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Abstract
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1 Week I
In this lecture, we introduce the concept of nonlinear optimisation problems and the difference be-

tween mathematical programming and optimisation. We also discuss a few essential examples to motivate
future developments throughout the course.

1.1 What is optimisation?
Let us start with a simple definition, according to Oxford Dictionary:

Optimization (or optimisation, with British spelling):

• (noun) the action of making the best or most effective use of a situation or resource.

An optimisation is one of these words that has many meanings, depending on the context you take
as a reference. In the context of this course, optimisation refers to mathematical optimisation, a
subfield of applied mathematics.

In mathematical optimisation, we build upon concepts and techniques from basic mathematical
subfields. From calculus, analysis, linear algebra, and other, we to model and develop methods
that allow us to find values for variables within a given domain that maximise (or minimise) the value
of a function. In specific, we are trying to solve the following general problem:

min. f(x) (1)
subject to: x ∈ X.

where x ∈ Rn is a vector of n variables, f : Rn 7→ R is a function to be optimised (minimised) and
X ⊆ Rn is a domain containing potential values for x.

In a general sense, these problems can be solved by employing the following strategy:

• Analysing/visualising properties of functions under specific domains and deriving the conditions
that must be satisfied such that a point x is a candidate optimal point.

• Applying numerical methods that iteratively search for points satisfying these conditions.

This idea is central in several domains of knowledge, and very often are defined under area-specific
nomenclature. Fields such as economics, engineering, statistics, machine learning and, perhaps more
broadly, operations research, are intensive users and developers of optimisation theory and applications.
In addition, more and more fields, are recurring to operations research to find innovative solutions.

1.1.1 Mathematical programming and optimisation
Operations research and mathematical optimization are somewhat intertwined, as they were both

born in similar circumstances. In the decades after the two world wars, operations research tools were
more widely applied to problems in business, industry, and engineering. Since that time, operation
research has expanded into a field widely used in industries ranging from petrochemicals to airlines, fi-
nance, logistics, and government, moving to a focus on the development of mathematical models that can
be used to analyze and optimize sometimes complex systems. It has become an area of active academic
and industrial research.

With the development of computers over the next three decades after WWI, Operations Research
can now solve problems with hundreds of thousands of variables and constraints. Moreover, the large
volumes of data required for such problems can be stored and manipulated very efficiently. Much of
operations research relies upon stochastic variables and, therefore, access to truly random numbers. For-
tunately, the cybernetics field also required the same level of randomness. More recently, the operations
research approach, which dates back to the 1950s, has been criticized for being a collection of mathe-
matical models but lacking an empirical basis for data collection for applications.

Let us separate mathematical programming from (mathematical) optimization. Mathematical
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programming is a modelling paradigm in which we rely on (compelling) analogies to model real-world
problems. In that, we look at a given decision problem considering that:

• variables represent decisions or interest, as in a business decision or a course of action. Examples
include setting the parameter of (e.g., prediction) model, production systems layouts, geometries
of structures, topologies of networks, and so forth;

• domain represents business rules or constraints and limitations, representing logic relations, design
or engineering limitations, requirements, and such;

• function is an objective function that measures solution quality, profit or goal.

With these in mind, we can represent the decision problem as a mathematical programming model
of the form of (1) that can be solved using optimization methods. From now on, we will refer to
this specific class of models as mathematical optimization models or optimization models for short. We
will also use the term to solve the problem to refer to finding optimal solutions to optimization models.

This course mostly focuses on the optimization techniques employed to find optimal solutions
for these models. As we will see, depending on the nature of the functions f and g used to formulate
the model, some methods might be more or less appropriate. Further complicating the issue, for models
of a given nature, there might be alternative algorithms that can be employed and with no generalized
consense whether one method is generally better performing than another.

Therefore, in this course, we are focusing on optimization methods to find optimal solutions con-
sidering that either f and/or g are nonlinear functions, hence the name of the course.

1.1.2 Types of mathematical optimisation models
In general, the rule of thumb for solving a problem is :

The simpler the assumptions on the parts forming the optimisation model, the more efficient
the methods for solving it.

Let us define some additional notation that we will use from now on. Consider a model in the general
(or standard) form:

min. f(x)
subject to: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l
x ∈ X,

where f : Rn 7→ R is the objective function, g : Rm 7→ Rm is a collection of m inequality constraints
and h : Rn 7→ Rl is a collection of l equality constraints.

Remark: in fact, an equality constraint can represent every inequality constraint by making
hi(x) = gi(x) + xn+1 and augmenting the decision variable vector x ∈ Rn to include the slack variable
xn+1. However, since these constraints are of a very different nature, we will explicitly represent both
whenever necessary.

Remark: be aware that some mathematicians and books might refer to both type of inequalities as
a single one

The most general types of models are the following. We also use this as an opportunity to define
some (admittedly confusing) nomenclature from the operations research field that we will use in these
notes.

• Unconstrained models: in these, the set X = Rn and m = l = 0. These are prominent in,
e.g., machine learning and statistics applications, where f represents a measure of model fitness or
prediction error.

• Linear programming (LP): presumes linear objective function. f(x) = c⊤x and constraints g
and h affine, i.e., of the form a⊤

i x − bi, with ai ∈ Rn and b ∈ R. Normally, X = {x ∈ Rn | xj ≥
0, j = 1, . . . , n} enforce that decision variables are constrained to be the nonnegative orthant.
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• Nonlinear programming (NLP): some or all of the functions f , g, and h are nonlinear.

• Mixed-integer (linear) programming (MIP): consists of an LP in which some (or all) of the
variables are constrained to be integers. In other words, X ⊆ Rk × Zn−k. Very frequently, the
integer variables are binary terms, i.e., xi ∈ {0, 1}, for i = 1, . . . , n− k and are meant to represent
true-or-false or yes-or-no conditions.

• Mixed-integer nonlinear programming (MINLP): are the intersection of MIPs and NLPs.

See Diagram below:

Remark: notice that we use the vector notation c⊤x =
∑

j∈J cjxj , with J = {1, . . . , N}. This is
just a convenience for keeping the notation compact.

1.2 Examples of applications
We now discuss a few examples to illustrate the nature of the problems to which we will develop

solution methods and their applicability to real-world contexts.

1.2.1 Resource allocation and portfolio optimisation
In a general sense, any mathematical optimisation model is an instantiation of the resource allocation

problem. A resource allocation problem consists of how to design an optimal allocation of resources to
tasks, such that a given outcome is optimised.

Classical examples typically include production planning settings, in which raw materials or labour
resources are inputted into a system and a collection of products, a production plan, results from this
allocation. The objective is to find the best production plan, that is, a plan with the maximum profit
or minimum cost. Resource allocation problems can also appear in a less obvious setting, where the
resources can be the capacity of transmission lines in an energy generation planning setting, for example.

Let i ∈ I = {1, . . . ,M} be a collection of resources and j ∈ J = {1, . . . , N} be a collection of products.
Suppose that, to produce one unit of product j, a quantity aij of resource i is required. Assume that
the total availability of resource i is bi and that the return per unit of product j is cj .

Let xj be the decision variable representing total of product j produced. The resource allocation
problem can be modelled as:

max.
∑
j∈J

cjxj (2)

subject to:
∑
j∈J

aijxj ≤ bi, ∀i ∈ I (3)

xj ≥ 0, ∀j ∈ J. (4)
Equation (2) represents the objective function, in which we maximise the total return obtained from a
given production plan. Equation (3) quantify the resource requirements for a given production plan and
enforce that such a requirement does not exceed the resource availability. Finally, constraint (4) defines
the domain of the decision variables.

Notice that, as posed, the resource allocation problem is linear. This is perhaps the most basic,
and also most diffused setting for optimisation models for which very reliable and mature technology is
available. In this course, we will concentrate on methods that can solve variants of this model in which
the objective function and/or the constraints are required to include nonlinear terms.

One classic variant of resource allocation that include nonlinear terms is the portfolio optimisation
problem. In this, we assume that a collection of assets j ∈ J = {1, . . . , N} are available for investment.
In this case, capital is the single (actual) resource to be considered. Each asset has random return
Rj , with an expected value E[Rj ] = µj . Also, the covariance between two assets i, j ∈ J is given by
σij = E[(Ri − µi)(Rj − µj)], which can be denoted as the covariance matrix:
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Σ =

σ11 . . . σ1N

...
. . .

...
σN1 . . . σNN


Markowitz (1952) proposed using x⊤Σx as a risk measure that captures the variability in the return

of the assets. Given the above, the optimisation model that provides the investment portfolio with the
least risk, given a minimum requirement ϵ in terms of expected returns is given by:

min. x⊤Σx (5)
subject to: µ⊤x ≥ ϵ (6)

0 ≤ xj ≤ 1, ∀j ∈ J. (7)
Objective function (5) represents the portfolio risk to be minimised, while constraint (6) enforces that
the expected return must be at least ϵ. Notice that ϵ can be seen as a resource that has to be (at least)
completely depleted, if one wants to do a parallel with the resource allocation structure discussed early.
Constraint (7) defined the domain of the decision variables. Notice how the problem is posed in a scaled
form, where xj ∈ [0, 1] represents a percentage of a hypothetical available capital for investment.

In this example, the problem is nonlinear due to the quadratic nature of the objective function
x⊤Σx =

∑
i,j∈J σijxixj . As we will see later on, there are efficient methods that can be employed to

solve quadratic problems like this.

1.3 The pooling problem: refinery operations planning
The pooling problem is another example of a resource allocation problem that naturally presents

nonlinear constraints. In this case, the production depends on mixing operations, known as pooling, to
obtain certain product specification for a given property.

