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Chapter 1. Intro  
 

Introduction 

 

This course will focus on computational chemistry and 

computational materials screening. The computational approach 

can be viewed as the third pillar of scientific knowledge. 

Naturally, experimental observations are the basis of Natural 

Science but we need the theoretical models to rationalize the 

experimental results. However, often the theoretical models are 

very complex and they need numerical methods to solve them. Even 

more, the fundamental theories will provide a basis to model 

complex real phenomena. In chemistry, almost all phenomena, in 

principle, can be derived from the equations of quantum 

mechanics (Schrödinger or Dirac equation). In practice, this is 

very difficult. First, the equations are difficult to solve and 

secondly the molecules are moving which may need to be taken 

into account.   
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Modelling 
 

The strength of modelling is that it can provide reliable values 

of experimentally observable quantities. With modern computers, 

the modelling is often a faster method to get information than 

the experiments. In addition, in simulations every atom is known 

and very detailed control of the systems is achieved. This is 

very interesting when, for example, chemical reactions are 

studied. We can investigate the role of an individual atom to 

the reactivity. Because simulations can be faster than the 

experiments, they can be used to screen potentially interesting 

materials for experimental studies. This is complicated since 

the structure-property relations are often very complex and to 

unravel them a lot of good quality data is needed.  

Quantum Chemistry 

 

The Quantum Chemistry (QC) will focus mostly on the electrons 

wave function and total energy of the system. Most of the 

properties of a single molecule can be computed using QC but a 

group of molecules at finite temperature needs some kind of 

dynamical simulations, which can take the entropy into account. 

The dynamical simulations will use either Molecular Dynamics or 

Monte-Carlo simulations. These has been discussed in course 

Computational Chemistry I (CHEM-E4115) The basics of electrons 

wave function and total energy have been discussed in course 

CHEM-E4115 and CHEM-E4100, Quantum Mechanics and Spectroscopy, 

which are prerequisites for this course.  

Machine Learning in Chemistry 

 

Chemistry is rather ideal field for Machine Learning (ML) since 

almost all the problems can be described on atomic level and 

almost all properties of molecules can be computed. In fact, the 

ML can be used in any field of chemistry or chemical engineering 

if there is enough reliable data but this course focus on 

molecular systems. The principles are very similar in any ML 

application and in Aalto there are several ML courses.   



The computational quantum chemical methods can provide a lot 

data of several molecules or materials. Typically, we want to 

optimize some useful property like catalytic activity, 

dielectric constant, etc. This interesting property will depend 

in a complex way of the materials composition and possibly 

structure. If we want to test a large amount of systems we need 

Machine Learning methods to find the correlations. In ideal case 

the ML model will be almost as accurate as the original Quantum 

Chemical calculations (or any original data). The ML model do 

not need time consuming QC step so it is much faster than the 

original data collection.  

 

 

 

 

 

 

 

There are several challenges to this approach. The original data 

set need to be large, diverse enough and consistent to make a 

good basis for the ML. The ML is very good at finding 

correlations and it can handle several variables but not all the 

correlations have physically justified connection to the 

interesting variables (causality)  
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The ML methods CANNOT DISTINGUISH the causal input parameters 

form the others. It can only find the correlations. This will 

affect the predictive power of the ML methods in materials 

science. With good descriptors this is probably not a big 

problem.     

Typically, the input of ML contain many variables and often 

variable that are not easy to control experimentally.  

 

 

 

 

 

 

 

How to use the ML models to help the experiments? This usually 

has to be done in collaboration with experimental groups 

otherwise the ML predictions may be very difficult to fulfill in 

practice.    

 

Total energy 

 

Before going to the wave functions and Schrödinger equation we 

can look what can be learned from the atomic total energy. We 

assume that the electrons are at their ground state so the total 

energy depend only on the atomic coordinates.  

𝐸𝑡𝑜𝑡
𝑒𝑙 (𝑅1, . . 𝑅𝑁) 

Here we have used the Born-Oppenheimer approximation in which we 

have assumed that the atoms are point-like from the point of 

view of the electrons. Here we do not take into account the 

atomic wave functions. This is a very good approximation at room 

temperature and for all atoms except hydrogen. The atomistic 

quantum effects can be later taken into account using harmonic 
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approximation near the minima of the total energy (This will be 

discussed later) or using the Path-Integral Methods.  

Free energy 
 

Unfortunately, the chemically important “energy” is the free 

energy and it contain the entropy term. In general, the entropy 

is difficult to compute but if the molecules do not interact 

strongly it can be estimated with gas phase thermodynamical 

methods. The Enthalpy (H) is very close to total energy but it 

also have small finite temperature correction  

𝐺𝑡𝑜𝑡(𝑇, 𝑃, 𝑅1, . . 𝑅𝑁) = 𝐻𝑡𝑜𝑡(𝑇) − 𝑇𝑆𝑡𝑜𝑡(𝑇, 𝑃) 

 


