
 

 

Computational Chemistry II  2023 

Text book   Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) 

Chapter 5. Entropy and Free Energy (Cramer: chapter 

10) 
 

Entropy  
 

As mentioned earlier to be able to compute the free energy we 

need the entropy, G=H-TS. The entropy can be computed using 

statistical mechanics. In the following a very brief 

introduction of stat. mech. is given. More details can be found 

in any physical chemistry textbook. 

The statistical mechanics start from the partition function. A 

single particle partition function is a simple sum 

𝑞 =  ∑ exp (−𝛽𝐸𝑛)

𝑛

 

In this form the  is 1/kT, where k is Boltzman constant and En 

is the energy of the quantum state n. To get the quantum states 

we can use simple model potentials, like particle in a box, 

rotating molecule and harmonic approximation. This approach is 

valid in gas phase. In liquid or in solid the molecular 

interactions are strong and we cannot use free molecule models. 

In solid it is possible to model the entropy by using only 

vibrations but I will skip the details of this. In liquids so 

called thermodynamical integration methods can be used. Some 

examples of them later.  

 

Particle in a box 

The energy levels of a particle of mass m in 1-D box of length L 

is  
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En         Here the h is the Planck constant. The 

exact calculation of q is not possible, but for macroscopic box 

(> 100 nm !) the energy states are very close to each other and 

we can replace the sum with integral. The (Gaussian) integral 

can be solved. 
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We can define the thermal wave length   
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this we can simplify the partition function.  
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The example above is 1-D but it is easy to generalize to 3-D 

because the quantum states do not interact and thus the 3-D 

partition function is a product of the 1-D partition functions.  
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Note that the  is very small. For Ar at room temperature, 

m=6.63*10-26 kg and =1/kT= 2.41*1020 1/J then =1.60*10-11 m. 

Rotating molecule 

The energy level of a diatomic molecule are ,...2,1,0),1( =+= JJBhcJEJ  

where B is the rotational constant B=h/(82cI), and I = r2, 

=m1m2/(m1+m2) where m1 and m2 are the masses of the atoms. The 

states are degenerate as 2J+1. Again the direct sum 

 +−+=
J

R JhcBJJq ))1(exp()12(   cannot be computed but also here the 

sum can be approximated with integral 
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Here it is more convenient to use the rotational temperature θ. 

For HCl the rotational temperature is 15.24 K so at room 

temperature the rotational partition function is 19.63. (The 

exact value from the summation is 19.969.) 

Again most of the molecules are non-linear and we need to 3-D 

rotational partition function 
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The σ is the symmetry number of the molecule. For lager 

molecules it is usually = 1, but for example water it is 2.  

Example. ONCl, BA = 2.84 cm-1, BB = 0.191 cm-1 , BC = 0.179 cm-1. 

The symmetry number = 1, T=298 K, qR = 16 940. 

 

Molecular vibration 
 

For single molecular vibration the energy levels are ħω(n+1/2). 

Now the sum is easy to compute (Note that we ignore the zero 

point energy).  

)exp(1

1

−−
=Vq  

This equation is valid for every vibration (there is not 

coupling between the vibrations) so we can compute the 

vibrational partition function for molecule that have several 

vibrations, 
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Now we have all the components of the general molecules 

partition function. 
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The partition function above is for single molecule but we would 

like to study several molecules. In the ideal gas approximations 

the molecules do not interact so the many molecule partition 

functions is  
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We need to take into account that in quantum mechanics the 

molecules cannot be distinguished so we can number them in any 

order. This modifies the partition function 
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If the system contain several gases the partition functions is  
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From the partition function we can compute the finite 

temperature internal energy and entropy 

Energy  

The energy is rather easy to compute 
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From this one can derive a formula for energy that depend on the 

partition function 
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Entropy 

 

Entropy is more complex but also it can be computer from the 

partition function. The final expression is  
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This can be applied to each partition function part. For the 

translation part: 
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Rotational part, linear molecule 
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And non-linear molecule 
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And last we need the vibrational entropy. The internal energy U 

is  
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    and ln Q is −𝑘𝑁 ∑ ln (1 − exp(−𝛽ħ𝜔𝑛))𝑛  










−−
−

=
n

n

n

nV kN
T

N
S ))exp(1ln(

1)exp(










 

Note: if the frequencies are very low the second term above will 

diverge like -ln(ħω/kT) (the first term will approach to nRT). 

So the low frequency modes need to be ignored and some cut-off 

is used. One rational cut-off is ħω/kT = 1. At room temperature 

this means frequency of ca. 210 cm-1. 

Now we have the full molecular entropy in gas phase. We have 

ignored the intramolecular interactions and this need to bear in 

mind when this model is used. This approach should be used only 

in gas phase reactions, solids, and reaction in apolar solvents. 

On the other hand the approach is easy. All we need is the 

molecules mass, geometry (for rotational part) and harmonic 

frequencies.  



 

 

Note that this approach can be used in solids provided that the 

vibrations can be handled correctly. In polar liquids only 

qualitatively accurate results can be obtained.  

 

Free Energy 

 

Now we have the Free energy: G = H – TS.  

The Free energy for gas phase molecules is quite large. At room 

temp and 1 atm pressure.  

N2 (θrot = 2.88 K) 54.9 kJ/mol, O2 (θrot = 2.08 K) 55.4 kJ/mol, CO 

(θrot = 2.78 K) 54.2 kJ/mol.   

This needs to be taken into account when molecular binding is 

considered.  

In chemical reactions, the Free energy should be computed for 

reactants, products and at the transition state. (the last one 

may be difficult). In association type (A+B -> C) the entropy is 

reduced a lot. In surface reactions the main entropy loss comes 

at the adsorption step: A(gas) -> A(surf). The estimation of the 

entropy loss of reaction A(surf)+B(surf) -> C(surf) is not easy 

but usually it is not very large and in most calculations it is 

ignored.  

 