As an illustration, suppose that products j ∈ J = {1, . . . , N} are produced by mixing byproducts
i ∈ Ij ⊆ I = {1, . . . ,M}. Assume that the qualities of byproducts qi are known and that there is no
reaction between byproducts. Each product is required to have a property value qj within an accept-
able range [q

j
, qj ] to be classified as product j. In this case, mass and property balances are calculated as:

xj =
∑
i∈Ij

xi, ∀j ∈ J (8)

qj =
∑

i∈Ij
qixi

xj
, ∀j ∈ J. (9)

These can then incorporated into the resource allocation problem accordingly. One key aspect associated
with pooling problem formulations is that the property balances represented by (9) define nonconvex fea-
sibility regions. As we will see later, convexity is a powerful property that allows for developing efficient
solution methods and its absence typically compromises computational performance and tractability in
general.

1.4 Robust optimisation
Robust optimisation is a subarea of mathematical programming concerned with models that support

decision-making under uncertainty. In specific, the idea is to devise a formulation mechanism that can
guarantee feasibility of the optimal solution in face of variability, ultimately taking a risk-averse stand-
point.

Consider the resource allocation problem from Section 1.2.1. Now, suppose that the parameters
ãi ∈ RN associated with a given constraint i ∈ I = {1, . . . ,M} are uncertain with a unknown probability
distribution. The resource allocation problem can then be formulated as:

max. c⊤x

subject to: ã⊤
i x ≤ bi, ∀i ∈ I
xj ≥ 0, ∀j ∈ J.

Let us assume that the only information available are observations âi, from which we can estimate a
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nominal value ai. This is illustrated in Figure 1, in which 100 random observations are generated for
ãi = [ãi1, ãi2] with ãi1 ∼ Normal(10, 2) and ãi2 ∼ Normal(5, 3) for a single constraint i ∈ I. The nominal
values are assumed to have coordinates given by the average values used in the Normal distributions.
Our objective is to develop a model that incorporates a given level of protection in terms of feasibility

6 8 10 12 14
a1

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

a 2

Distribution of (a1, a2)
Observations
Nominal value

Figure 1: One hundred random realisations for ãi.

guarantees. That is, we would like to develop a model that provides solutions that are guaranteed to
remain feasible if the realisation of ãi falls within an uncertainty set ϵi of size controlled by the parameter
Γi. The idea is that the bigger the uncertainty set ϵi, the more robust is the solution, which typically
comes at the expense of accepting solutions with expected worse performance.

The tractability of robust optimisation models depends on the geometry of the uncertainty set em-
ployed. Let us assume in what follows that:

ϵi = {ai + Piu | ||u||2 ≤ Γi} (10)
is an ellipsoid with the characteristic matrix Pi (i.e., its eigenvalues show how the ellipsoid extends in
every direction from ai) and Γi employs a scaling of the ellipsoid size.

Remark: an alternative (perhaps more frequent) characterisation of an ellipsoid ϵ ⊂ Rn centred at
x is given by ϵ = {x ∈ Rn | (x− x)⊤A(x− x) = 1}. By making A = P−2, we recover the representation
in (10).

We can now formulate the robust counterpart, which consists of a risk-averse version of the original
resource allocation problem. In that, we try to anticipate the worst possible outcome and make decisions
that are both optimal and guarantee feasibility in this worst-case sense. This standpoint translates into
the following optimisation model.

max. c⊤x

subject to: max.
ai∈ϵi

{a⊤
i x} ≤ bi, ∀i ∈ I (11)

xj ≥ 0,∀j ∈ J.
Notice how the constraint (11) has an embedded optimisation problem, turning into a bi-level optimi-
sation problem. This highlights the issue associated with tractability, since solving the whole problem
strongly depends on deriving tractable equivalent reformulations.

Assuming that the uncertainty set ϵi is an ellipsoid, the following result holds.

8



6 8 10 12 14
a1

-2.5

0.0

2.5

5.0

7.5

10.0

12.5
a 2

Distribution of (a1, a2)

Observations
Nominal value

2 = 1.5
1 = 1

Figure 2: One hundred random realisations for ãi.

max
ai∈ϵi

{a⊤
i x} = a⊤

i x+ max
u
{u⊤Pix : ||u||2 ≤ Γi} (12)

= a⊤
i x+ Γi||Pix||2. (13)

In (12), we recast the inner problem in terms of the ellipsoidal uncertainty set, ultimately meaning that
we recast the inner maximisation problem in terms of variable u. Since the only constraint is ||u||2 ≤ Γi,
in (13) we can derive a closed form for the inner optimisation problem.

With the closed form derived in (13), we can reformulate the original bi-level problem as a tractable
single-level problem of the following form:

max. c⊤x

subject to: a⊤
i x+ Γi||Pix||2 ≤ bi, ∀i ∈ I (14)
xj ≥ 0, ∀j ∈ J.

Notice how the term Γi||P⊤
i x||2 creates a buffer for constraint (14), ultimately preventing the complete

depletion of the resource. Clearly, this will lead to a suboptimal solution when compared to the original
deterministic at the expense of providing protection against deviations in coefficients ai. This difference
is often referred to as the price of robustness.

In Figure 2, we show the ellipsoidal sets for two levels of Γi for a single constraint i. We define:

ϵi = {
[
10
5

]
+
[
2 0
0 3

] [
u1
u2

]
} (15)

using the average and standard deviation of the original distributions that generated the observations. We
plot the ellipsoids for Γ1 = 1 and Γ2 = 1.5, illustrating how the protection level increases as Γ increases.
This can be inferred since the uncertainty set covers more of the observations and the formulation is
such that feasibility is guaranteed for any observation within the uncertainty set.

1.5 Combinatorial Optimization
Combinatorial optimization is a sub-field of mathematical optimization that consists of finding an

optimal solution from a finite set of possible solutions from a discrete set. Examples of combinato-
rial problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem
("MST"), and the knapsack problem. The most trivial solution for such problems is exhaustive and
enumerative search search, although it is not tractable for larger solutions.

There is a large amount of literature on polynomial-time algorithms for certain special classes of
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discrete optimization. The theory of linear programming unifies a considerable amount of it. Some
examples of combinatorial optimization problems this framework covers are shortest paths and shortest-
path trees, flows and circulations, spanning trees, matching, and matroid problems.

Many problems covered by linear optimization could also be described as combinatorial optimization
problems (as part of discrete optimization). For example, shortest path, flow and circulations, spanning
tree, matching, etc. In this theoretical framework, research on such problems focuses on the following
topics: solution for special cases of discrete problems using specific parameters (fixed-parameter tractable
(FPT) problems); approximation algorithms; heuristics and meta-heuristics; parameterized optimization
(variation of FPT); NP-completeness.

Combinatorial optimization problems can be viewed as searching for the best solution amongst a set of
viable solutions. Perhaps, as a search procedure. Many algorithms, such as branch-and-bound, branch-
and-cut, dynamic programming, tabu search, can solve many variations of discrete problems. However,
generic search algorithms are not guaranteed to find an optimal solution first, nor are they guaranteed
to run quickly (in polynomial time). Since some discrete optimization problems are NP-complete, such
as the travelling salesman (decision) problem (unless P=NP).

We can formally define a combinatorial optimization problem using the following notation:

• a set of candidate solutions I;

• a subset of feasible solutions f(x), such that x ∈ I;

• the performance measure of the feasible solutions m(x, y) ;

• the goal function (generally minimization or maximization)

In this way, an optimal solution can be found when:

m(x, y) = g{m(x, y′)|y
′
∈ f(x)} (16)

Each combinatorial optimization problem has a corresponding decision problem that asks whether
there is a feasible solution for some particular measure m0.

The field of approximation algorithms deals with algorithms to find near-optimal solutions to chal-
lenging problems where exact and fast solutions are costly (and sometimes, impossible).

Classical examples of combinatorial problems are:

• TSP (Travelling Salesman Problem):
This problem can be defined as:

Given a set of cities and the distances between each pair of cities, what is the shortest
possible route that simultaneously visits each city only once and returns to the origin city?

Variations of this problem, such as the travelling purchaser and vehicle routing problem (very
present in logistics and transportation problems), are vastly researched.

• Minimum spanning tree:
A minimum spanning tree problem is a subset of edges from an undirected graph connecting all
vertices without cycles, minimizing possible total edge weight.

There are many algorithms and solutions for this problem. However, they lack versatility when
this problem’s alterations and variations are brought into question.
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Figure 3: Two hundred observations for xi classified to belong to I− (orange) or I+ (blue).

1.6 Classification: support-vector machines
This is an example in which the resource allocation structure within the optimisation model is not

as obvious. Suppose we are given a data set D ∈ Rn with |D| = N + M that can be divided into two
disjunct sets I− = {x1, . . . , xN} and I+ = {x1, . . . , xM}.

Each element in D is an observation of a given set of n features with values represented by a x ∈ Rn

that has been classified as belonging to set I− and I+. Because of the availability of labelled data,
classification is said to be ane xample of supervised learning in the field of machine learning.

Figure 3 illustrates this situation for n = 2, in which the orange dots represent points classified as
belonging to I− (negative observations) and the blue dots represent points classified as belonging to I+

(positive observations).

Our task is to obtain a function f : Rn 7→ R from a given family of functions that is capable to,
given an observed set of features x̂, classify whether it belongs to I− or I+. In other words, we want to
calibrate f such that:

f(xi) < 0, ∀xi ∈ I−, and f(xi) > 0, ∀xi ∈ I+. (17)
This function would then act as a classifier that could be employed to any new observation x̂ made. If
f is presumed to be an affine function of the form f(x) = a⊤x− b, then we obtain a linear classifier.

Our objective is to obtain a ∈ Rn and b ∈ R such that misclassification error is minimised. Let us
define the error measure as:

e−(xi ∈ I−; a, b) :=
{

0, if a⊤xi − b ≤ 0,
a⊤xi − b, if a⊤xi − b > 0.

e+(xi ∈ I+; a, b) :=
{

0, if a⊤xi − b ≥ 0,
b− a⊤xi, if a⊤xi − b < 0.

Using this error measure, we can define constraints that capture deviation on each measure by means of
nonnegative slack variables. Let ui ≥ 0 for i = 1, . . . , N and vi ≥ 0 for i = 1, . . . ,M be slack variables
that measure the misclassification error for xi ∈ I− and xi ∈ I+, respectively.

