': 3, 'n_estimators': 60}  

-0.4597841296896924 {'min_samples_split': 3, 'n_estimators': 40}  

-0.4648287622992993 {'min_samples_split': 2, 'n_estimators': 40}  

-0.4660148003169513 {'min_samples_split': 3, 'n_estimators': 70}  

-0.4662565949899477 {'min_samples_split': 2, 'n_estimators': 60}  

-0.4711060835686439 {'min_samples_split': 2, 'n_estimators': 50} 

model = GradientBoostingRegressor()  
 
parameters = {'learning_rate': np.arange(0.05, 0.3, 0.05), "loss": ['ls', 'huber'], "n_estimators": 
range(20, 80, 10), 'subsample': [1.0, 0.9]}  
 
clf = GridSearchCV(model, parameters, cv = 10, verbose=2) 
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Overfitting  
 
In every complex model there is a risk of overfitting. This is easy 

to demonstrate with polynomial fitting. If a N-order polynome is 

fitted to N data points it will fit perfectly to the points but in 

between the data can be very bad. If we have test set of points we 

can easily see the overfitting. 

 

 

 

 

 

The best model is not the model that fit best to the data but that have 

the best predictive power.  



 

 

 

 

The example to order-N polynome is trivial but the overfitting is 

a real problem in every ML model. Naturally the model needs to be 

good enough, so one can also underfit the problem. To find good 

balance a lot of testing is needed.  

 

Machine learning methods  
 
There are several ML methods. Many of them have been implemented to 

sklearn python package.  

 
Methods for labeled data (we know the data objects, like Pt(111) 

surface or PtAg mixture. This sounds trivial but if we have millions 

of pictures and we need to know what is in them (a cat or a car or a 

human) the situation is more difficult. The labeled data is 

considered expensive since it need humans to make the labelling.)  
 
• Regression algorithms: Linear and logistic regression are examples 
of regression algorithms used to understand relationships in data. 

Linear regression is familiar to all scientists. A more sophisticated 

regression algorithm is called a support vector machine.  

 
• Decision trees: Decision trees use classified data to make 
recommendations based on a set of decision rules. For example, a 

decision tree that recommends betting on a particular horse to win, 

could use data about the horse (e.g., age, rider, winning percentage, 

pedigree) and apply rules to those factors to recommend an action or 

decision.  
 

underfitting 
overfitting 



 

 

We have used a lot the RandomForest method. This method will build 

several decision trees (typically 100) and the final answer is the 

majority answer Random forests are frequently used as "blackbox" 

models, as they generate reasonable predictions across a wide 

range of data while requiring only a reasonable amount of data. 

 

 
 

• Instance-based algorithms: A good example of an instance-based 
algorithm is K-Nearest Neighbor or k-nn. It uses classification to 
estimate how likely a data point is to be a member of one group or 

another based on its proximity to other data points.  

 

Methods for unlabeled data (opposite the labeled data, we do not need 

to know the object. Very often the ML task is to identify them.)  

 
• Clustering algorithms: Think of clusters as groups. Clustering 
focuses on identifying groups of similar records and labeling the 

records according to the group to which they belong. This is done 

without prior knowledge about the groups and their characteristics. 

Types of clustering algorithms include the K-means, TwoStep, Kohonen 

clustering and UMAP.  

 
• Association algorithms: Association algorithms find patterns and 
relationships in data and identify frequent ‘if-then’ relationships 

called association rules. These are similar to the rules used in data 

mining.  

 

• Neural networks: A neural network is an algorithm that defines a 

layered network of calculations featuring an input layer, where data 

is ingested; at least one hidden layer, where calculations are 

performed make different conclusions about input; and an output 

layer, where each conclusion is assigned a probability. A deep neural 



 

 

network defines a network with multiple hidden layers, each of which 

successively refines the results of the previous layer. 

Often the labeled data is needed (or it is very useful) for teaching the 

unlabeled algorithms. 

 

be predicted. 


