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Chapter 3. Post Hartree-Fock methods (Cramer: chapter 

7) 
 

As discussed in the previous chapter. The aim is to develop 

reliable ab initio methods. The HF seldom is good enough and 

some computationally feasible improvements are needed.   

There are many ways to improve the HF method. Most of them are 

very technical and in this course, the main ideas behind them 

are given. We can first “define” the correlation energy. The 

best (lowest) non-relativistic total energy within the Born-

Oppenheimer approximation of the system is Etot, the correlation 

energy is the difference 

Ecorr = Etot - EHF < 0 

As such, this is not a very useful definition but if we have 

different well defined methods and basis sets to compute the 

correlation energy, the one which has the lowest energy is the 

best. The variational principle works also here. 

The conceptually simplest post-HF method is the Configuration 

Interaction (CI) method. In this method the wave function is 

built from several determinants 

Ψ(𝑟1, . . 𝑟𝑁) = 𝑎0Ψ0 +  ∑ 𝑎𝑖
𝑎

𝑖,𝑎

Ψ𝑖
𝑎 + ∑ 𝑎𝑖𝑗

𝑎𝑏

𝑖𝑗,𝑎𝑏

Ψ𝑖𝑗
𝑎𝑏 + . .. 

The new determinants are built form the HF orbitals but the 

electrons are also placed on exited states. The notation Ψ𝑖
𝑎
 

means that one electron is excited from state i to state a, 

similarly Ψ𝑖𝑗
𝑎𝑏
 means that two electrons are excited from states i 

and j to states a and b. This wave function is denoted as CISD 

(CI with singlet and double excitations). The Ψ0 is the Slater 



 

 

determinant (or the HF wave functions). All the excited 

determinants are orthogonal to the HF wf (and to each other).  

Exercise: Show this.  

In the CI calculations, the HF orbitals are kept constant and 

the a coefficients are optimized. Again, the variational method 

can be used  

𝐸𝐶𝐼𝑆 = min
𝑎

[ 𝑎0⟨Ψ0|𝐻|Ψ0⟩ + ∑ 𝑎𝑖
𝑎⟨Ψ0|𝐻|Ψ𝑖

𝑎⟩

𝑖,𝑎

]  

Or the matrix formalism can be used 

𝐻𝐼𝐽 =  ⟨𝛹𝑖|𝐻|𝛹𝐽⟩ 

Where 𝛹𝐽   mean any level of excited determinant. The matrix is 

very big but mostly empty (sparse) and efficient handling of it 

requires methods of sparse matrixes. 

The CISD method is a reasonable solution for the correlation 

energy for small molecules but for larger molecules, it become 

rather inefficient. Also, for larger molecules CISD is not very 

accurate and higher terms would be useful but methods like CISDT 

become computationally very expensive. There will be a huge 

amount of excitations to be computed. In general the pure CI 

type methods become too expensive when the molecules size is 

increasing. The best CI method is called Full CI or FCI. In 

principle, it is an exact method but it is doable only for small 

molecules. 

For Full CI the number of determinant can be computed as  

𝑁𝑑𝑒𝑡 = (
𝑛
𝑘

)
2

 

Where n is the number of orbital and k the number of electrons. 

This grows very rapidly, when n=2k (and k is big)  

𝑁𝑑𝑒𝑡 = (
2𝑘
𝑘

)
2

≈
16𝑘

𝑘𝜋
 

if k=10 Ndet = 3.4*1010 !! This is very expensive to compute. 

 



 

 

The formal computational scaling of different correlation 

methods. BUT with new codes like Orca (Turbomole, etc) this has 

changed a lot and both MP2 and CCSD(T) can be done with similar 

computational cost as HF. Note that there are small 

approximations in these faster methods.  

  

Scaling Method Real Scaling note 

N4 HF N4  

N5 MP2 N4  (RI-MP2) RI-MP2 is very 

reliable 

N6 MP3, CISD, CCSD N4 for CCSD 

(DLPNO-CCSD) 

method needs a 

lot of memory 

N7 MP4, CCSD(T) N4 for CCSD(T) method needs a 

lot of memory 

N8 (MP5), CISDT, 

CCSDT 

  

N10 (MP7), CISDTQ, 

CCSDTQ 

  

 

The CI has also a size consistency problem. This can be 

illustrated with an example of He dimer. The He atom have only 

two electrons and thus CISD is an exact method for it 

(CISD=FCI). When the He2 is studied at CISD level the theory is 

not exact since the triple and quadrupole excitation are 

missing, (CISDTQ=FCI).  