The optimisation problem that finds optimal parameters a and b can be stated as:
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min.
M∑

i=1
ui +

N∑
i=1

vi (18)

subject to: a⊤xi − b− ui ≤ 0, i = 1, . . . ,M (19)
a⊤xi − b+ vi ≥ 0, i = 1, . . . , N (20)
||a||2 = 1 (21)
ui ≥ 0, i = 1, . . . , N (22)
vi ≥ 0, i = 1, . . . ,M (23)
a ∈ Rn, b ∈ R. (24)

The objective function (18) accumulates the total misclassification error. Constraint (19) allows for
capturing the misclassification error for each xi ∈ I−. Notice that ui = max{0, a⊤xi − b} = e−(xi ∈
I−; a, b). Likewise, constraint (20) guarantees that vi = e+(xi ∈ I+; a, b). To avoid trivial solutions in
which (a, b) = (0, 0), the normalisation constraint ||a||2 = 1 is imposed in constraint (21), which turns
the model nonlinear.

Solving the model (18)–(24) provides optimal (a, b) which translates into the classifier represented as
the green line in Figure 4.
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Figure 4: Two hundred observations for xi classified to belong to I− (orange) or I+ (blue) with a classifier
(green).

A variant referred to as robust classifier penalises not only the the misclassification error, but also
the observations within a given slab S = {x ∈ Rn | −1 ≤ a⊤x− b ≤ 1}. Notice that, being the two lines
defined by f−(x) : a⊤x− b = −1 and f+(x) : a⊤x− b = +1, the distance between the two hyperplanes
is given by 2

||a||2
.

Accordingly, we redefine our error measures as follows.

e−(xi ∈ I−; a, b) :=
{

0, if a⊤xi − b ≤ −1,
|a⊤xi − b|, if a⊤xi − b > −1.

e+(xi ∈ I+; a, b) :=
{

0, if a⊤xi − b ≥ 1,
|b− a⊤xi|, if a⊤xi − b < 1.

By doing so, a penalty is applied not only to those points that were misclassified but also to those points
correctly classified that happen to be inside the slab S. To define an optimal robust classifier, one must
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trade off the size of the slab, which is inversely proportional to ||a||, and the total of observations that
fall in the slab S. The formulation for the robust classifier then becomes:

min.
M∑

i=1
ui +

N∑
i=1

vi + γ||a||22 (25)

subject to: a⊤xi − b− ui ≤ −1, i = 1, . . . ,M (26)
a⊤xi − b+ vi ≥ 1, i = 1, . . . , N (27)
ui ≥ 0, i = 1, . . . , N (28)
vi ≥ 0, i = 1, . . . ,M (29)
a ∈ Rn, b ∈ R. (30)

In objective function (25), the errors accumulated in variables ui, i = 1, . . . , N and vi, i = 1, . . . ,M and
the squared norm ||a||22 are considered simultaneously. The term γ is a scalar used to impose an emphasis
on minimising the norm ||a||2 and incentivising a larger slab S (recall that the slab is large for smaller
||a||2). The squared norm ||a||22 is considered instead as a means to recover differentiability, as the norm
||a||2 is not differentiable. Later on, we will see how beneficial it is for optimisation methods to be able
to assume differentiability. Moreover, note how in constraints (26) and (27) u and v also accumulate
penalties for correctly classified xi that happen to be between the slab S, that is, that have term a⊤x− b
larger/ smaller than -1/ +1. Figure 5 shows a robust classifier an arbitrary value of γ.
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Figure 5: Two hundred observations for xi classified to belong to I− (orange) or I+ (blue).

Remark: robust classifiers are known in the machine learning literature as support vector machines,
where the support vectors are the observations that support the slab.
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2 Week II
In this lecture, we discuss concepts related to sets, which will later in the course serve as a framework

for dealing with constraints in optimisation problems. We will also see that the convexity of sets can be
used to infer the convexity of functions, a topic we will discuss in detail in the next class. We describe
how to identify convexity in sets and discuss set-related concepts practically when discussing optimality
conditions later. We also discuss the concepts of separation and support, which are central to several
results in optimisation theory, such as the Farkas theorem.

2.1 Convexity and optimisation
Convexity is perhaps the most important property that the elements forming an optimization

problem can present. Paraphrasing Tyrrell Rockafellar:

... in fact, the great watershed in optimization is not between linearity and nonlinearity but
convexity and nonconvexity.

In a nutshell, convexity allows us to infer the global properties of a solution (i.e., that holds for
all of its domain) by considering exclusively local information (such as gradients, for example). Such
property is critical in optimization since most methods we know to perform well in practice are de-
signed to find solutions that satisfy local optimality conditions. Once convexity is attested, one can then
guarantee that these local solutions are, in fact, globally optimal without exhaustively exploring the
solution space.

For a problem of the form:

(P ) : min. f(x)
subject to: x ∈ X

to be convex, we need to verify whether f is a convex function and X is a convex set. If both
statements hold, we can conclude that P is a convex problem. We start looking into how to identify
convex sets since we can use the convexity of sets to infer the convexity of functions.

2.2 Identifying convexity of sets
Before formally defining convex sets, let us look at the idea of combinations. For that, let S ⊆ Rn

be a set and xj ∈ S for j = 1, . . . , k be a collection of vectors (i.e., n-dimensional “points”) belonging to
S. Then, we have that:

• A linear combination of xj for j = 1, . . . , k is the set

{x ∈ Rn :
k∑

j=1
λjxj , λj ∈ R for j = 1, . . . , k}. (31)

• An affine combination is a linear combination, with the additional constraint that
∑k

j=1 λj = 1.
That is,

{x ∈ Rn :
k∑

j=1
λjxj ,

k∑
j=1

λj = 1, λj ∈ R for j = 1, . . . , k}. (32)

• A conic combination is a linear combination with the additional condition that λj ≥ 0 for
j = 1, . . . , k.

{x ∈ Rn :
k∑

j=1
λjxj , λj ≥ 0 for j = 1, . . . , k}. (33)

• And finally, a convex combination is the intersection between an affine and a conic combination,
implying that λj ∈ [0, 1].

{x ∈ Rn :
k∑

j=1
λjxj ,

k∑
j=1

λj = 1, λj ≥ 0 for j = 1, . . . , k}. (34)

We say a set is convex if it contains all points formed by the convex combination of any pair of points
in this set, which is equivalent to saying that the set contains the line segment between any two points
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Figure 6: Minkowski sum of two convex sets.
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Figure 7: Intersection of two convex sets.

belonging to the set.

Definition 2.1. Convex sets

A set S ⊆ Rn is said to be convex if x =
∑k

j=1 λjxj belongs to S, where
∑k

j=1 λj = 1, λj ≥ 0 and
xj ∈ S for j = 1, . . . , k.

Definition 2.1 is useful as it shows that some set operations preserve convexity.

2.2.1 Convexity-preserving set operations

Lemma 2.2. Convexity-preserving operations Let S1 and S2 be convex sets in Rn. Then, the sets
resulting from the following operations are also convex.

1. Intersection: S = S1 ∩ S2;
2. Minkowski addition: S = S1 + S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2};
3. Minkowski difference: S = S1 − S2 = {x1 − x2 : x1 ∈ S1, x2 ∈ S2};
4. Affine transformation: S = {Ax+ b : x ∈ S1}.

Figures 6 and 7 illustrate the concept behind some of these set operations. Showing that the sets
resulting from the operations in Lemma 2.2 are convex typically shows that convex combinations of
elements in the resulting set S also belong to S1 and S2.

2.2.2 Examples of convex sets
There are several familiar sets that are known to be convex. Knowing that these sets are convex is

useful as a building block for determining the convexity of more complicated sets.

Some important examples of convex sets include:

• Them empty set ∅, any singleton {x} and the whole space Rn;

• halfspaces: S = {x : p⊤x ≤ α} ⊂ Rn;

• hyperplanes: H = {x : p⊤x = α} ⊂ Rn, where p ̸= 0n is a normal vector and α ∈ R is a scalar.
Notice that H can be equivalently represented as H = {x ∈ Rn : p⊤(x− x) = 0} for x ∈ H;

• polyhedral sets: P = {x : Ax ≤ b} ⊂ Rn, where A ∈ Rm×n and b ∈ Rn;
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• norm-induced sets (balls): B = {x : ||x−x|| ≤ α} ⊆ Rn, where || · || is any norm and α a scalar;

• norm cones: C = {(x, α) ∈ Rn+1 : ||x|| ≤ α};

For example, considering the polyhedral set P = {x ∈ Rn : Ax ≤ b} ⊂ Rn with A being a m × n
matrix. Notice that S is the intersection of a collection of half-spaces Hi = {x ∈ Rn : a⊤

i x ≤ bi},
where ai are vectors from the rows of the matrix A and bi are the components of the column vector
b. We know that Hi are convex sets. Thus, P = ∩m

i=1Hi is also convex, as the intersection of sets is a
convexity-preserving set operation.

1. Hyperplanes and halfspaces:
Hyperplanes and half-spaces will play a central role in future topics. Therefore, let us discuss
some important aspects related to these convex sets. First, notice that, geometrically, a hyperplane
H ⊂ Rn can be interpreted as the set of points with a constant inner product to a given vector
p ∈ Rn, while x determines the offset of the hyperplane from the origin. That is:

H = {x : p⊤(x− x) = 0} ≡ x+ p⊥,
where p⊥ is the orthogonal complement of p, i.e., the set of vectors orthogonal to p, which is given
by {x ∈ Rn : p⊤x = 0}.

H

p

x

H

Figure 8: A hyperplane H = {x ∈ Rn : p⊤(x− x) = 0} with normal vector p displaced to x.

Analogously, a half-spaces can be represented as S = {x ∈ Rn : p⊤(x − x) ≤ 0} where p⊤x = α
is the hyperplane that forms the boundary of the half-space. This definition suggests a simple
geometrical interpretation: the half-space S consists of x plus any vector with an obtuse or right
angle (i.e., greater or equal to 90◦) with the outward normal vector p.

