
Stata Introduction
Stefano Lombardi*

August 9, 2023

Note

This introduction is a crash course in how to work in a structured fashion and write
efficient code. It is intended to get you started on working in Stata, and for those of you
who are already familiar with the software, it will hopefully provide a useful summary of
the main ingredients necessary to successfully code.

*VATT Institute for Economic Research. E-mail: stefano.lombardi@vatt.fi.

mailto:stefano.lombardi@vatt.fi

Contents

1 Introduction 3

1.1 Stata Interface . 3

1.2 Getting Help . 4

1.3 Basics of Stata syntax . 5

1.4 Setting up the work environment . 6

2 Working with do-files 7

2.1 A do-file template . 7

2.2 Running do-files . 8

2.3 Inserting comments in do-files . 8

2.4 Increasing the readability of do-files . 9

2.4.1 Using comments to create code sections 9

2.4.2 Breaking script lines . 9

3 Data Management 11

3.1 Logical operators, varlists and system variables 11

3.2 Loading and saving data . 12

3.2.1 use, save and alternative use commands 12

3.2.2 import and export . 13

3.3 Inspecting and describing data . 13

3.3.1 browse and tabulate . 13

3.3.2 summary statistics, missing values and duplicate observations 14

3.3.3 graphical methods . 14

3.4 Creating and modifying variables . 18

3.4.1 generate and replace . 18

3.4.2 drop and keep . 20

3.4.3 destring and encode . 21

3.4.4 by and sort . 21

4 Regression Analysis 23

4.1 Regression commands . 23

4.1.1 Linear regression . 23

4.1.2 Non-linear regression . 24

4.2 Post-estimation commands . 24

4.2.1 Prediction . 24

4.2.2 margins . 25

5 Macro Variables and Loops 26

5.1 Macro Variables . 26

5.2 Loops . 27

2

1 Introduction

1.1 Stata Interface
The first thing you encounter when opening Stata is the interface:

The main windows are:

1. the command window (by default positioned at the bottom of the Stata window);

2. results window (centre);

3. review window (left);

4. variables window (top-right);

5. properties window (bottom-right).

Command window

Commands are interactively submitted to Stata from this window (by default positioned at the
bottom of the Stata window). The command window should be used only to perform ba-
sic tasks, like inspecting the data or, as in the following example, for using Stata as a calculator:

. display 2+2
4

The first line contains the code typed in the command window preceded by a dot (.). The
second line shows the result after Stata interprets the display command typed by the user.

Type Page Up/Page Down keyboard buttons to step through the command history.

3

Results window

It contains all the commands and their respective results. You can use CTRL + F to search
into the results window. The cls command cleans the screen.

Review window

It shows the history of submitted commands and displays successful commands in black and
unsuccessful in red. To enter a command you can:

• Click on it once to copy it to the command window, replacing the contents you had there.

• Double-click on it to resubmit it.

Variables window

You can do different things with the variables from this window:

• Double-click a variable to send it to the command window.

• Use SHIFT and CTRL to select different variables and either (1) drag them into the
command window or (2) right click on the selection to interactively drop/keep the variables
selected or perform other operations.

Note that reordering the display of the variables in the Variables window does not affect the
order of the variables in the dataset itself.

Properties window

It displays properties of variables and datasets. By default, changes to these properties are not
allowed (to toggle this ability, click the lock icon in the titlebar).

1.2 Getting Help
Whether you already are an experienced Stata user or a beginner, there is absolutely no chance
that you remember by heart all the commands, options, sub-options (and sub-sub-options!)
relevant for your research. Fortunately Stata provides the user with a very good help command.

Just type help command name to access the help window of an existing command, or findit
word(s) to search for information across all available sources (including system help, FAQs and
the Stata Journal.

1. getting help
* Help for using summary command
help summary

* Help for performing Kolmogorov-Smirnov test
findit kolmogorov test distribution

4

Note that the above box contains proper Stata code, i.e. it can be entirely copy-pasted line
by line in the command window (or in a do-file). Note also that we are making use of specific
Stata syntax for writing comments. We will come back to do-files and comments in section 2 –
Working with do-files.

For now, keep in mind that every single Stata command, operator, option, syntax rule can be
searched into the Stata documentation. I encourage you to use Stata help as much as possible!
For more information on how to get help in Stata, type help help advice.

1.3 Basics of Stata syntax
The help command is a good way to start speaking about Stata syntax. Type help summarize
to open the help window relative to the summarize command. The way the help window for this
specific command is structured mirrors the general Stata syntax. What we see under Syntax is:

summarize [varlist] [if] [in] [weight] [, options]

The main ingredient of Stata syntax are:

• The command is in bold; the underlined letters are sufficient to use the command: Stata
interprets summar, summ and su exactly in the same way (however, s will return error).