 



 

 

 

In general finite-CI accuracy reduce with the size of the 

molecule and any calculation which deals with molecules 

association is biased with the size consistency. This is a 

rather large problem for computational binding energies and an 

unfortunately feature for many Post-HF methods.  

 

Active Space SCF 

 

Another approach to correlation is Active Space SCF. The first 

assumption is that not all possible excitations are needed. We 

can define limited amount of electrons and states in where all 

excitations are considered. This is called Complete Active Space 

(CAS). Then for larger amount of electrons and states only N 

excitations are allowed. This is Restricted Active Space (RAS).  

Also the orbitals can be optimized for each excitation. This is 

called as Multi Reference method (MRSCF) (Note in CI the 

orbitals are not optimized).  This causes more work but can 

significantly improve the total electronic energy. 

In general, the CAS methods are quite easy to use. The good CAS 

depend strongly on the system. So testing is needed. There are 

also numerical problems related to the orbital optimizations. 

The CASSCF methods are not recommended for non-experts. 

One can also combine the CI and the MR approach. The MRCI 

methods, like MRCISD, are not much used. They are expensive and 

probably difficult to use.  

 

 



 

 

 

     

 

 

 

 

 

 

 

 

 

 

Coupled Cluster method. 
 

The Coupled Cluster Method is an advanced method to solve the CI 

wave functions. The CC wave function is computed as  

Ψ𝐶𝐶 = 𝑒𝑇Ψ𝐻𝐹 

where T=1+T1+T2+T3+…, Tn is an operator that makes n times excited 

states. For example 

 𝑇2 =  ∑ 𝑡𝑖𝑗,𝑎𝑏 𝜏𝑎
𝑖

𝑖𝑗,𝑎𝑏 𝜏𝑏
𝑗
, 

will make determinants that have two exited electrons. The 

exponent of an operator is mathematically complex, but the main 

point is that the CC wave functions are more complete than the 

CI wf’s. The CC wave functions have contributions like  

Ĉ Ψ𝐻𝐹 = 𝑒𝑇Ψ𝐻𝐹 

𝐶0 = 1, 𝐶1 = 𝑇1,   𝐶2 = 𝑇2 +
𝟏

𝟐
𝑻𝟏

𝟐 ,  𝐶3 = 𝑇3 + 𝑻𝟏𝑻𝟐 +
𝟏

𝟔
𝑻𝟏

𝟑 

𝐶4 = 𝑇4 + 𝑇1𝑇3 +
1

2
𝑇2

2 +
1

2
𝑇1

2𝑇2 +
1

24
𝑇1

4 

 

 

 

filled states 

empty states 

active states CAS 

 RAS 

 

RAS 



 

 

For example, at CCSD level we have only operators T1 and T2 we 

will have higher order terms in the C3 and C4 etc. level. The 

solution of the amplitudes is the trick. It can be done 

effectively. The CC is also size consistent which is a bonus 

compared to CI. 

A good but far from easy presentation of CC can be found from 

Helgaker, Jorgensen and Olsen: Molecular Electronic-Structure 

Theory (Willey).  

For practical point of view the CC is the best “black box” 

quantum chemistry methods there exists. CCSD is a good method 

and CCSDT and CCSDTQ are excellent methods but the later are 

expensive. Using perturbation method the triplet excitations can 

be treated more effectively and the CCSD(T) method is also a 

very reliable methods. In practice, it is often even better than 

CCSDT due to slight overestimation of the correlation. Today the 

CCSD(T) is considered the “golden standard” of quantum 

chemistry. This means that it is almost as accurate (for medium 

size molecules) as FCI or any other super accurate method but 

much cheaper. Compared to MRSCR methods the CC methods are easy 

to use and almost always reliable. Naturally the CCSD(T) is not 

cheap, but the new DLPNO-CCSD(T) is for larger systems are as 

fast as HF, so there is no reason not to do CCSD calculations!! 

(Providing you have enough memory for the calculations).     