H

p

x
x

S

Figure 9: A halfspace S = {x ∈ Rn : p⊤(x− x) ≤ 0} defined by the same hyperplane H. Notice how the
vectors p (or p− x, which is fundamentally the same vector but translated to x) and x− x form angles
greater or equal than 90◦.

2. Norm balls and norm cones:
An Euclidean ball (or simply ball) of radius ϵ in Rn has the form:

B(x, ϵ) = {x ∈ Rn : ||x− x||2 ≤ ϵ} ≡ {x ∈ Rn : (x− x)⊤(x− x) ≤ ϵ2}
As one might suspect, balls are convex, which can be proved by noting that:

||λx1 + (1− λ)x2 − x||2 = ||λ(x1 − x) + (1− λ)(x2 − x)||2
≤ λ||x1 − x||2 + (1− λ)||x2 − x||2 ≤ ϵ.

Notice that between the first and the second line, we use the triangle inequality, which states that
||x+ y|| ≤ ||x||+ ||y|| for any two vectors x and y and any norm (including the Euclidean norm).

Euclidean balls are a special case of norm balls, which are defined as B(x, ϵ) = {x ∈ Rn : ||x−x|| ≤
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Figure 10: A polyhedron P formed by the intersection of three half-space. Each hyperplane Hi = {x ∈
Rn : a⊤

i x ≤ bi}, for i = 1, 2, 3, has a normal vector ai, and has an offset from the origin bi (which cannot
be seen once project on a 2-dimensional plane as in the picture).

ϵ} where || · || is any norm on Rn.

A related set is the norm cone, defined as C(x, α) = {(x, α) ∈ Rn+1 : ||x|| ≤ α}, where α is a
scalar. For example, the second-order cone (also known as the ice cream cone or Lorentz cone) is
the norm cone for the Euclidean norm.

Remark. Norm induced sets (balls or cones) are convex for any norm ||x||p = (
∑n

i=1 x
p
i )

1
p for

x ∈ Rn and p ≥ 1.

2.3 Convex hulls
A convex hull of a set S, denoted conv(S), is the set formed by all convex combinations of all points

in S. As the name suggests, conv(S) is a convex set, regardless of S being or not convex.

Another interpretation for conv(S) is to consider it the tightest enveloping (convex) set containing
S. Notice that, if S is convex, then S = conv(S). Formally, convex hulls are defined as follows.

Definition 2.3. Convex hull of a set
Let S ⊆ Rn be an arbitrary set. The convex hull of S, denoted by conv(S), is the collection of all
convex combinations of S. That is, for xj ∈ S, with j = 1, . . . , k, x ∈ conv(S) if and only if

x =
k∑

j=1
λjxj :

k∑
j=1

λj = 1, λj ≥ 0, for j = 1, . . . , k.

From Definition 2.3, one can show that the convex hull conv(S) can also be defined as the intersec-
tion of all convex sets containing S. Perhaps the easiest way to visualize this is to think of the infinitely
many half-spaces containing S and their intersection, which can only be S. Figures 11 illustrates the
convex hull conv(S) of a nonconvex set S.

The notion of convex hulls is a powerful tool in optimization. One important application is using

S

conv(S)

Figure 11: Example of an arbitrary set S (in solid blue) and its convex hull conv(S) (combined blue
and grey areas).

conv(S) to obtain approximations for a nonconvex S that can be exploited to solve an optimization
problem with a constraint set defined by S. This is the underpinning technique in many important
optimization methods, such as branch-and-bound-based methods for nonconvex problems and decom-
position methods (i.e., methods that solve large problems by breaking them into smaller parts that are
presumably easier to solve).
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Let us consider the convex hull of a finite collection of discrete points. Some of these sets are so
important in optimization that they have their own names.

Definition 2.4
Let S = {x1, . . . , xn+1} ⊂ Rn. Then conv(S) is called a polytope. If x1, . . . , xn+1 are affinely
independent (i.e., x2 − x1, . . . , xn+1 − x1 are linearly independent) then conv(S) is called a simplex
with vertices x1, . . . , xn+1.

2.4 Closure and interior of sets
Many of the set-related results we will see in this course depend on the characteristics of the set itself.

Often, assuming properties such as closedness or compactness considerably eases technical derivations.

2.4.1 Closure, interior and boundary of a set
Let us define some properties that will be useful in this course. For that, we will use an ϵ-neighbourhood

of x ∈ Rn (which is a norm ball of radius ϵ centred in x) defined as:

Nϵ(x) = {y : ||y − x|| < ϵ}.
Let S ⊆ Rn be an arbitrary set. We can use Nϵ to define the following elements related to S.

1. Closure of S: the set defined by the closure of S, denoted clo(S), is defined as
clo(S) = {x ∈ Rn : S ∩Nϵ(x) ̸= ∅ for every ϵ > 0}.

Notice that the closure might contain points not belonging to S. We say that a set is closed if
S = clo(S); the set itself is its own closure.

2. Interior of S: the interior of S, denoted int(S), is the set
intS = {x ∈ S : Nϵ(x) ⊂ S for some ϵ > 0}.

If S is the same as its own interior, then we say that S is open. Some authors say that S is solid
if it has a nonempty interior (that is, int(S) ̸= ∅. Notice that the interior of S is a subset of S,
that is, int(S) ⊆ S.

3. Boundary of S: the boundary of S, denoted bou(S) is the collection of points defined by:
bou(S) = {x ∈ Rn : Nϵ(x) contains some xi ∈ S and some xj /∈ S for every ϵ > 0}.

We say that S is bounded if exists Nϵ(x), x ∈ Rn, for some ϵ > 0 such that S ⊂ Nϵ(x).
We say that a set is compact if it is both closed and bounded. Compact sets appear very fre-

quently in real-world optimization applications since, typically, one can assume the existence of bounds
for decision variables (such as nonnegativity or maximum physical bounds or, in an extreme case, small-
est/ largest computational constants). Another frequent example of a bounded set is the convex hull of a
collection of discrete points, which is called by some authors polytopes (effectively bounded polyhedral
sets).

Let us consider the following example. Let S = {(x1, x2) ∈ Rn : x2
1 + x2

2 ≤ 1}. Then, we have that:
1. clo(S) = {(x1, x2) ∈ Rn : x2

1 + x2
2 ≤ 1}. Since S = clo(S), S is closed.

2. int(S) = {(x1, x2) ∈ Rn : x2
1 + x2

2 < 1}.
3. bou(S) = {(x1, x2) ∈ Rn : x2

1 + x2
2 = 1}. Notice that it makes S bounded.

4. S is compact since it is closed and bounded.
Notice that, if S is closed, then bou(S) ⊂ S. That is, its boundary is part of the set itself. Moreover,

it can be shown that clo(S) = bou(S) ∪ S is the smallest closed set containing S.

In case S is convex, one can infer the convexity of the interior int(S) and its closure clo(S). The
following theorem summarises this result.

Theorem 2.5
Let S ⊆ Rn be a convex set with int(S) ̸= ∅. Let x1 ∈ clo(S) and x2 ∈ int(S). Then x =
λx1 + (1− λ)x2 ∈ int(S) for all λ ∈ (0, 1).
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Theorem 2.5 helps infer the convexity of the elements related to S. We summarise the key results in
the following corollary.

Corollary 2.6. Let S be a convex set with int(S) ̸= ∅. Then
1. int(S) is convex;
2. clo(S) is convex;
3. clo(int(S)) = clo(S);
4. int(clo(S)) = int(S).

2.4.2 The Weierstrass theorem
The Weierstrass theorem is a result that guarantees the existence of optimal solutions for opti-

mization problems. To make it more precise, let:

(P ) : z = min. {f(x) : x ∈ S}
be our optimization problem. If an optimal solution x∗ exists, then f(x∗) ≤ f(x) for all x ∈ S and
z = f(x∗) = min{f(x) : x ∈ S}.

Notice the difference between min. (an abbreviation for minimize) and the operator min. The first
is meant to represent the problem of minimizing the function f in the domain S, while min is shorthand
for minimum, in this case z, assuming it is attainable.

It might be that an optimal solution is not attainable, but a bound can be obtained for the optimal
solution value. The greatest lower bound for z is its infimum (or supremum for maximization prob-
lems), denoted by inf. That is, if z = inf{f(x) : x ∈ S} , then z ≤ f(x) for all x ∈ S and there is no
z > z such that z ≤ f(x) for all x ∈ S. We might sometimes use the notation:

(P ) : z = inf{f(x) : x ∈ S}
to represent optimization problems for which one cannot be sure whether an optimal solution is attain-
able. The Weierstrass theorem describes the situations in which those minimums (or maximums) are
guaranteed to be attained, which is the case whenever S is compact.

Theorem 2.7. Weierstrass theorem
Let S ̸= ∅ be a compact set, and let f : S → R be continuous on S. Then there exists a solution
x ∈ S to min. {f(x) : x ∈ S}.

Figures 12 illustrates three examples. In the first (on the left), the domain [a, b] is compact; thus, the
minimum of f is attained at b. In the other two, [a, b) is open; therefore, the Weierstrass theorem does
not hold. In the middle example, one can obtain inf f , which is not the case for the last example on the
right.

f(a)

f(b)

f(a)

inf f

f(a)

a b a b a

Figure 12: Examples of attainable minimum (left) and infimum (centre) and an example where neither
are attainable (right).

2.5 Separation and support of sets
The concepts of separation and support of sets are vital for establishing optimality conditions later

in this course. We are interested in mechanisms that allow one to infer whether there exists hyperplanes
separating points from sets (or sets from sets). We will also be interested in means to, given a point
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x /∈ S, find the closest point not belonging to S.