• Everything in brackets is optional, it does not have to be specified. The following optional
arguments are shared by nearly all Stata estimation and data analysis commands:

– [varlist]: list of variables separated by a space.
– [if]: conditional statement relative to the values of a variable. It basically tells

Stata to use only the data specified.1

– [in]: tells Stata to use only the observations specified.2

– [weight]: tells Stata how to deal with weighted data.

Practically speaking, you will routinely use if statements, while you will seldom use in
and weight statements.

• [, options]: command options specific to the main command. The set of the specified
command options always follows a comma; options are separated each other by a space.

Note that command options can allow the specification of sub-options, but the syntax of built-in
Stata commands follows the above general structure.

This is far from being everything you need to know about Stata syntax, but it is a necessary
starting point to be able to master the use of the help editor and of the software itself. At the
beginning of section 3 we will introduce logical operators, while more advanced topics concerning
macro variables and loops will be introduced later in section 5.

1 For instance, you can use it to summarize weight only if age is smaller than 4. In section 3.1 we will see the
actual logical operators to perform such tasks.

2 You can use it to summarize only the first 100 observations.

5

1.4 Setting up the work environment
Before proceeding further, let us structure the work environment by using different folders where
to store raw and processed data and output.

First, go to your Desktop and create a folder using the first three letters of your name and
the first two of your surname (stelo in my case). Then create the following 7 folders in your
personal directory:

folder description

do put here all the relevant do-files.
raw contains the raw data. NEVER alter your raw data.
use contains the data cleaned and prepared for the analysis.
temp contains intermediary files that are used in your code.
outreg contains your final regression output and tables.
graphs contains your final plots and figures.
log contains all your logs. It is good practice to give them the same name

as the do-files they are associated with.

You can rename and put your personal directory wherever you want. As you will see in the next
examples, I keep it in my Dropbox folder, but you can leave it on your Desktop if you prefer.

Second, use cd to set your personal directory to be the Stata working directory. You can
check what your current working directory is by typing pwd. By typing dir you should see the
7 sub-directories listed. Remember, you must use forward slashes if you are a Mac user.3

2. setting the work environment
// Default working directory
pwd

// Set new working directory and check sub-directories
cd "C:/Users/Stefano/Dropbox/stelo"
pwd
dir

Finally, put into the raw folder the dta file that you find in the compressed folder that also
contains the current tutorial.

Important: From now on I will assume that you set up the folders structure as explained above,
that you have modified your Stata working directory accordingly, and that you put the data in
the raw sub-folder.

3 In practice, always use forward slashes to improve portability of your scripts.

6

2 Working with do-files
In virtually any application you will want to automatize as much as possible your data man-
agement and data analysis operations. This means that you are seldom going to use Stata
interactively (by typing in the command window). Accordingly, we will now see how to work in
a structured manner using do-files.

A do-file is a text file that contains a list of Stata commands (i.e. a script), and is produced
in a built-in text editor called the do-file editor. With few exceptions, the syntax used in a
do-file is exactly the same that you would use in the command window. However, there are two
huge advantages to work with do-files:

• It allows you to build up series of commands that can be submitted to Stata either all at
once or in chunks.

• It allows you to structure your work in a way that is essential for its reproducibility.

2.1 A do-file template
To open a new do-file type edit. With few modifications to fit your needs, you can use the
following template for your do-files:

3. do-file template
// Do-file template

clear all
set more off

capture log close
cd "C:/Users/Stefano/Dropbox/stelo"
log using "log/log_template", replace

/* ------ write your commands here ------ */

log close

Copy-paste the above code in a new do-file, save it and use it as a template for your future
works. In a nutshell, the commands do the following:

Stata command description

clear all remove and close everything in the current session.
set more off do not ask to continue when running a long script.
capture log close close any already opened log file (if existing).
cd "working directory path" define working directory.
log using "log\log name", replace save a log recording all commands and results of

the entire session in the log sub-folder.

7

2.2 Running do-files
The easiest way to run a do-file is to:

1. Select the line(s) of code that you want to submit to Stata.

2. Press CTRL + D.

You can run the entire do-file by pressing CTRL + A (select all) and CTRL + D in sequence.

2.3 Inserting comments in do-files
Do-file comments are words that are not processed as commands by Stata. They are displayed
in green in the do-file editor. Inserting comments in essential to improve both the understanding
and the readability of the code you are writing, whether you are sharing it with someone or not.

There are three ways to include comments in your do-file:

• All words following the // operator are commented out.

– This works also if // is inserted after commands, see Example 1 below.
– This operator cannot be used interactively in the command window.
– It only comments words on the same line where // is inserted.

• All words following the * operator are comments.