 

Perturbation methods 
 

Another approach to correlation it the perturbation methods. The 

idea is very general and it can be used to several other quantum 

chemical problems. We assume that we can solve Hamiltonian H(0) 

and the full Hamiltonian have a small perturbation V. The 

perturbation will be scale with parameter .  

𝐻 = 𝐻(0) + 𝜆𝑉 

We can next write the energy and wave functions as a power 

series of . 

  𝐸 = 𝐸(0) + 𝜆𝐸(1) + 𝜆2𝐸(2) + ⋯        𝛹0 = 𝛹0
(0)

+ 𝜆𝛹0
(1)

+ 𝜆2𝛹0
(2)

+ ⋯ 



 

 

Now we can write hierarchical equation for each power of  

𝐻(0)𝛹0
(0)

= 𝐸(0)𝛹0
(0)
 

𝐻(0)𝛹0
(1)

+ 𝑉𝛹0
(0)

= 𝐸(0)𝛹0
(1)

+ 𝐸(1)𝛹0
(0)
 

𝐻(0)𝛹0
(2)

+ 𝑉𝛹0
(1)

= 𝐸(0)𝛹0
(2)

+ 𝐸(1)𝛹0
(1)

+ 𝐸(2)𝛹0
(0)
 

Note that notation 𝛹0
(𝑛)
 means the ground state wave function at 

perturbation level n. The different level wave functions are 

orthogonal ⟨𝛹0
(𝑛)

|𝛹0
(0)

⟩ = 𝛿𝑛0. 

So we can solve 𝐸(1), Ψ(1), 𝐸(2) etc. 

𝐸(1) = 〈𝛹0
(0)

𝑉𝛹0
(0)〉    𝐸(2) = 〈𝛹0

(0)
𝑉𝛹0

(1)〉     𝛹0
(1)

= ∑
〈𝛹𝑛

(0)
𝑉𝛹0

(0)
〉

𝐸0
(0)

−𝐸𝑛
(0)𝑛>0 𝛹𝑛

(0)
 

𝐸(2) = ∑
〈𝛹𝑛

(0)
𝑉𝛹0

(0)〉2

𝐸0
(0)

− 𝐸𝑛
(0)

𝑛>0

 

(𝛹𝑛
(0)
 means non-ground state wave function at iteration level 0). 

The perturbation theory can be applied to correlation energy. 

This is called Moller-Plesset theory (MPn). Then the H(0) is the 

HF theory and the perturbation is  

  

𝑉 = ∑
1

|𝑟𝑖 − 𝑟𝑗|
𝑖<𝑗

− ∑(𝐽𝑛𝑚

𝑛𝑚

−
1

2
𝐾𝑛𝑚) 

This is clever since it corrects the HF error. The level (2) 

correction is  

𝐸(2) = ∑
[(𝑖𝑗|𝑎𝑏) − (𝑖𝑎|𝑗𝑏)]2

휀𝑖 + 휀𝑗 − 휀𝑎 − 휀𝑏
𝑖<𝑗,𝑎<𝑏

 

The i,j denote occupied state and a,b unoccupied states. This 

the first real correction and it is called the MP2 theory. (The 

E(0) + E(1) is in fact the HF energy). The perturbation theory can 

be computed to arbitrary level. The different levels are denotes 

as MPn. Of these, the most important is MP2. It is rather fast 



 

 

and causes a significant correction to HF. The MP3 is a 

disappointment since it does not correct much the MP2. The MP4 

is somewhat better but it is already very expensive. The higher 

terms are not used and in some model systems, it has been shown 

that the MPn series do not converge.  

Below is convergence of the HF molecule with respect of the MPn 

series. The energies are related to the FCI energy. (Picture 

From Helgaker et al, Molecular Electronic-Structure Theory). The 

molecules eq distance is Re (so 2.5 Re is stretched molecule). As 

one can see the results are strange.   

 

  

Note the CC perturbation behaves better.  

 

RI-approximation 

 

Computationally the MP2 with small approximations can be 

implemented very effectively. The RI-MP2 method is much faster 

than and essentially as accurate as the true MP2. All practical 



 

 

MP2 calculations for larger systems are done with RI-MP2 (or its 

variants). In big RI-MP2 calculations the most time consuming 

part is the HF.  