2.5.1 Hyperplanes and closest points
We start with how to identify the closest points to sets.

Theorem 2.8. Closest-point theorem
Let S ̸= ∅ be a closed convex set in Rn and y /∈ S. Then, there exists a unique point x ∈ S with
minimum distance from y. In addition, x is the minimising point if and only if

(y − x)⊤(x− x) ≤ 0, for all x ∈ S

Simply put, if S is a closed convex set, then x ∈ S will be the closest point to y /∈ S if the vector
y − x is such that if it forms an angle that is greater or equal than 90◦ with all other vectors x − x for
x ∈ S. Figures 13 illustrates this logic.

y

y

x x
x

x

S S

Figure 13: Closest-point theorem for a closed convex set (on the left). On the right is an illustration of
how the absence of convexity invalidates the result.

Notice that S lies in the half-space (y−x)⊤(x−x) ≤ 0 defined by the hyperplane p⊤(x−x) = 0 with
normal vector p = (y − x). We will next revise the concepts of half-spaces and hyperplanes since they
will play a central role in the derivations in this course.

2.6 Halfspaces and separation
We can use half-spaces to build the concept of separation. Let us start recalling that a hyperplane

H = {x : p⊤x = α} with normal vector p ∈ Rn and α ∈ R defines two half-spaces H+ = {x : p⊤x ≥ α}
and H− = {x : p⊤x ≤ α}. Figures 14 illustrates the concept. Notice how the vector p lies in the
half-space H+.

Any hyperplane H can be defined in reference to a point x ∈ H by noticing that:

p⊤(x− x) = p⊤x− p⊤x = α− α = 0.
From that, the half-spaces defined by H can be equivalently stated as H+ = {x : p⊤(x − x) ≥ 0} and
H− = {x : p⊤(x− x) ≤ 0}.

We can now define the separation of convex sets.

H

p

x

H+

H−

Figure 14: Normal vectors, hyperplane and halfspaces
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Definition 2.9

Let S1 and S2 be nonempty sets in Rn. The hyperplane H = {x : p⊤x = α} is said to separate S1
and S2 if p⊤x ≥ α for each x ∈ S1 and p⊤x ≤ α for each x ∈ S2. In addition, the following apply:

1. Proper separation: S1 ∪ S2 ̸⊂ H;
2. Strict separation: p⊤x < α for each x ∈ S1 and p⊤x > α for each x ∈ S2;
3. Strong separation: p⊤x ≥ α+ ϵ for some ϵ > 0 and x ∈ S1, and p⊤x ≤ α for each x ∈ S2.

Figures 15 illustrates the three types of separation in Definition 2.9. On the left, proper separation is
illustrated, obtained by any hyperplane that does not contain both S1 and S2 but might contain points
from either or both. In the middle, sets S1 and S2 belong to two distinct half-spaces in a strict sense. On
the right, strict separation holds with an additional margin ϵ > 0, which is defined as strong separation.
A powerful yet simple result that we will use later is that, for a closed convex set S, there always exists

S1

S2

S1

S2

S1

S2

H H H

Figure 15: Three types of separation between S1 and S2.

a hyperplane separating S and a point y that does not belong to S.

Theorem 2.10. Separation theorem
Let S ̸= ∅ be a closed convex set in Rn and y /∈ S. Then, there exists a nonzero vector p ∈ Rn and
α ∈ R such that p⊤x ≤ α for each x ∈ S and p⊤y > α.

Proof. Theorem 2.8 guarantees the existence of a unique minimising x ∈ S such that (y−x)⊤(x−x) ≤
0 for each x ∈ S. Let p = (y − x) ̸= 0 and α = x⊤(y − x) = p⊤x. Then we get p⊤x ≤ α for each
x ∈ S, while p⊤y − α = (y − x)⊤(y − x) = ||y − x||2 > 0.

This is the first proof we look at in these notes, and the reason for that is its importance in many of
the results we will discuss further. The proof first looks at the problem of finding a minimum distance
point as an optimization problem and uses the Weierstrass theorem (our Theorem 2.8 is a consequence
of the Weierstrass theorem stated in Theorem 2.7) to guarantee that such a x exists. Being a minimum
distance point, we know from Theorem 2.8 that (y− x)⊤(x− x) ≤ 0 holds. Now, by defining p and α as
in the proof, one might notice that:

(y − x)⊤(x− x) ≤ 0 ⇔ (y − x)⊤x ≤ (y − x)⊤x ⇔ p⊤x ≤ p⊤x = α.

The inequality p⊤y > α is demonstrated to hold in the final part by noticing that:

p⊤y − α = (y − x)⊤y − x⊤(y − x)
= y⊤(y − x)− x⊤(y − x)
= (y − x)⊤(y − x) = ||y − x||2 > 0.

Theorem 2.10 has interesting consequences. For example, one can apply it to every point in the
boundary bou(S) to show that S is formed by the intersection of all half-spaces containing S.

Another interesting result is the existence of strong separation. If y /∈ clo(conv(S)), then one can
show that a strong separation between y and S exists since there will surely be a distance ϵ > 0 between
y and S.

2.6.1 Farkas’ theorem
Farkas’ theorem plays a central role in deriving optimality conditions. It can assume several alter-

native forms, typically referred to as Farkas’ lemmas. In essence, Farkas’ theorem demonstrates that a
given system of linear equations has a solution if and only if a related system can be shown to have no
solutions and vice-versa.
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Theorem 2.11
Let A be an m× n matrix and c be an n vector. Then exactly one of the following two systems has
a solution:

(1) : Ax ≤ 0, c⊤x > 0, x ∈ Rn

(2) : A⊤y = c, y ≥ 0, y ∈ Rm.

Proof. Suppose (2) has a solution. Let x be such that Ax ≤ 0. Then c⊤x = (A⊤y)⊤x = y⊤Ax ≤ 0.
Hence, (1) has no solution.
Next, suppose (2) has no solution. Let S = {x ∈ Rn : x = A⊤y, y ≥ 0}. Notice that S is closed and
convex and that c /∈ S. By Theorem 2.10, there exists p ∈ Rn and α ∈ R such that p⊤c > α and
p⊤x ≤ α for x ∈ S.

As 0 ∈ S, α ≥ 0 and p⊤c > 0. Also, α ≥ p⊤A⊤y = y⊤Ap for y ≥ 0. This implies that Ap ≤ 0, and
thus p satisfies (1).

The first part of the proof shows that if we assume that system (2) has a solution, then c⊤x > 0
cannot hold for y ≥ 0. The second part uses the separation theorem (Theorem 2.10) to show that c can
be seen as a point not belonging to the closed convex set S for which there is a separation hyperplane
and that the existence of such plane implies that system (1) must hold. The set S is closed and convex
since it is a conic combination of rows ai, for i = 1, . . . ,m. Using the 0 ∈ S, one can show that α ≥ 0.
The last part uses the identity p⊤A⊤ = (Ap)⊤ and the fact that (Ap)⊤y = y⊤Ap. Notice that, since y
can be arbitrarily large and α is a constant, y⊤Ap ≤ α can only hold if y⊤Ap ≤ 0, requiring that p ≤ 0
since y ≥ 0 from the definition of S.

Farkas’ theorem has an interesting geometrical interpretation from this proof, as illustrated in Figures
16. Consider the cone C formed by the rows of A:

C = {c ∈ Rn : cj =
m∑

i=1
aijyi, j = 1, . . . , n, yi ≥ 0, i = 1, . . . ,m}

The polar cone of C, denoted C0, is formed by all vectors having angles of 90◦ or more with vectors in
C. That is:

C0 = {x : Ax ≤ 0}.
Notice that (1) has a solution if the intersection between the polar cone C0 and the positive (H+

as defined earlier) half-space H+ = {x ∈ Rn : c⊤x > 0} is not empty. If (2) has a solution, as at
the beginning of the proof, then c ∈ C and the intersection C0 ∩H+ = ∅. Now, if (2) does not have a
solution, that is, c /∈ C, then one can see that C0∩H+ cannot be empty, meaning that (1) has a solution.

C0 C0
C C

c

c
a1 a1

a2 a2

a3 a3

Figure 16: Geometrical illustration of the Farkas’ theorem. On the left, system (2) has a solution, while
on the right, system (1) has a solution

2.6.2 Supporting hyperplanes
There is an important connection between the existence of hyperplanes that support a whole set and

the optimality conditions of points. Let us first define supporting hyperplanes.
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Definition 2.12. Supporting hyperplane

Let S ̸= ∅ be a set in Rn, and let x ∈ bou(S). H = {x ∈ Rn : p⊤(x − x) = 0} is a supporting
hyperplane of S at x if either S ⊆ H+ (i.e., p⊤(x− x) ≥ 0 for x ∈ S) or S ⊆ H−.

Figures 17 illustrates the concept of supporting hyperplanes. Notice that supporting hyperplanes
might not be unique, with the geometry of the set S playing an important role.

Let us define the function f(x) = p⊤x with x ∈ S. One can see that the optimal solution x given by:

x = argmax
x∈S

f(x)

is a point x ∈ S for which p is a supporting hyperplane. A simple geometric analogy is to think that the
f increases value as one moves toward p. The constraint x ∈ S will eventually prevent the movement
further from S, and this last contact point is precisely x. This is a useful concept for optimizing problems
using gradients of functions, as we will discuss later in the course.

S S Sx

x

p

p1
p2

p

px1

x2

Figure 17: Supporting hyperplanes for an arbitrary set. Notice how a single point might have multiple
supporting planes (middle) or different points might have the same supporting hyperplane (right)

One characteristic that convex sets present that will be of great importance when establishing opti-
mality conditions is supporting hyperplanes at every boundary point.

Theorem 2.13
Let S ̸= ∅ be a convex set in Rn, and let x ∈ bou(S). Then there exists p ̸= 0 such that p⊤(x−x) ≤ 0
for each x ∈ clo(S).

The proof follows immediately from Theorem 2.10, without explicitly considering a point y /∈ S and
by noticing that bou(S) ⊂ clo(S). Figures 18 illustrates the theorem.