– This commenting operator cannot be inserted after commands, see Example 2.
– It can be used interactively in the command window.
– As //, it only comments words on the same line.

• Words included in /* */ are commented out. This operator can be inserted at the begin-
ning, at the end or in the middle of a command line, and it can span across different lines.
Remember to put */, otherwise all the commands following /* will be commented out!

The following examples show how to include comments in Stata do-files.

4. comments in do-files
/* Example 1 */
// Stata can be used as a calculator:
display 2+2 // --> this is a valid comment!
display /* this works as well! */ 2+2

/*
note that
you can also span comments
across different lines
*/

/* Example 2 */
* Stata can be used as a calculator:
display 2+2 * --> NOT a valid comment! <--

8

2.4 Increasing the readability of do-files
2.4.1 Using comments to create code sections

When opened in the editor, the do-file code is automatically syntax highlighted (“coloured”)
according to the type of elements inserted in the script (e.g. strings are red). However, there is
a lot you can do to improve code readability by making use of commented text:

• Always put the part of code that the user has to modify at the very beginning of your do-
file – e.g. the cd command, the names of the files to be loaded, the number fo simulations
to be performed by your code, etc – and in a separate section.

• Separate sections, subsections and sub-subsections by using easily recognizable titles, e.g.:

/*-------------- I. DATA MANAGEMENT --------------*/

// In the section we perform this and that operations
// What we get in the end is... further used in...

• Use lines and boxes to help the reader to go through the code:

* This is a beautiful box *

* This is an easily recognizable title
*======================================

* This is a subtitle
*--------------------

• Always comment what you are doing: it saves (lots of) time when checking the code.
However, do not exaggerate with the comments either! If later on you modify parts of
your code, some comments might become redundant if not patently wrong since they refer
to commands that do not exist anymore.

2.4.2 Breaking script lines

Consider this:

display "this is a long string (... a lot more words ...) to be displayed"

Very often the commands you write in your do-files will become awfully long. You can break
strings using three dashes: ///. The above could be written as:

9

5. breaking script lines (1)
display "this is " ///
"a long string " ///
"(... a lot more words ...) " /// here you can avtually write comments if you want
"to be displayed"

Alternatively, you can also use #delimit. Remember to “close” the command when you are
done breaking the line. Also, note the different use of the quotes (") as compared to above:

6. breaking script lines (2)
#delimit ;

display "this is
a long string
(... a lot more words ...)
to be displayed" ;

#delimit cr

Mind that only #delimit can be used interactively (in the command window).
Breaking code into different lines becomes crucial when your command has (sometimes

dozens) of options and sub-options, e.g. when plotting graphs.

10

3 Data Management
Stata is good for performing data management tasks, also (or better, especially) thanks to the
use of macro variables.4 In what follows we show how to import, modify, save and export data
in Stata. We will focus on the commands per se, not on how to perform the above mentioned
operations efficiently. We will explore efficiency in section 5 – Macro Variables and Loops.

3.1 Logical operators, varlists and system variables
Every language syntax needs operators to perform logical comparisons. In the following table
you find the main logical operators used by Stata. The way they are used will become clear
in the next subsections.

operator meaning

a == b equality
a != b inequality
a >= b greater or equal to
a > b greater than
a & b and
a | b or

A varlist is simply a list of variables names (separated by a space). Clearly, lists of variables
can get very large (imagine if you have to refer to dozens of dummy variables). Two Stata
wildcard characters can help you in such cases:

• The * character matches one or more characters in the name specified. Examples include:

– var* (*var) : list composed by all variables with name starting (ending) with var.
– my*var : all variables starting with my, ending with var and with any number of

characters in between.

• The - character returns variables starting/ending with the left-/right-hand characters.

– var1-var5 : returns var1, var2, ..., var5.

Whenever you need to refer to observations (i.e. indexing rows) the importance of two
so-called system variables cannot be overstated. They are n and N (note the underscores):

system variable meaning

n observation (row) number
N last row number

If used with by, they respectively become running counter and group size within each by-
defined group (more on this later).

4 For complex data analysis steps consider using matrix- and object-oriented languages, like R or Matlab. They
are way more flexible than Mata (the Stata matrix language).

11

3.2 Loading and saving data
Imagine you want to do the following:

1. Load a Stata dataset (i.e. in dta format).

2. Perform some operations and save the data in dta, csv and xlsx formats.

3. Import the csv and xlsx data created at the previous point.

The following do-file performs the above operations. As a general rule, note the use of
the clear and replace options whenever data are imported and exported, respectively. For a
detailed explanation of the commands used, see the next subsections.

