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Descriptors  
 
Descriptors are very important in materials science/chemistry. We 

should know the geometry and other properties of the material or 

molecules but how we will tell that to a machine. The descriptors can 

be almost anything.  

 
We did recently a study of HER (hydrogen evolution reaction) on N 

doped carbon nanotubes taking into account several defects. Overall, 

there was 8 different defects and several hydrogen configurations. 

Totally we did ca. 7000 DFT calculations. The output was the hydrogen 

binding energy. (Kronberg, Lappalainen, Laasonen, JPCC, 125, 15918 

(2021)). In this project we used the Random Forest method and a very 

new Shapley analysis of the data. 

 



 

 

 

This project had rather complex descriptors. This example is not 

the easiest one, but it illustrates that the very different 

descriptors can be used. 

 

 

One interesting descriptor is Extended-connectivity fingerprint 

(ECFP). It is a systematic tool that list atoms environment in 

molecules. (Ref: Rogers and Hahn, J. Chem. Inf. Model. 2010, 50, 

5, 742–754). The 0 level is the atom itself, the level 1 contains 

the atoms neighbors and so on. 

 

 



 

 

 

 

 

Next one can list all the different ECFP’s of all the studied 

molecules. There are quite a few of them but surprisingly few. We did 

a project in which there were 7000 different molecules and we found 

1024 ECFP4’s  

 

 

Smiles 

Is a very useful representation of molecules. It contains only 
letters and most chemical codes understand and can make SMILES. 

They usually can make also 3D coordinates.   



 

 

Eg. benzene   c1ccccc1   

Cc2cccc(c1ccccc1)c2  =   Cc1cccc(O)c1 =  

 

https://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/ind

ex.html 

Smiles are not very easy for humans to read but they can be drawn 

easily.  

 

Results  
 
 
The RF model learned the hydrogen binding (HER) data well. The parity 

plot compares the computed (DFT) values to the ML predictions. 

 

As one can see, where there is a lot of data the learning is good 

and at the very negative values the scattering is larger. The 

accuracy of the trained data is below kcal/mol, which is better 

than the DFT accuracy. One can also see the effect of the size of 

the sample. We did some PBE0 calculations. Here the data set is 

much smaller and the learning errors are larger.  

https://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html
https://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html


 

 

 

Figure 3: Unbiased generalization performance of the RF models based on 10-fold nested CV on the 

GGA and hybrid HF/DFT datasets. The solid bars denote a lower bound of the respective averaged 

errors while the hatched parts indicate the variability as twice the standard deviation across the outer 

CV folds. The average coefficients of determination with standard deviations are annotated above the 

bars. The limit of chemical accuracy is marked for reference by the dashed line. 

The next deep question is how the descriptors contribute to the 

output. This is usually addressed on a rather superficial way. 

Typically, the methods like RF will return the weight of the 

descriptors. This is useful if some of the descriptors have low 

weights. Then one can reduce the descriptors and still get quite 

good predictions with less descriptors. 



 

 

 

 

Explainable AI, the Shapley analysis  
 
Rather recently a very interesting Shapley additive explanation 

(SHAP) methods has been introduced. It will approximate the model 

output with additive functions ϕ, Shapley values. The ML predicted 

value f can be written as 

 

𝑓(𝑥) = 〈𝑓〉 +∑𝜙𝑗(𝑓, 𝑥)

𝑗

 

where <> is the average of f and x are the descriptors. Even this 

looks very simple the computation of the Shapley values is 

complicated. The breakthrough publication is from 2017 (Lundberg, S. M.; 

Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process Syst. 2017; pp 
4765–4774.)  
 

The SHAP analysis gives much more information of the ML procedure. We 

can analyse the individual descriptor contribution to the output. If 

we have chemically meaningful descriptors, we can learn a lot more 



 

 

form the results. Below is an example of the molecules redox 

potential prediction. The numbers refer to the ECFP4 features in the 

molecules (0 means that they are not present and 1 that they are). 

Note that the 1015 lowest weight descriptors have very small 

contribution and the descriptor 1010 has very large contribution. 

 

 
 
The SHAP analysis has results to a new subfield of ML, the 

explainable artificial intelligence (XAI). There are several 

problems where it is very useful to understand where the ML 

predictions come from. Clearly materials development projects 

belong to this class. 