The basic idea behind RI-MP2 is to fit the expensive double wave 

functions |ia) to new (gaussian) basis functions |P) (auxiliary 

basis). Now the expensive (ij|ab) term can be approximated  

(𝑖𝑗|𝑎𝑏) ≈ ∑ (𝑖𝑗|𝑃)𝑉𝑃𝑄(𝑄|𝑎𝑏)𝑃𝑄   this is more complex but computationally 

faster. The (ij|ab) term scales as N4 but (ij|P) as N3 and VQP as 

N2. The main point is that RI methods needs an additional basis 

which is not much larger than the original basis. Note that 

product of two gaussians (ij| is a Gaussian but the “size” of 

this basis is N2 and nothing is gained. The (P| basis is almost 

as accurate as the product but much smaller.   

The Orca input is simple  (version 4) 

! RHF RI-MP2 TZVP AutoAux Opt  

See also Orca Manual (3.0 page 41 to 42) 

“You see that nothing is lost in the optimized geometry through the RI approximation thanks to 
the efficient and accurate RI-auxiliary basis sets of the Karlsruhe group (in general the 
deviations in the geometries between standard MP2 and RI-MP2 are very small). Thus, RI-MP2 
really is a substantial improvement in efficiency over standard MP2.” 
 

The perturbation method is very general and it can used in 

several quantum chemical problems. One application is the CI and 

CC methods where the higher order excitations can be solved with 

perturbation theory. In the CCSD(T)WF’s are solved in the CCSD 

level and the triplet corrections are done using the 

perturbation theory. The CCSD(T) method is the golden standard 

of quantum chemistry and it has the same scaling behavior as 

MP4.  

Last, the basis set needed for well converged CI and MPn methods 

is larger than in the HF calculations. This is bad news since 

these post-HF methods have poorer scaling behavior than HF so 

the computations become quickly very time consuming.  

Summary: the MP2 method is a very important method for 

correlation. It can be used for large molecules and it is a 

significant improvement to HF. The RI-method speedup the MP2 



 

 

significantly. In Orca also the DLPNO-MP2 has been implemented. 

For medium size molecules it is roughly as fast as RI-MP2. 

   

DLPNO-CCSD(T) approximation 

 

There is a lot of research focusing on development of the 

computational methods. In traditional quantum chemistry one area 

is on development fast computational algorithms for the known 

methods. The RI-type methods have improved the MP2 calculations 

a lot. The very new DLPNO-CCSD(T) development of Orca team is very 

interesting, it makes CCSD(T)level calculations possible for 

large molecules. (See more from Orca manual.) DLPNO means 

domain-based local pair natural orbital. In this method a pair 

natural orbitals are used and then localized, so that they can 

be classified into domains for proper sorting and selection of 

the most important excitations accounting for electronic 

correlation. This will reduce the computational cost a lot.  

The latest implementation (2016, in Orca 4.0) has linear scaling 

!! For large systems (around 500 atoms)it is even faster than 

the HF. So one can really use RI-MP2 (or DLPNO-MP2) or DLPNO-

CCSD(T) for real problems. But a small warning the DLPNO-

CCSD(T)method needs a lot of memory and the memory will come the 

bottleneck for large calculations.  



 

 

 

Multilevel methods 

 

The systematic single method approach to solve the correlation 

problem is usually very time consuming (both human and computer 

time) so several multilevel extrapolation methods have been 

proposed. The multilevel methods are very complex looking but 

the main idea is to extrapolate both the correlation and basis. 

Below is the G2 and G3 multilevel methods. Note that Orca do not 

have the multilevel methods. It utilizes the F12-methods. 

 



 

 

   

    

F12-method 

 
 
The multilevel methods are messy and they contain empirical 

parameters so a more systematic way is to extrapolate the 

correlation energy from smaller basis sets. The best 

extrapolation method for correlation energy at the moment is the 

F12-method. It clearly outperforms the old extrapolation 

methods. But nothing comes for free. The additional effort for the 
F12-MP2 calculation is rather high, a DZ F12 calculation is 

roughly as expensive as normal QZ calculation. This can be 

improve with RI-KJ methods. 