7. load and save data
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

// 1. Load Stata data

use "raw/CPS_2012_micro_small.dta", clear
/* ---- some data operations here ---- */

// 2. Export data in Stata, Excel and csv formats

* Stata format (dta)
save "temp/stata_outdata.dta", replace

* Comma separated (csv) and Excel (xls) formats
export delimited using "temp/csv_outdata.csv", delimiter(",") replace
export excel using "temp/excel_outdata.xls", replace

// 3. Import csv and xls data

import delimited "temp/csv_outdata.csv", delimiter(",") clear
import excel "temp/excel_outdata.xls", sheet("Sheet1") firstrow clear

3.2.1 use, save and alternative use commands

The use command allows to load dta datasets (the Stata-specific format for data). Note that
if a dataset has already been loaded and you try to load a new one, Stata will return error. You
avoid this by using the clear option. Instead, to save dta files use save. The replace option
makes sure you overwrite the file contents.

Stata comes with some example datasets automatically installed, e.g. the ever-present
auto.dta. Instead of using use, type sysuse filename [, clear] to access them. To know
which example data you can load, type sysuse dir. Alternatively, online example datasets can
be loaded using webuse filename [, clear].

12

3.2.2 import and export

Stata can work with files in many formats (e.g. xlsx, txt, csv, etc.), check help import.
To save a Stata dataset as a comma-separated or an Excel file you need to use export

delimited and export excel, respectively. In the first case, if the delimiter type is not specified
in the options, it is assumed to be a comma.

The delimited option is also used when adopting import delimited.5 To import excel
files with import excel, instead, you need to specify the name of the sheet containing the data
(using the sheet option), and whether the first row of the Excel sheet contains variable names.

3.3 Inspecting and describing data
After loading data in Stata, there are some typical preliminary steps you will routinely perform.
First, to check which variables are present in your dataset, and what their format is. Second,
to produce informative descriptive statistics. Finally, graphical representing of the data.

We cover some of the main aspects related to these topics in the next sub-sections.

3.3.1 browse and tabulate

These two commands can be used interactively from the command window to inspect data.
If you want to visualize the data you just loaded, you can simply type browse.6 This opens

a spreadsheet-style data editor and already gives you a general an idea of how your data looks
like (e.g. string variables are coloured in red, labels in blue, etc.). This command becomes even
more useful when you use the varlist and if optional arguments to inspect a subset of the data.

The tabulate oneway and tabulate twoway commands produce one-way and two-way ta-
ble of frequencies, respectively. In the next example we use the latter after browsing the data.

8. browse and tabulate
clear all
cd "C:/Users/Stefano/Dropbox/stelo"
use "raw/CPS_2012_micro_small.dta", clear

// Browse all data
browse

// Browse lnwage and age for females with log wage>2.5
browse lnwage age if sex==2 & lnwage>2.5

// Two-way frequencies table for sex and state
tabulate statefip sex

5 The import delimited command has superseded insheet, so use the former.
6 Altenatively, list can be used. The main difference is that it prints the information on the screen.

13

3.3.2 summary statistics, missing values and duplicate observations

The describe command provides a compact overview of some of all of the variables loaded in
memory, their type and their labels (which, if well used, can be extremely useful).7

In order to compute the descriptive statistics of interest we can use either summarize,
tabstat, or codebook. The latter also provides information on missing values.

Finally, duplicates manages duplicate data rows, including tagging and dropping them.

9. descriptive statistics
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

// Load Stata data
use "raw/CPS_2012_micro_small.dta", clear

// Describe all and part of the dataset variables
describe
describe lnwage age sex

// Descriptive statistics of 3 variables for men
codebook age yrseduc lnwage if sex==1
summarize age yrseduc lnwage if sex==1
summarize age yrseduc lnwage if sex==1, detail
tabstat age yrseduc lnwage if sex==1, stat(mean sd p25 p50 p75) col(s)

3.3.3 graphical methods

Stata offers excellent graphics capability that we cannot cover extensively. Let us focus on three
types of graphs that are very useful to inspect data:8 histogram, scatter and line.

Note that, for convenience, in the next examples graphs are exported in pdf format, but
many other file extensions are available.

10. histogram
cd "C:/Users/Stefano/Dropbox/stelo"
sysuse "auto", clear

// histogram
hist mpg, title("Histogram car mileage", color(black)) ylabel(, nogrid) /// no grid

graphregion(color(white) lwidth(medium)) /// white background
lcolor(gs10) fcolor(gs6) ytitle("") // color; no y-axis title

graph export "graphs/hist.pdf", replace

7 See help label, and in particular help label define and help label variable.
8 For additional information, you can start checking here and here.