 

In SHAP we can also analyse features role in general. Below if the 

feature LSTAT has high value (red) it will have a negative 

contribution (and vice versa). The feature RM has an opposite 

effect and feature B has little effect.   



 

 

 

 
Unsupervised Learning  
 
We have now several projects related to molecular clustering. The 

main idea is to rationalize chemical reactivity.  

 

Clustering  
 

But first focus on clustering. At low dimensions we are good at 

seeing clusters. One of the simplest clustering algorithm is 

KMeans. It will find the centers of the clusters.  

 
from sklearn.datasets import make_blobs 

from sklearn.cluster import KMeans 

from sklearn.metrics.pairwise import pairwise_distances_argmin 

 

np.random.seed(0) 

 

batch_size = 45 

centers = [[2, 2], [-2, -2], [2, -2]] 

n_clusters = len(centers) 

X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.9) 

 

k_means = KMeans(init="k-means++", n_clusters=3, n_init=10) 

k_means.fit(X) 

 

k_means_cluster_centers = k_means.cluster_centers_ 

k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) 

 

fig = plt.figure(figsize=(4, 4)) 

fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) 

colors = ["#4EACC5", "#FF9C34", "#4E9A06"] 

 



 

 

# KMeans 

ax = fig.add_subplot(1, 1, 1) 

for k, col in zip(range(n_clusters), colors): 

    my_members = k_means_labels == k 

    cluster_center = k_means_cluster_centers[k] 

    ax.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, 

marker=".") 

    ax.plot(cluster_center[0],cluster_center[1],"o", 

        markerfacecolor=col,markeredgecolor="k",markersize=6,) 

ax.set_title("KMeans") 

 
 

This is too simple. The clusters can and will have more complex 

shape. One more sophisticated clustering method is 

AgglomerativeClustering with different linkage methods. (Details in 
sklearn manual)   
  

AgglomerativeClustering(linkage="ward",”complete”, “average”, “single”) 
 

There is probably no single method to find nice clusters in all 

cases. Almost any method will find isolated clusters.  

 

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering


 

 

 
 

 

In real problems we have several descriptors, easily 256 to 1000. 

We can of course find clusters in 1000 dimensional space but it is 

very difficult to learn anything from this. We need dimensional 

reduction.  

 

Example: handwritten numbers, left example of the data. (data set 

9300 numbers, 16x16 pixels), right UMAP clustering. The colors are 

the correct numbers. This is a good clustering. Below is the 

Kmeans clustering of the UMAP data. Note that the colors are 

mixed, not good clustering.  

 



 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
Dimensional reduction 
 

The dimensional reduction (DR) means that we need to find few 

vectors that describe well the high dimensional problem. This is 

not an easy task. One method is PCA (Principal component analysis) 

which basically create a new coordinate system of the data. The 

data varies most on the first component and less on the second, 

etc.  

The length of these vectors will tell the variation. If they are 

similar the data is randomly distributed.  

 

Now we can reprint the data with a few lowest vectors in this new 

coordinate system. We may find clusters better in this way.   

 

The use of PCA is easy pca = PCA(n_components=2)  

 
There are several other DR methods. One simple one is Singular 

Value Decomposition (SVD)  

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA


 

 

 

 
One need to keep in mind that the descriptors matters also in the 

unsupervised learning. We plot the data according to the 

descriptors.  

 

The Claisen project  

 

We did a lot of ML analysis of the Claisen reaction. We do not have 

much experimental data but we had a lot of potential molecules (1500 

in the first set and 2700 in the second). We tried to use the 

classification approach in this project. The molecules are described 

using the SMILES and then a Fingerprint analysis is done. (128 

element vectors). The descriptor is the Fingerprint.  

 

 
 



 

 

The PCA analysis is not very useful. Below are the projections of 

the 3 lowest PCA vectors. and in the corner the Agg Cluster 

analysis of (0,1) projection.  

 
  

 

 

One of the most powerful DR method I have used is UMAP. It is not 

in sklearn but it can be loaded from net. It has very good web 

page: Using UMAP for Clustering — umap 0.5 documentation (umap-learn.readthedocs.io) 
 
 

 

For the same data as before. On the left the raw data with 3 

vectors and on the right with Agg cluster analysis. 