 
# 
# Correlation energies of the water molecule: extrapolation versus F12 
# 
# cc-pVDZ MP2: -0.201 380 894 



 

 

# T :   -0.261 263 141 
# Q :   -0.282 661 311 
# T/Q :   -0.298 276 192  (normal extrapolation)  
# Q/5 :   -0.300 598 282  (normal extrapolation) 
# F12-DZ :  -0.295 775 804 
# RI-F12-DZ :   -0.295 933 560 (cc-pVDZ/C note: basis for RI) 
#   -0.295 774 489 (cc-pVTZ/C) 
# F12-TZ :   -0.299 164 006 
# RI-F12-TZ :   -0.299 163 478 (cc-pVQZ/C) 
# F12-QZ :   -0.300 130 086 
 

Note that F12-method is also available for CCSD(T). There the 

F12 is much more efficient than the traditional extrapolation. 

 

Density Functional Theory 
 

The traditional Quantum Chemical methods will approach 

systematically the exact wave functions and thus the solution of 

the correlation energy but this approach will lead to very heavy 

computational procedures. The Density Functional Theory will 

utilize another approach. In its hart is a proof that the ground 

state of an electronic system depend only on the electron 

density (r).   

 )(),..,,( 21 rrrr N    

This wave function is much much simpler than the true wf. The 

problem is that we do not know the equations to solve the wf. 

The basic ideas are form Kohn, Hohenberg and Sham (1963, 1964, 

Kohn Nobel prize 1998).  

The total energy is only a function of electron density 𝐸𝑡𝑜𝑡[𝜌]. 

Unfortunately, we do not know accurate enough approximation to 

this function (or functional). Kohn and Sham proposed that one 

can solve effective non-interacting orbitals (ϕ) from HF-type 

equations (the Kohn-Sham equations) with an effective potential 

Veff. Because these effective orbitals do not interact the single 

Slater determinant is the exact wavefunction. 



 

 

[−
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝑟)] 𝜙𝑛(𝑟) = 𝜖𝑛𝜙𝑛(𝑟);        𝜌(𝑟) =  ∑|𝜙𝑛(𝑟)|

2

𝑛

 

Again, we do not know the K-S Hamiltonian or the effective 

potnetial, but it is useful to try to find a good approximation 

for it. Kohn and Sham showed that a simple model for the 

Exchange and Correlation (XC) energy will give good results. The 

formulation is quite similar to the HF:  

𝑭𝑪 = 휀𝑺𝑪 

𝐹𝑛𝑚 =  𝐻𝑛𝑚 + 𝐽𝑛𝑚 − 𝐹𝑛𝑚
𝑥𝑐 

𝐻𝑛𝑚 = ∫ 𝜉𝑛(𝑟) [−
ħ2

2𝑚𝑒
∇2 −

𝑒2

4𝜋𝜀
∑

𝑍

|𝑟−𝑅𝐼|𝐼 ] 𝜉𝑚(𝑟) 𝑑𝜏  

     𝐸𝑋𝐶 = ∫ 𝑓(𝜌, ∇𝜌(𝑟), . . )𝑑𝜏;      𝐹𝑋𝐶 =
𝛿𝐸𝑋𝐶

𝛿𝜌(𝑟)
 

𝐽 =
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

|𝑟1 − 𝑟2|
𝑑𝑟1𝑑𝑟2        𝜌(𝑟) =  ∑|𝑐𝑛,𝑖𝜉𝑛(𝑟)|

2

𝑛,𝑖

 

The difficult part is the XC energy. It is not known but several 

approximation are done. Formally the Exc can be written as  

𝐸𝑥𝑐[𝜌] = 〈𝑇〉 − 𝑇𝑠[𝜌] + 〈𝑊〉 − 𝐽[𝜌] 

Where <T> is the exact kinetic energy, Ts is the DFT K.E. <W> is 

the exact electron-electron interaction energy and J is the 

Coulomb energy of the electron density.  

The is often expressed as an integral 𝐸𝑥𝑐[𝜌] = ∫ 𝜌(𝑟)휀𝑥𝑐[𝜌]𝑑𝑟 

The simplest Local Density Approximation (LDA) depend only on 

density, EXC,LDA[(r)]. The exchange part is easy ( = 1) 

휀𝑥[𝜌] = −
9𝛼

8
(

3

𝜋
)

1
3

𝜌
1
3(𝑟) 

But the correlation is more complex. This functional can be 

obtained from exact calculations of homogenous electron gas 

(Ceperley-Alder 1980). There is also very simple Chachiyo 



 

 

correlation functional (a=ln(2)-1)/2π2, b=20.456325..) which works 

well. 