14

11. line plot
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

// Random walk creation
set seed 12345
set obs 100
gen x=_n
gen y=0 if _n==1
replace y=y[_n-1] + rnormal() if _n>=2

// Line plot
line y x, title("Random Walk", color(black)) lcolor(black) lwidth(medium) ///

graphregion(color(white) lwidth(thick)) /// white background
ylabel(, nogrid) xtitle("") ytitle("outcome value")

graph export "graphs/line.pdf", replace

0
.0

2
.0

4
.0

6
.0

8
.1

10 20 30 40
Mileage (mpg)

Histogram car mileage

-5
0

5
10

15
ou

tc
om

e
va

lu
e

0 20 40 60 80 100

Random Walk

15

The next two scatter plots are examples of twoway graphs, i.e. graphs where we draw
more than one figure at a time in the same window. In the first case we produce a scatter plot
and then a quadratic line fitting the data. In the second case we plot two separate scatter plots
in order to assign different colours to the observations relative to the foreign dummy.

12. scatter plots
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

sysuse "auto", clear

// 1. Scatter plot with fitting line
twoway ///
(scatter mpg weight, mcolor(gs8)) /// scatter plot
(qfit mpg weight, lcolor(black) lwidth(medium) /// quadratic fitting

graphregion(color(white) lwidth(thick)) ylabel(, nogrid) legend(off) ///
title("Scatter plot with quadratic fitting", color(black)) ytitle("Mileage"))

graph export "graphs\scatter1.pdf", replace

// 2. Scatter plot by "foreign" dummy
twoway ///
(scatter mpg weight if foreign==0, mcolor(blue)) /// 1st scatter plot
(scatter mpg weight if foreign==1, mcolor(red) /// 2nd scatter plot

graphregion(color(white) lwidth(thick)) ylabel(, nogrid) ytitle("Mileage") ///
title("Scatter plot by Foreign dummy", color(black)) ///
legend(lab(1 "Domestic") lab(2 "Foreign") nobox region(lcolor(white))))

graph export "graphs/scatter2.pdf", replace

10
20

30
40

M
ile

ag
e

2,000 3,000 4,000 5,000
Weight (lbs.)

Scatter plot with quadratic fitting

16

10
20

30
40

M
ile

ag
e

2,000 3,000 4,000 5,000
Weight (lbs.)

Domestic Foreign

Scatter plot by Foreign dummy

As an alternative to histograms, you can also use kernel densities (script not included):

0
.0

00
2

.0
00

4
.0

00
6

.0
00

8
.0

01
kd

en
si

ty
 w

ei
gh

t

2000 3000 4000 5000
Weight (lbs.)

Domestic Foreign

Kernel density by Foreign dummy

13. kernel densities
clear all
cd "C:\Users\stelo424\Dropbox\stelo"

sysuse "auto", clear

// Kernel densities
twoway ///
(kdensity weight if foreign==0, lcolor(blue) lwidth(medium)) /// 1st kernel density
(kdensity weight if foreign==1, lcolor(red) lwidth(medium) /// 2nd kernel density

graphregion(color(white) lwidth(thick)) ///
ylabel(, nogrid) xtitle("Weight (lbs.)") ///

title("Kernel densities by dummy variable values", color(black)) ///
legend(lab(1 "Domestic") lab(2 "Foreign") nobox region(lcolor(white))))

graph export "graphs\kdensities.pdf", replace

17

3.4 Creating and modifying variables
In what follows, we cover the following fundamental commands:

Stata command description

generate create a new variable.
replace replace contents of existing variable.
drop eliminate variables or observations.
keep keep variables or observations.
destring, encode convert string variables in numeric.
sort often used together with by, it sorts observations

according to one or more variables.
by prefix repeating the subsequent command on subsets

of the data (according to the varlist specified).

Important: Stata considers missing values – identified by a dot (.) – as large values. Keep
this in mind when creating and modifying variables.

3.4.1 generate and replace

To create a new variable you need to use generate.9 This is often (but not necessarily) used
in tandem with replace, which of course is a command that can be used on its own as well.
Either way, the general syntax10 used in both cases is:

command varname =exp [if] [in] [, command options]

where the arguments are:

• command: either generate or replace.

• varname: a new variable name in case of genereate or an existing one for replace.

• exp: the expression used to generate or replace varname. Note that exp is preceded by
only one equal sign (=). The expression can be:

– a function of an already existing variable (e.g. varname is age squared).
– newly generated numbers (typically, random variates drawn from a given f(x)).
– a combination of the two.

• [if] and [in]: see sections 1.3 and 3.1. In particular, remember to use two equal signs
(==) when specifying an equality statement.

Whenever you simulate random variates you should always set the seed in order to guarantee
replicability of your results. This is done by using set seed #, where # is a constant.

9 Sometimes egen, the extended version of generate, is actually required. Check the example at section 3.4.4.
10 Check help gen to see the complete set of optional arguments and options for the two commands.