S

p

x

Figure 18: Supporting hyperplanes for convex sets. Notice how every boundary point has at least one
supporting hyperplane
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3 Week III
In this lecture, we focus on the convexity of functions. First, we define what is a convex function

and discuss examples. We also discuss the connection between convex function, lower-level sets and
epigraphs. Next, we develop the notion of subgradients in connection to supporting hyperplanes. We
also discuss the notion of gradients as unique subgradients for differentiable functions. Second-order
differentiability is also considered a mechanism to determine the convexity of functions. We finalise
discussing the notion of quasiconvexity and how some nonconvex functions can still be present in convex
(sub)level sets, which can be exploited for developing optimisation methods.

3.1 Convexity in functions
Now, we turn our attention to identifying the convexity of functions. Consider the general problem:

(P ) : min. f(x)
subject to: g(x) ≤ 0

x ∈ X
with f : Rn 7→ R, g : Rn 7→ Rm and X ⊆ Rn. Assuming X is a convex set, the next step towards attest-
ing that (P ) is a convex problem is to check whether f and g are convex. It is important to textbfasise
(perhaps redundantly at this point) how crucial it is for us to attest to the convexity (P ) since it allows
us to generalise local optimality results to the whole domain of the problem.

The convexity of functions has a different definition than that used to define convex sets.

Definition 3.1. Convexity of a function I

Let f : S 7→ R where S ⊆ Rn is a nonempty convex set. The function f is said to be convex on S if
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for each x1, x2 ∈ S and for each λ ∈ [0, 1].

We often use the term convex to loosely refer to concave functions, which must be done cautiously.
In fact, if f is convex, then −f is concave, and we say that (P ) is a convex problem even if f is concave,
and we seek to maximise f instead. Also, linear functions are both convex and concave.

We say that a convex function is strictly convex if the inequality holds strictly in Definition 3.1 for
each λ ∈ (0, 1) (notice the open interval instead). In practice, the function is guaranteed to not present
flatness around its minimum (or maximum, for concave functions).

3.1.1 Example of convex functions
Some examples of convex functions are:
1. f(x) = a⊤x+ b;
2. f(x) = ex;
3. f(x) = xp on R+ for p ≤ 0 or p ≥ 1; concave for 0 ≤ p ≤ 1.
4. f(x) = ||x||p (p-norm);
5. f(x) = − log x and negative entropy f(x) = −x log x are concave;
6. f(x) = max{x1, . . . , xn}.

Knowing these common convex functions helps identify convexity in more complex functions formed
by composition. Knowing that an operation between functions preserves convexity, we can infer the
convexity of more complicated functions. The following are convexity-preserving operations.

1. Let f1, . . . , fk : Rn 7→ R be convex. Then these are convex:
• f(x) =

∑k
j=1 αjfj(x) where αj > 0 for j = 1, . . . , k;

• f(x) = max{f1(x), . . . , fk(x)};
2. f(x) = 1

g(x) on S, where g : Rn 7→ R is concave and S = {x : g(x) > 0};
3. f(x) = g(h(x)), where g : R 7→ R is a nondecreasing convex function and h : Rn 7→ R is convex.
4. f(x) = g(h(x)), where g : Rm 7→ R is convex and h : Rn 7→ Rm is affine: h(x) = Ax + b with
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A ∈ Rm×n and b ∈ Rm.

3.1.2 Convex functions and their level sets
There is a strong connection between the convexity of sets and the convexity of functions. Let us

first consider level sets, one type of set spawned by functions.

Definition 3.2. Lower level set
Let S ⊆ Rn be a nonempty set. The lower level set of f : Rn 7→ R for α ∈ R is given by

Sα = {x ∈ S : f(x) ≤ α}.

Figure 19 illustrates the lower-level sets of two functions. The lower level set Sα can be seen as the
projection of the function image onto the domain for a given level α.

f(x) f(x)

x x

α α

Figure 19: The lower level sets Sα (in blue) of two functions, given a value of α. Notice the nonconvexity
of the level set of the nonconvex function (on the right)

Notice that, for convex functions, no discontinuity can be observed, making Sα convex. Lemma 3.3
states this property.

Lemma 3.3 Let S ⊆ Rn be a nonempty convex set and f : S 7→ R a convex function. Then, any
level set Sα with α ∈ R is convex.

Proof. Let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S with f(x1) ≤ α and f(x2) ≤ α. Let λ ∈ (0, 1) and
x = λx1 + (1− λ)x2. Since S is convex, we have that x ∈ S. Now, by the convexity of f , we have

f(x) ≤ λf(x1) + (1− λ)f(x2) ≤ λα+ (1− λ)α = α

and thus x ∈ Sα.

Remark: notice that a convex lower level set does not necessarily mean the function is convex. As
we will see later, there are nonconvex functions that have convex level sets (the so-called quasiconvex
functions).

3.1.3 Convex functions and their epigraphs
Epigraphs, on the other hand, can be used to show the convexity of functions. Let us first formally

define epigraphs.

Definition 3.4. Ephigraph

Let S ⊆ Rn be a nonempty set and f : S 7→ R. The epigraph of f is
epi(f) = {(x, y) : x ∈ S, y ∈ R, y ≥ f(x)} ⊆ Rn+1

Figure 20 illustrates the epigraphs of two functions. Notice that the second function (on the right) is
neither convex nor epigraph. We can use the convexity of epigraphs (and the technical results associated
with the convexity of sets) to show the convexity of functions.
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f(x) f(x)

x x

epi(f) epi(f)

Figure 20: The epigraph epi()f of a convex function is a convex set (in grey on the left).

Theorem 3.5. Convex epigraphs
Let S ⊆ Rn be a nonempty convex set and f : S 7→ R. Then f is convex if and only if epi(f) is a
convex set.

Proof. First, suppose f is convex and let (x1, y1), (x2, y2) ∈ epi(f) for λ ∈ (0, 1). Then
λy1 + (1− λ)y2 ≥ λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).

As λx1 + (1− λ)x2 ∈ S, (λx1 + (1− λ)x2, λy1 + (1− λ)y2) ∈ epi(f).
Conversely, suppose epi(f) is convex. Therefore x1, x2 ∈ S: (x1, f(x1)) ∈ epi(f), (x2, f(x2)) ∈
epi(f) and (λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)) ∈ epi(f) for λ ∈ (0, 1), implying that λf(x1) +
(1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).

The proof starts with the implication “if f is convex, then epi(f) is convex”. For that, it assumes
that f is convex and uses the convexity of f to show that any convex combination of x1,x2 in S will also
be in the epi(f), which is the definition of a convex set.

To prove the implication “if epi(f) is convex, then f is convex”, we define a convex combina-
tion of points in epi(f) and use the definition of epi(f) to show that f is convex by setting y =
λf(x1) + (1− λ)f(x2) and x = λx1 + (1− λ)x2.

3.2 Differentiability of functions
3.2.1 Subgradients and supporting hyperplanes

Subgradients can be understood as supporting hyperplanes at the boundary of function epigraphs.
They can be seen as first-order local approximations of the function, which is often helpful information
for optimisation methods when searching for directions of improvement.

Definition 3.6. Subgradients

Let S ⊆ Rn be a nonempty convex set and f : S 7→ R a convex function. Then ξ ∈ Rn is a
subgradient of f at x ∈ S if

f(x) ≥ f(x) + ξ⊤(x− x). (35)

Inequality (35) is called the subgradient inequality and will be useful in several contexts later in
this course. The set of subgradients ξ of f at x is the subdifferential

∂f (x) = {ξ ∈ Rn : f(x) ≥ f(x) + ξ⊤(x− x)}.
Every convex function f : S 7→ R has at least one subgradient at any point x in the interior of the

convex set S. Requiring that x ∈ int(S) allows us to disregard boundary points of f where ∂(x) might
be empty. Theorem 3.7 presents this result.

Theorem 3.7
Let S ⊆ Rn be a nonempty convex set and f : S 7→ R a convex function. Then for all x ∈ int(S),
there exists ξ ∈ Rn such that

H = {(x, y) : y = f(x) + ξ⊤(x− x)}
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supports epi(f) at (x, f(x)). In particular,
f(x) ≥ f(x) + ξ⊤(x− x),∀x ∈ S.

The proof consists of directly applying Theorem 3.5 and then using the support of the convex sets
theorem (Theorem 14 in Lecture 2) to show that the subgradient inequality holds.

3.2.2 Differentiability and gradients for convex functions
Let us first define the differentiability of a function.

Definition 3.8
Let S ⊆ Rn be a nonempty set. The function f : S 7→ R is differentiable at x ∈ int(S) if there exists
a vector ∇f(x), called a gradient vector, and a function α : Rn 7→ R such that

f(x) = f(x) +∇f(x)⊤(x− x) + ||x− x||α(x;x− x)
where limx 7→x α(x;x−x) = 0. If this is the case for all x ∈ int(S), we say the function is differentiable
in S.

Notice that this definition is based on the existence of first-order (Taylor series) expansion, with an
error term α. This definition is helpful as it highlights the requirement that ∇f(x) exists and is unique
at x since the gradient is given by ∇f(x) =

[
∂f(x)
∂xi

]
i

= 1, . . . , n.

If f is differentiable in S, then its subdifferential ∂(x) is a singleton (a set with a single element) for
all x ∈ S. This is shown in Lemma 3.9:

Lemma 3.9 Let S ⊆ Rn be a nonempty convex set and f : S 7→ R a convex function. Suppose
that f is differentiable at x ∈ int(S). Then ∂f (x) = {∇f(x)}, i.e., the subdifferential ∂f (x) is a
singleton with ∇f(x) as its unique element.

Proof. From Theorem 3.7, ∂f(x) ̸= ∅. Moreover, combining the existence of a subgradient ξ and
differentiability of f at x, we obtain:

f(x+ λd) ≥ f(x) + λξ⊤d (36)
f(x+ λd) = f(x) + λ∇f(x)⊤d+ λ||d||α(x;λd) (37)

Subtracting (37) from (36), we get 0 ≥ λ(ξ − ∇f(x))⊤d − λ||d||α(x;λd). Dividing by λ > 0 and
letting λ 7→ 0+, we obtain (ξ−∇f(x))⊤d ≤ 0. Now, by setting d = ξ−∇f(x), it becomes clear that
ξ = ∇f(x).