 

 

The LDA work reasonably well and it is a bit better than HF 

(with few exceptions) but electrons are NOT homogenously spread 

in molecules.  The next level is the Generalized Gradient 

Approximation, EXC,GGA[ (r), ∇ρ(𝑟)]. The GGA models are much better 

but there is no simple (or even non-simple) procedure to build 

the GGA functionals. For this reason there are a huge amount of 

different GGA models. 

One of the simplest ones that works is due to Axel Becke (1986), 

𝐸𝑥
𝐺𝐺𝐴 =  ∫ 𝐸𝑥,ℎ𝑜𝑚𝑜𝑔(𝜌) ∗ 𝑓𝑥(𝜉)𝑑3𝑟,   𝜉 =

(∇𝜌)2

(2𝑘𝐹𝜌)2
,  𝑘𝐹 = (3𝜋2𝜌)1/3, 𝑓𝑥

𝐵86(𝜉) = 1 +
𝑎𝜉

1 + 𝑏𝜉
  

Where a and b are parameters, a=0.2351 and b=0.24308. 1988 Becke 

proposed an improvement to this equation 

𝑓𝑥
𝐵88(𝜉) = 1 +

𝑎𝜉

1 + 𝑏√𝜉 arsh(2(6𝜋2)1/3√𝜉 )
 



 

 

Now a=0.2743 and b=9a/4. This is very much used approximation 

for exchange energy. 

There is a very extensive library of the XC functionals. The 

Libxc which is implemented to many codes (but not Orca, see the 

Orca manual) 

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc 

The most common are BLYP and PBE. Even there are far too many 

GGA models, the DFT-GGA method have one very strong advantage. 

It scales as N3. It is much more accurate than HF but it is much 

faster. With DFT we cannot get systematic improvement of the 

accuracy but it can be applied to big systems are the results 

are almost always good (same level as MP2). 

One can also mix the HF and DFT theories. These are called 

hybrid methods and they are also very accurate. The most common 

of them is the B3LYP model also PBE0 model is good. 

𝐸𝑥𝑐
ℎ𝑦𝑏

= 𝑎𝐸𝑥
𝐻𝐹 + (1 − 𝑎)𝐸𝑥

𝐺𝐺𝐴+𝑏𝐸𝑐
𝐺𝐺𝐴 

For example PBE0, a=1/4, b=1. GGA=PBE;  

𝐸𝑥𝑐
ℎ𝑦𝑏

= 𝑎𝐸𝑥
𝐻𝐹 +  (1 − 𝑎)𝐸𝑥

𝐿𝐷𝐴 + 𝑏 (𝐸𝑥
𝐺𝐺𝐴 − 𝐸𝑥

𝐿𝐷𝐴) + 𝑐𝐸𝑐
𝐺𝐺𝐴 + (1 − 𝑐) 𝐸𝑐

𝐿𝐷𝐴 

B3LYP is more complex: a=0.2, b=0.72, c=0.81. 

 

The next GGA level is meta-GGA where the kinetic energy density 

is included to the GGA, 𝜏(𝑟) = 1/2 ∑ |∇𝜑𝑛(𝑟)|2
𝑛    

EXC,m-GGA[ (r), ∇ρ(𝑟), 𝜏(𝑟)]. 

Good meta-GGA’s are TPSS (implemented to Orca), HCTC, M06L. 

Last one can also combine MP2 and GGA. These are called double 

hybrids. In Orca B2PLYP is implemented.  

One key defect of simple DFT method is the lack of dispersion 

interactions. There are included to the present HF either. On 

the other hand, quite accurate semi-empirical corrections can be 

used. The most used model is the Grimme D3 method. It is 

available for most of the GGA.  

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc


 

 

In Orca the usage is easy. (The D3BJ is Grimme version 3 

corrections with Beck-Jonson damping model) 

 

! PBE D3BJ TZVP opt … 

  

As DFT cannot be improved systematically the results matters. 

The DFT wf’s are variational but the models are not, so we 

cannot judge the quality of results with the correlation energy. 