18

The next example will make use of some of the previously presented commands and ideas.
If you do not feel comfortable, take 15 minutes to read the previous sections before continuing.
You will also note that some commands are “new”: we haven’t encountered them yet. I promise
that this won’t be a problem as long as you read and understood the materials covered so far.11

1. Use set obs to create an empty dataset composed by 1000 observations.

2. Create a female dummy such that 60% of observations are females.

3. Set the seed equal to 12345 and use rnormal to create the variable height such that
height ∼ N(µ, σ2) with (µ, σ) equal to (70, 3) for men and (64, 3) for women.

4. Codify height as missing if a man is shorter than 63; check missing values number.

5. Create a new variable called height cat. For men, set it equal to "tall" if height is grater
than or equal to 75, "short" if height is smaller or equal to 65, and "average" otherwise.
For women, use 59 and 70 as lower and higher cut-off, respectively.

6. Visualize the joint distribution of height cat and female in a table; save output1.dta.

14. generate and replace
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

// 1. Create empty dataset (N=100)
set obs 1000

// 2. Female dummy (60% observations are women)
gen female=1 if _n/_N <= 0.6
replace female=0 if female==.

// 3. Create height
set seed 12345
gen height=rnormal(70,3) if female==0
replace height=rnormal(64,3) if female==1

// 4. height missing for men shorter than 63
replace height=. if female==0 & height<63
count if height==. // alternatively use codebook

// 5. Create height_cat
// note "& height!=."!
gen height_cat=.
* men
replace height_cat=3 if female==0 & height>=75 & height!=.
replace height_cat=2 if female==0 & height<75 & height>65
replace height_cat=1 if female==0 & height<=65

11 You can find all the informaiton you need and more on Stata help.

19

* women
replace height_cat=3 if female==1 & height>=70 & height!=.
replace height_cat=2 if female==1 & height<70 & height>59
replace height_cat=1 if female==1 & height<=59

// 6. Produce frequencies table and save
tabulate height_cat female
save "use/output1", replace

3.4.2 drop and keep

The drop command can be used in the two following ways (keep works symmetrically):

• drop varlist : erase varibles from memory according to the specified varlist.

• drop if exp : drop observatios according to exp .

Neither drop nor keep are reversible. Hence, if the aim is to perform operations on subsets
of observations or variables, it is better to use the if statement (as we repeatedly did in the
previous exercise). drop and keep are correctly used if the goal is to clean and reorganize the
data in memory (to simply rename variables, use rename). In the next exercise we:

1. Load the example dataset auto.dta.

2. Transform price from dollars to thousand dollars without using generate. Call it price th.

3. Clean data from cars costing more than $5000 having rep78 missing; report sample size.

4. Drop all variables but price and price th and save as output2.dta

15. drop and keep
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

// 1. Load the auto dataset
sysuse auto, clear

// 2. price in thousand dollars
replace price=price/1000
rename price price_th

// 3. Drop cars obs. costing more than 5000 withrep78 missing
drop if price_th > 5 & rep78==.
count // alternatively, di _N

// 4. Drop all variables but price and price_th
keep price price_th
save "use/output2", replace

20

3.4.3 destring and encode

Very often, some of the variables in memory are in unwanted formats. A typical situation is
when categorical variables are stored as strings and we need to transform them in numerical.
While destring converts string variables that are inherently numeric in their contents, encode
deals with arbitrary string variables. In the following example we:

1. Load the example dataset auto.dta.

2. Check if there are string variables and convert them into numerical.

3. Repeat the above for the destring1.dta web dataset.

16. converting string variables
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

// 1. Load the auto dataset
sysuse "auto.dta", clear

// 2. Convert string variables
// destring doesn’t work since "make" contains nonnumeric characters
describe
encode make, gen(make_new)

// 3. Convert string variables of destring1.dta
webuse "destring1.dta", clear
describe
destring, replace // "replace" here replaces the old variables with the new ones

3.4.4 by and sort

The majority of Stata commands allow the by prefix. The syntax of the command can take one
of the two following forms:

by varlist : stata cmd
bysort varlist : stata cmd

with the following arguments:

• varlist : list of variables according to which applying stata cmd .

• stata cmd : any Stata command allowed to be used together with by.

Note that by requires data to be sorted according to varlist (either by using the sort option
or by previously using the sort command), while bysort automatically takes care of this.12

12 To choose whether to sort in ascending or descending order, use gsort.

21

Among the countless possible applications of this command, a good example is the creation
of group-specific running counters or means (e.g. by cross-section id variable in a panel dataset).