 

Now the idea is to do experiments on different clusters and to see 

if they are chemically different. The preliminary data shows 

rather small differences. We have also done some DFT calculations 

of the barriers.  

https://umap-learn.readthedocs.io/en/latest/clustering.html


 

 

 

 
 
Where we can get the data for ML projects  
 
In chemical and material science problems we have some large 

experimental databases (DB), like the crystal structure DB’s but for 

many properties we do not have large DB’s. Individual values can be 

found form the literature but if we need thousands of numbers large 

scale DFT computations are a promising approach. The experimental 

data form various sources can contain errors whereas if the DFT 

computations are done systematically the data is of good quality. Of 

course, the DFT is not perfect but for ML we need trends and large 

data sets. This is the reason why most chemistry and materials 

science ML project are based on DFT calculations.  

 
Because the DFT results are so useful (for ML) there are also BD’s 

for the DFT results, like NOMAD. A good review of the Databases is 

Himanen et al. Adv. Sci. 2019, 6, 1900808, DOI: 10.1002/advs.201900808  
 
NOMAD: Provides storage for full input and output files of all important computational materials 
science codes, with multiple big-data services built on top. Contains over 50 236 539 total energy 
calculations.  
 
Warning the databases are not always easy to use and the data quality 

can be quite poor. We did a M.Sc. study of chemical reactions using 

DFT DB’s and the results were not very good. We are in the beginning 

of the DFT DB’s and the rules of what one needs to store in the DB’s 

does not exist. It also seems that the data in the DB’s are not 

checked very carefully. I hope that the quality DB’s will improve in 

the future. Naturally this criticism does not apply to all databases. 

 



 

 

High throughput computations 
 
If one need to do 1000’s of (DFT) computations the workflow need to 

be automatize. In simple cases this can be done with Unix scripts and 

in larger projects the are tools like FireWorks. Note that both the 

computations and the data analysis need to be automatized. On the 

scrips level this is not very difficult but to handle crashed or not 

converged jobs is not easy.  

 

An example: Adding hydrogens on some surface, like carbon nanotube. 

Initial geometry is easy to make by adding H on top of an atom or 

between atoms (this is a bit more difficult). The DFT optimization is 

easy providing the system converges well. If the top site is not 

stable this will cause problems. Once the computations are done some 

analysis is needed, like some atom distances or HOMO, LUMO energies 

etc. A GPAW-type code that is partly written with python would be 

ideal but most quantum chemistry codes do not use python. The 

learning target is the H binding energy.    

 
https://materialsproject.github.io/fireworks/ 

 
FireWorks is a free, open-source code for defining, managing, and executing workflows. 
Complex workflows can be defined using Python, JSON, or YAML, are stored using 
MongoDB, and can be monitored through a built-in web interface. Workflow execution can 
be automated over arbitrary computing resources, including those that have a queueing 
system. 
 
Data quality  
 
Remember: GARBAGE IN GARBAGE OUT  

 

ALL INFORMATION IS IN THE DATA   

 

Data quality is essential to ML. Wherever you get the data one should 

be skeptical of its quality.  
 

Are there some chemical bonds the data should fulfill?  

In large databases, is there bad data or missing data.  

 
When the ML parity plot is done are there some outliers in the data. 

The outliers can be due to the poor ML model OR form poor input  

data.  

 

When doing 1000’s of DFT calculations, are all the results converged? 

How accurate the DFT is?  

 

When using external DB’s how do you know the data quality. 

 

 

https://github.com/materialsproject/fireworks


 

 

 
Predictability  
 
The predictability is one of the hardest questions in ML. We can 

easily analyse the predictability of the data set we have but what 

happen when we go outside the data. If the new molecules (or 

materials) are similar we can expect reasonable predictions. But what 

is “similar”?  
 

The larger and more diverge the learning DB is the more we can 

predict. We need tools to analyse the divergence of the DB’s then we 

can have some information on what can be predicted. 

 

We need bravely test the predictions with new molecules. To test the 

predictions we need the correct answer. It is quite easy if you use 

computational data but much harder with experimental data.  

 

 

 

 

 

 

 

 

 

 
 

 

 

Data 

X    -  OK prediction 

(hopefully) X    -  BAD  prediction ? 

Data 

X    -  OK prediction  

X    -  BAD  prediction ? 