The results can be compared to experiments or to more accurate 

quantum chemical methods.    

Below there are few tables.  

 



 

 

 



 

 

 

 



 

 

They show that OLYP and B3LYP method is usually as good as MP2. 

Unfortunately the results depend a (quite) bit from the property 

we are looking but in most cases the DFT methods are as good as 

or better than MP2. There are much more tables in the Cramers 

book. Almost all methods the bond distances are quite good. For 

energies the HF or LDA are not reliable whereas most GGA’s and 

correlated quantum chemistry methods are good. The reaction 

barriers are challenging form computational methods and in them 

the GGA methods work rather well. 

Very crudely one can say that  

Double hybrid < Meta-GGA ~ Hybrid < pure GGA << LDA  

Naturally the GGA methods have some problems. The most obvious 

one is the difficulty to improve the XC-functionals. Another is 

the van der Waals interactions (or dispersion) which is 

important in weakly bonded systems. HF and by far most of the 

GGAs do not have them and they have to be added using additional 

(empirical) terms. In most cases the Grimme’s D3 model works 

well. DFT have also problems to describe the hydrogen correctly. 

This is due to the Self Interaction Error (SIE). In DFT the 

density is the basic quantity and hydrogen sees its own density. 

This is not correct (think the Schrödinger equation of H atom). 

A good GGA will almost cancel this but not exactly. There are 

several Self Interaction Corrections (SIC) but they are 

difficult to use. Note that HF is exact for hydrogen so the 

hybrid functionals have smaller SIE and this is one reason of 

their success.    

Like HF the DFT models do not give good HOMO-LUMO gap or 

absolute energy levels for electronic states. 

Summary: It does not matter whether we like or dislike DFT, its 

accuracy compared to computational cost is superior to any of 

the traditional quantum chemistry methods. For large systems we 

need to use DFT until we get very efficient MP2-type methods.  

 
In DFT the development is rather slow. Now there is quite a bit 

of interest of beyond-DFT methods. Like RPA, MP2 etc.  



 

 

On the other hand, both these methods have enormous amount of 

applications covering almost all fields of chemistry. DFT can be 

used to model single molecules, clusters of atoms, surfaces, 

solid systems and liquids. Systems up to 100.000 valence 

electrons can be computed. An emerging research field is quantum 

mechanical materials screening where properties of materials (or 

molecules) will be evaluated computationally and this 

information is used to help the synthetic work.  

 

Linear scaling DFT calculations 

 

The long term dream of quantum chemistry is to have a linear 

scaling (or N log N) code. There are many codes that claim to 

have achieve this, like ALMO in CP2K, BigDFT or CONQUEST. Some 

of them are not effective for real 3D systems, some of them are 

quite unstable (ALMO) but this is really the direction to go. 

Typically, they have complex data initialization and they are 

efficient only for large systems. So far, I have not done any 

research project with linear scaling codes.  

CONQUEST is a large scale DFT electronic structure code, capable of both 

diagonalisation and linear scaling, or O(N), calculations. It has been developed jointly 

by NIMS (National Institute for Materials Science, Japan) and UCL. The code is designed 

to perform DFT calculations on very large systems (containing tens of thousands, 

hundreds of thousands or even millions of atoms). It can be run at different levels of 

precision, ranging from ab initio tight binding up to full DFT with plane wave accuracy. 

It is capable of operation on a range of platforms from workstations up to high 

performance computing centres. These web pages contain information on the code, and 

its applications, as well as separate areas for developers. 

http://www.nims.go.jp/
http://www.ucl.ac.uk/


 

 

 
From.  Mohr et al. Nuclear Materials and Energy 15, Pages 64-70 

 

Practical quantum chemistry calculations 

 

The first choice is the DFT with modern GGA or hybrid method. 

The basis should be TZ level. If possible test calculations 

(very often single point calculations are enough) with MP2 at 

least TZ basis should be done. The state-of-the-art basis set 

extrapolation methods like F12-RI-MP2 are efficient to estimate 

the infinite basis set limit. CCSD calculations are usually too 

expensive, but the DLPNO-CCSD(T) method is very promising. If the 

DLPNO-CCSD(T) method is available use it but warning it takes a lot 

of memory.  