17. by and sort
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

// 1. Load National Longitudinal Survey panel
webuse "nlswork.dta", clear

// 2. Use "sort" and "generate" to create id-level running counters
sort idcode year
by idcode: gen id_counter=_n

// 3. Shuffle rows and repeat using "bysort" and "egen"
* Note: "(year)" sorts data also by year, but "gen" is then computed by idcode only
gen random=runiform()
sort random // shuffles dataset rows
bysort idcode (year): gen id_counter2=_n // id_counter2 identical to id_counter

// 4. Use "egen" to create...
* ...average weeks worked for each person
bysort idcode: egen avg_work=mean(wks_work)
* ...person-specific yearly ranking of the hours worked
bysort idcode: egen rank_work=rank(wks_work)

// 5. Check
browse idcode id_counter* year *_work

22

4 Regression Analysis
In the next subsections we first see how to estimate linear and non-linear regression models. We
then see how to obtain marginal effects and other post-estimation statistics.

More specifically, the commands that we cover in what follows are:

Stata command description

regression command
regress linear regression.
xtreg fixed-, random- and between-effects linear models.
ivregress single-equation instrumental-variables regression.
logit, probit logit and probit estimation.

post-estimation command
ereturn list returns estimation results.
predict post-estimation predictions, residuals, etc.
margins marginal effects computation.

4.1 Regression commands
4.1.1 Linear regression

Generally speaking, linear models are such that E[y |x] = Xβ is linear in the parameters in the
β vector (not necessarily in the regressors). The general syntax used to fit linear models is:

command depvar [indepvars] [if] [in] [weight] [, command options]

with the following arguments:

• command: either regress or xtreg.

• depvar : dependent variable in the regression.

• [indepvars]: independent variables.

• [, command options]:

– vce(vce type): shared by most regression commands. It allows to adopt robust,
clustered, bootstrap or other variance estimators.

– re, fe, be (for xtreg only): Random-, Fixed-, Between-Effects regression.

The ivregress command performs single-equation Instrumental Variables (IV) regression.
The syntax is similar, but it additionally requires to separately specify the list of the exogenous
regressors (i.e. the instruments) and the list of endogenous variables.

23

4.1.2 Non-linear regression

This general class of models comprises the cases where E[y |x] is not linear in the regressors.
The logit and probit models are used with binary and non-censored nor truncated outcome.
The commands used in this case are probit and tobit, with the same syntax as above.

4.2 Post-estimation commands
Once estimated the model of interest, you can immediately use ereturn list to visualize all
the quantities relative to the estimation, including (but not only) the estimated coefficients and
variance-covariance matrix.13 You can store such results in different ways (as macro variables,
scalars or matrices), but htis goes beyond the current presentation.14

Another extremely useful command that we will not cover here is estopost. It allows to
post any estimated quantities – displayed by ereturn list – so that they can be tabulated
and eventually exported as, for instance, tex or doc tables.

In what follows we focus on prediction and marginal effects. You should be aware, though,
that both the availability and the interpretation of post-estimation commands are highly de-
pendent on the specific estimation strategy adopted. Hence, you should always use:

help estimation command postestimation

where estimation command can be regress, xtreg, etc.

4.2.1 Prediction

After fitting our model, predict is used to obtain in- or out-of-sample predictions, residuals,
and related quantities. The syntax of predict used after single equation models is:

predict newvar [if] [in] [, options]

with newvar being the custom name of the variable that is going to be created by predict.
The content of newvar is different depending on the specification of [, options], e.g. :

• xb : calculates the linear prediction, i.e. Xβ̂ for the linear model and, for instance, F (Xβ̂)
for the probit model.

• stdp : standard error of the linear prediction.

Note that it can be specified if to restrict the prediction to the estimation sub-sample by
using predict newvar if e(sample).

In addition to predict, also estat produces post-estimation statistics. The main qualitative
difference is that estat produces scalar- and matrix-valued statistics instead of new variables.
As for predict, each estimator allows for different uses of this command.

13 This is similar to what can be done after generic non-estimation commands with return list.
14 Check ereturn local, ereturn scalar and ereturn matrix if interested.

24

4.2.2 margins

This command computes marginal means and effects and predictive margins. Its syntax is:15

margins [marginlist] [, response options options]

with the following arguments:

• [marginlist]: list of categorical variables or interactions appearing in the estimation. If
not specified, the overall margin is computed.

• [, response options]: main options of the command. They allow to choose the type of
marginal effect or elasticity.

• [, options]: additional options to refine the use of the command, the main ones being:

– At: family of options specifying at which covariates level to compute margins.
– over(varlist): estimation at the unique values taken by varlist.
– SE: options to choose the type of standard errors.
– Advanced: advanced options concerning weights, the estimation sample used, etc.

Important: Given the high number of options and the fact that some of them only make sense
with some estimated models but not with others, it is higly reccommended to carefully read Stata
help and the link Remarks and examples there suggested.