Notice that in the proof, we use x+ λd to indicate that x is in direction d, scaled by λ > 0. The fact
that ∂f (x) is a singleton comes from the uniqueness of the solution for (ξ −∇f(x))⊤(ξ −∇f(x)) = 0.

Figure 21 illustrates subdifferential sets for three distinct points of a piecewise linear function. The
picture schematically represents a multidimensional space x as a one-dimensional projection (you can
imagine this picture as a section in one of the x dimensions). The subdifferential set contains an infinite
number of subgradients for the points in which the function is not differentiable. At points where the
function is differentiable (any mid-segment point), the subgradient is unique (a gradient), and the sub-
differential is a singleton.

If f : S 7→ R is a convex differentiable function, then Theorem 3.7 can be combined with Lemma 3.9
to express one of the most powerful results relating f and its affine (first-order) approximation at x.

Theorem 3.10. Convexity of a function II
Let S ⊆ Rn be a nonempty convex open set, and let f : S 7→ R be differentiable on S. The function
f is convex if and only if for any x ∈ S, we have

f(x) ≥ f(x) +∇f(x)⊤(x− x), ∀x ∈ S.

The proof for this theorem follows from the proof for Theorem 3.7 to obtain the subgradient inequality
and then use Lemma 3.9 to replace the subgradient with the gradient. To see how the opposite direction
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f(x)

x

ξ

ξ

∂f(x1)
∂f(x3)

∂f(x2) = ∇f(x2)

x1 x2 x3

Figure 21: A representation of the subdifferential (in grey) for nondifferentiable (x1 and x3) and differ-
entiable (x2) points

(subgradient inequality holing implying the convexity of f), one should proceed as follows.

1. Take x1 and x2 from S. The convexity of S implies that λx1 + (1− λ)x2 is also in S.
2. Assume that the subgradient exists, and therefore, the two relations hold:

f(x1) ≥ f(λx1 + (1− λ)x2) + (1− λ)ξ⊤(x1 − x2) (38)
f(x2) ≥ f(λx1 + (1− λ)x2) + λξ⊤(x2 − x1) (39)

3. Multiply (38) by λ, (39) by (1− λ), and add them together. One will then obtain
λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2),

which is implies convexity.

3.2.3 Second-order differentiability
We say that a function is twice-differentiable if it has a second-order Taylor expansion. Having

second-order expansions can be useful. It allows for encoding curvature information in the approxima-
tion, which is characterised by the Hessian, and to verify convexity (or strict convexity) by testing for
semi-definiteness (positive definiteness).

Let fij(x) = ∂2f(x)
∂xi∂xj

. Recall that the Hessian matrix H(x) at x is given by

H(x) =

f11(x) . . . f1n(x)
...

. . .
...

fn1(x) . . . fnn(x)


Second-order differentiability can be defined as follows.

Definition 3.11. Second-order differentiability

Let S ⊆ Rn be a nonempty set, and let f : S 7→ R. Then f is twice differentiable at x ∈ int(S) if
there exists a vector ∇f(x) ∈ Rn, an n × n symmetric matrix H(x) (the Hessian), and a function
α : Rn 7→ R such that

f(x) = f(x) +∇f(x)⊤(x− x) + 1
2(x− x)⊤H(x)(x− x) + ||x− x||2α(x;x− x)

where limx 7→x α(x;x − x) = 0. If this is the case for all x ∈ S, we say that the function is twice
differentiable in S.

We say that H(x) is positive semi-definite if x⊤H(x)x ≥ 0 for x ∈ Rn. Having a positive semidef-
inite Hessian for all x ∈ S implies that the function is convex in S.
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Theorem 3.12. L
t S ⊆ Rn be a nonempty convex open set, and let f : S 7→ R be twice differentiable on S.Then f is
convex if and only if the Hessian matrix is positive semidefinite (PSD) at each point in S.

Proof. Suppose f is convex and let x ∈ S. Since S is open, x+ λx ∈ S for a small enough |λ| ̸= 0.
From Theorem 3.10 and twice differentiability of f , we have:

f(x+ λx) ≥ f(x) + λ∇f(x)⊤x (40)

f(x+ λx) = f(x) + λ∇f(x)⊤x+ 1
2λ

2x⊤H(x)x+ λ2||x||2α(x;λx) (41)

Subtracting (40) from (41), we get 1
2λ

2x⊤H(x)x + λ2||x||2α(x;λx) ≥ 0. Diving by λ2 > 0 and
letting λ→ 0, it follows that x⊤H(x)x ≥ 0.

Conversely, assume that H(x) is PSD for all x ∈ S. Using the mean value theorem and second-order
expansion, one can show that:

f(x) = f(x) +∇f(x)⊤(x− x) + 1
2(x− x)⊤H(x̂)(x− x)

where x̂ = λx + (1 − λ)x for λ ∈ (0, 1). Note that x̂ ∈ S and H(x̂) are positive semidefinite by
assumption. Thus (x− x)⊤H(x̂)(x− x) ≥ 0, implying f(x) = f(x) +∇f(x)⊤(x− x) ≥ 0.

The proof uses a trick we have seen before. First, we assume convexity and use the definition of
convexity provided by Theorem 3.10 combined with an alternative definition for (x − x) to show that
x⊤H(x)x ≥ 0. Instead of using the reference points x and x, we incorporate a step size λ from x in the
direction of x.

To show the other direction of implication, that is, that x⊤H(x)x ≥ 0 implies convexity, we use the
mean value theorem. The mean value theorem states that a point x̂ must exist between x and x for
which the second-order approximation is exact. We can derive the definition of convexity from these, as
in Theorem 3.10.

Checking for positive semi-definiteness can be done efficiently using the appropriate computational
algebra method, though it can be computationally expensive. It involves calculating the eigenvalues of
H(x) and testing whether they are all nonnegative (positive), which implies the positive semi-definiteness
(definiteness) of H(x). Some nonlinear solvers can return warning messages (or errors even), pointing
out a lack of convexity by testing (under a certain threshold) for positive semi-definiteness.

3.3 Quasiconvexity
Quasiconvexity can be seen as the generalisation of convexity to functions that are not convex but

share similar properties that allow for defining global optimality conditions. One class of these functions
are named quasiconvex. Let us first technically define quasiconvex functions.

Definition 3.13
Let S ⊆ Rn be a nonempty convex set and f : S 7→ R. Function f is quasiconvex if, for each x1, x2 ∈ S
and λ ∈ (0, 1), we have

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)}. (42)

If f is quasiconvex, then −f is quasiconcave. Also, functions that are both quasiconvex and quasi-
concave are called quasilinear. Quasiconvex functions are also called unimodal.

Figure 22 illustrates a quasiconvex function. Notice that, for any pair of points x1 and x2 in the
domain of f , the graph of the function is always below the maximum between f(x1) and f(x2). This
is precisely what renders convex the lower-level sets of quasiconvex functions. On the other hand, the
epigraph epi(f) is not a convex set.

Examples of quasiconvex functions include:

1. f(x) =
√
|x| in R
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f(x) f(x)

x xx1 x2

f(x1)

f(x2)
α

Sα

Figure 22: A quasiconvex function with its epigraph (in grey) and lower level set (in blue).

2. f(x) = log x is quasilinear for x > 0
3. f(x) = inf{z ∈ Z : z ≥ x} is quasilinear
4. f(x1, x2) = x1x2 is quasiconcave on S = {(x1, x2) ∈ R2 : x1, x2 > 0}

An important property of quasiconvex functions is that their level sets are convex.

Theorem 3.14
Let S ⊆ Rn be a nonempty convex set and f : S 7→ R. The function f is quasiconvex if and only if
Sα = {x ∈ S : f(x) ≤ α} is convex for all α ∈ R.

Proof. Suppose f is quasiconvex and let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S and max{f(x1), f(x2)} ≤ α.
Let x = λx1 + (1 − λ)x2 for λ ∈ (0, 1). As S is convex, x ∈ S. By quasiconvexity of f , f(x) ≤
max{f(x1), f(x2)} ≤ α. Hence, x ∈ Sα and Sα is convex.
Conversely, assume that Sα is convex for α ∈ R. Let x1, x2 ∈ S, and let x = λx1 + (1 − λ)x2 for
λ ∈ (0, 1). Note that, for α = max{f(x1), f(x2)}, we have x1, x2 ∈ Sα. The convexity of Sα implies
that x ∈ Sα, and thus f(x) ≤ α = max{f(x1), f(x2)}, which implies that f is quasiconvex.

The proof relies on the convexity of the domain S to show that a convex combination from the
point in the level set Sα also belongs to Sα. To show the other way around, we simply need to define
α = max{f(x1), f(x2)} to see that a convex level set Sα implies that f is quasiconvex.

Quasiconvex functions have an interesting first-order condition that arises from the convexity of its
level sets.

Theorem 3.15
Let S ⊆ Rn be a nonempty open convex set, and let f : S 7→ Rlbe differentiable on S. Then f is
quasiconvex if and only if, for x1, x2 ∈ S and f(x1) ≤ f(x2), ∇f(x2)⊤(x1 − x2) ≤ 0.

Surface plot and level curves for f(x) =
√
||x||1 in Fig. 23 and Fig. 24.

The condition in Theorem 3.15 is, in fact, sufficient for global optimality if one can show that f is
in fact strictly quasiconvex, that is when (42) holds strictly. Figure 23 and 24 show an example of a
strict quasiconvex function and its level curves, illustrating that, despite the lack of convexity, the level
sets are convex.

Strictly quasiconvex functions are a subset of a more general class of functions named pseudocon-
vex, for which the conditions in Theorem 3.15 is sufficient for global optimality.
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4 Week IV
In this lecture, we use the concepts of convexity and differentiability to derive optimality conditions.