Keeping the above warning is mind, in what follows we see how to use post-estimation
commands in the linear regression case.

18. predict and margins
clear all
cd "C:/Users/Stefano/Dropbox/stelo"

sysuse "auto", clear

// 1. Preliminary linear regression
reg price mpg trunk weight

// 2. xb prediction
predict yhat, xb // same as using "if e(sample)"

// 3. margins
margins, dydx(*)

15 We can also use the if, in and weight statements.

25

5 Macro Variables and Loops
In this section we deal with two crucial topics for programming in Stata: macro variables and
loops. If you take a look at the Stata user guide, you will see that there is an entire 50-
pages chapter about programming. So it should be clear that the materials covered here are
by no means exhaustive. Nonetheless, by the end of this section, you will hopefully have good
knowledge of the basics necessary to deal with relatively advanced tasks.

5.1 Macro Variables
A macro variable has a name and it is characterized by some content. When you define it,
you assign the content to the name. In a second moment, you can access the macro content.

There are two types of macros, local macros and global macros. They differ in their scope –
as suggested by their name – and in the way their content is accessed. Besides this, they can
be used interchangeably.

Local macros are defined and accessed respectively with:

local macroname =exp
`macroname '

The macro is local since it is only available for the program or script it is written within.
Global macros are instead available anywhere within the current session. They are defined

and accessed with:

global macroname =exp
$macroname

It is generally wise to use local macros as often as possible to avoid conflicts in your code. On
the other side, all local macros contents are cleared from Stata memory after the do-file (or part
of it) is run by Stata. This means that whenever you want to run a part of the code containing
‘macroname ’, you also need to run at the same time the part of the code where you define the
local macro. On the contrary, given their nature, this is not necessary for global macros.

The next box provides some basic examples of local macros (try also to use global).

19. local macros
local x 10
di ‘x’
di "the result of 2*x is: " 2*‘x’

local name = "stefano"
di "my name is " "‘name’" // di ‘name’ doesn’t work

local names = ‘" "first " "second " "third" "’
di ‘names’

26

5.2 Loops
Loops allow to automatize repetitive commands. Whenever you have to perform any kind of
operation (loading and appending data, creating variables, replacing values, etc.) which can be
thought as being based on a running counter and/or on a set of names, you can apply a loop.

The types of loops available in Stata are:

Stata command description

loop type
foreach loop over items of a list or macro variable.
forvalues loop over consecutive numbers.
while keep looping until a specified condition is met.

logical command
if exp {...} evaluates exp . If true, commands in {...} are executed.
else if, else can be used together with if (same syntax).

Important: The above ‘if’ programming command must not be confused with the ‘if’ qualifier
that can be used as optional argument in most Stata commands (see section 1.3).

20. loops (1)
sysuse "auto", clear

// foreach loops

* using simple list
reg price mpg rep78 headroom trunk weight length turn
foreach x in mpg rep78 headroom trunk weight length turn {

di "‘x’ coefficient: " _b[‘x’] // _b is a system variable
}

* using local variable list
local covariates mpg rep78 headroom trunk weight length turn
quietly reg price ‘covariates’

foreach x in ‘covariates’ {
di "‘x’ coefficient: " _b[‘x’]

}

foreach x of local covariates {
di "‘x’ coefficient: " _b[‘x’]

}

27

21. loops (2)
// forvalues loop

forval i = 1/5 { // equivalent to i = 1(1)10
if "‘i’"=="0" | "‘i’"=="1" { // need parentheses if more than 1 command

di "Printing iteration number:"
di "‘i’st iteration"

}
else if "‘i’"=="2" di "‘i’nd iteration"
else if "‘i’"=="3" di "‘i’rd iteration"
else di "‘i’th iteration"

}

In the next example we see how to generate the first 20 numbers of the Fibonacci’s sequence,
i.e. a sequence such that y1 = y2 = 1 and yn = yn−1 +yn−2 for n > 2. This is a good example to
see how to loop keeping track of values relative to past iterations. It is also an instance where
explicit looping is not required at all.

22. loops (3)
// while loop
* first 20 numbers of Fibonacci’s sequence

local i = 1
local y_1 = 1
local y_2 = 1

while ‘i’ <= 20 {
if ‘i’<=2 local y=‘y_1’
else {

local y = ‘y_2’+‘y_1’
local y_2=‘y_1’ // update y-2
local y_1=‘y’ // update y-1

}
di "‘y’"
local i=‘i’+1 // update counter

}

* Note: can be obtained just like this (trick: "in 3/1")
clear all
set obs 20
gen y=1
replace y = y[_n-1] + y[_n-2] in 3/l
list y

28