We start by looking into how the presence of convexity can be used to derive general optimality conditions
for unconstrained (and also constrained, which we will consider later in the course) problems. Next, we
use the more general and easier to verify concept of differentiability to derive necessary and sufficient
local optimality conditions and conclude showing how convexity can be used to show that first-order
optimality conditions are in fact necessary and sufficient for global optimality.

4.1 Recognising optimality
We now turn our focus to recognising whether a given point satisfy necessary and/or sufficient con-

ditions for optimality. Even though these conditions can be used to test if a candidate point is optimal
for a problem, its most important use is serving as a framework for directing solution methods in their
search for optimal solutions.

Before we proceed, let us define the terminology we will use to refer to solutions. Let f : Rn 7→ R.
Consider the problem (P ) : min. {f(x) : x ∈ S}.

1. a feasible solution is any solution x ∈ S;

2. a local optimal solution is a feasible solution x ∈ S that has a neighbourhood Nϵ(x) = {x : ||x−x|| ≤
ϵ} for some ϵ > 0 such that f(x) ≤ f(x) for each x ∈ S ∩Nϵ(x).

3. a global optimal solution is a feasible solution x ∈ S with f(x) ≤ f(x) for all x ∈ S. Or alterna-
tively, is a local optimal solution for which S ⊆ Nϵ(x).

Figure 25 illustrates the concepts above. Solution x1 is an unconstrained global minimum, but is not a
feasible solution considering the feasibility set S. Solution x2 is a local optima, for any neighbourhood
Nϵ(x2) only encompassing the points within the same plateau. Solution x3 is a local optimum, while
x4 is neither a local or a global optimum in the unconstrained case, but is a global maximum in the
constrained case. Finally, x5 is the global minimum in the constrained case.

f(x)
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Figure 25: Examples of local and global optima

In the figures below, we observed the points of interest in optimisation. Points x1, x2 and x3 are local
optima in the unconstrained problem. Once a constraint set S is imposed, x4 and x5 become points of
interest and x1 becomes infeasible.

4.2 The role of convexity in optimality conditions
We can now state what is possibly the most important result in optimisation. In a nutshell, this

results allows one promote local optimality to global optimality in the presence of convexity.
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Figure 26: Unconstrained optimisation problem

f(x)

xx1 x2 x3 x4x5

S

Figure 27: Constrained optimisation problem
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Theorem 4.1. Global optimality of convex problems
Let S ⊆ Rn be a nonempty convex set and f : S 7→ R convex on S. Consider the problem
(P ) : min. {f(x) : x ∈ S}. Suppose x is a local optimal solution to P . Then x is a global optimal
solution.

Proof. Since x is a local optimal solution, there exists Nϵ(x) such that, for each x ∈ S ∩ Nϵ(x),
f(x) ≤ f(x). By contradiction, suppose x is not a global optimal solution. Then, there exists a
solution x̂ ∈S so that f(x̂) < f(x). Now, for any λ ∈ [0, 1], the convexity of f implies:

f(λx̂+ (1− λ)x) ≤ λf(x̂) + (1− λ)f(x) < λf(x) + (1− λ)f(x) = f(x)

However, for λ > 0 sufficiently small, λx̂ + (1 − λ)x ∈ S ∩ Nϵ(x) due to the convexity of S, which
contradicts the local optimality of x. Thus, x is a global optimum.

The proof is built using contradiction. That is, we show that for a solution to be a local optimum
in a convex problem, not being a global solution contradicts its local optimality, originally true by as-
sumption. This is achieved using the convexity of f and showing that the convex combination between
hypothetical better solution x̂ and x would have to be both in Nϵ(x) and better than x, contradicting
the local optimality of x.

4.3 Optimality condition of convex problems
We first look at optimality conditions in a general sense to then translate the concept to unconstrained

and constrained problems specifically. Taking this more general standpoint is also helpful to understand
how these can be specialised in the absence of a closed domain or in the presence of differentiability. We
assume convexity for now, and later we will discuss further the consequences of the absence of convexity.
Note that unconstrained problems have convex feasibility set (i.e., the whole Rn), and thus what follows
can be generalised to unconstrained optimisation problems.

Theorem 4.2. Optimality condition for convex problems
Let S ⊆ Rn be a nonempty convex set and f : Rn 7→ R convex on S. Consider the problem
(P ) : min. {f(x) : x ∈ S}. Then, x ∈ S is an optimal solution to (P ) if and only if f has a
subgradient ξ at x such that ξ⊤(x− x) ≥ 0 for all x ∈ S.

Proof. Suppose that ξ⊤(x − x) ≥ 0 for all x ∈ S, where ξ is a subgradient of f at x. By convexity
of f , we have, for all x ∈ S

f(x) ≥ f(x) + ξ⊤(x− x) ≥ f(x)
and hence x is optimal.

Conversely, suppose that x is a global optimal for P . Construct the sets:

Λ1 = {(x− x, y) : x ∈ Rn, y > f(x)− f(x)}
Λ2 = {(x− x, y) : x ∈ S, y ≤ 0}

Note that Λ1 and Λ2 are convex. By optimality of x, Λ1 ∩ Λ2 = ∅. Using the separation theorem,
there exists a hyperplane defined by (ξ0, µ) ̸= 0 and α that separates Λ1 and Λ2:

ξ⊤
0 (x− x) + µy ≤ α, ∀x ∈ Rn, y > f(x)− f(x) (43)
ξ⊤

0 (x− x) + µy ≥ α, ∀x ∈ S, y ≤ 0. (44)
(45)

Letting x = x and y = 0 in (44), we get α ≤ 0. Next, letting x = x and y = ϵ > 0 in (43), we obtain
α ≥ µϵ. As this holds for any ϵ > 0, we must have µ ≤ 0 and α ≥ 0, the latter implying α = 0.
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If µ = 0, we get from (43) that ξ⊤
0 (x− x) ≤ 0 for all x ∈ Rn. Now, by letting x = x+ ξ0, it follows

that ξ⊤
0 (x− x) = ||ξ0||2 ≤ 0, and thus ξ0 = 0. Since (ξ0, µ) ̸= 0, we must have µ < 0.

Dividing (43) and (44) by −µ and denoting ξ = −ξ0
µ , we obtain:

ξ⊤(x− x) ≤ y, ∀x ∈ Rn, y > f(x)− f(x) (46)
ξ⊤(x− x) ≥ y, ∀x ∈ S, y ≤ 0 (47)

Letting y = 0 in (47), we get ξ⊤(x−x) ≥ 0 for all x ∈ S. From (46), we can see that y > f(x)−f(x)
and y ≥ ξ⊤(x− x). Thus, f(x)− f(x) ≥ ξ⊤(x− x), which is the subgradient inequality. Thus, ξ is a
subgradient at x with ξ⊤(x− x) ≥ 0 for all x ∈ S.

In the first part of the proof, we use the definition of convexity based on the subgradient inequality
to show that ξ⊤(x − x) ≥ 0 implies that f(x) ≤ f(x) for all x ∈ S. The second part of the proof
uses the separation theorem in a creative way to show that the subgradient inequality must hold if x is
optimal. This is achieved by using the two sets Λ1 and Λ2. Notice that, x being optimal implies that
y > f(x) − f(x) ≥ 0, which leads to the conclusion that Λ1 ∩ Λ2 = ∅, demonstrating the existence of a
separating hyperplane between them, as shown in (43) and (44). We can show that α in those has to be
0 by noticing that µϵ ≤ 0 must hold for ϵ > 0 to be a bounded constant.

The second part is dedicated to show that µ < 0, so we can divide (43) and (44) by µ to obtain the
subgradient inequality as we have seen. We show that by contradiction, since µ = 0 would imply ξ0 = 0,
which disagrees with existence of a (ξ, µ) ̸= 0 in the separation theorem. Finally, as y > f(x)− f(x) and
y ≥ ξ⊤(x− x), for any given y, we have that f(x)− f(x) ≥ ξ⊤(x− x) 1, which leads to the subgradient
inequality.

Notice that this result provides necessary and sufficient conditions for optimality for convex problems.
These conditions can be extended to the unconstrained case as well, which is presented in Corollary 4.3.

Corollary 4.3 (Optimality in open sets). Under the conditions of Theorem 4.2, if S is open, x is an
optimal solution to P if and only if 0 ∈ ∂f(x).

Proof. From Theorem 4.2, x is optimal if and only if ξ is a subgradient at x with ξ⊤(x− x) ≥ 0 for
all x ∈ S. Since S is open, x = x− λξ ∈ S for some λ > 0, and thus −λ||ξ||2 ≥ 0, implying ξ = 0.

Notice that, if S is open, then the only way to attain the condition ξ⊤(x − x) ≥ 0 is if ξ = 0 itself.
This is particularly relevant in the context of nondifferentiable functions, as we will see later. Another
important corollary is the classic optimality condition ∇f(x) = 0, which we state below for completeness.

Corollary 4.4 (Optimality for differentiable functions). Suppose that S ⊆ Rn is a nonempty convex
set and f : S → R a differentiable convex function on S. Then x ∈ S is optimal if and only if
∇f(x)⊤(x− x) ≥ 0 for all x ∈ S. Moreover, if S is open, then x is optimal if and only if ∇f(x) = 0.

The proof for Corollary 4.4 is the same as Theorem 4.2 under a setting where ∂(x) = {∇f(x)} due
to the differentiability of f .

Let us consider two examples. First, consider the problem:

1Notice that, on the line of nonnegative reals, for a same y, f(x)−f(x) is always on the ’right side’ of ξ⊤(x−x) because
it is an open interval.
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min.
(
x1 −

3
2

)2
+ (x2 − 5)2

subject to: − x1 + x2 ≤ 2
2x1 + 3x2 ≤ 11
x1 ≥ 0
x2 ≥ 0

Figure 28 presents a plot of the feasible region S, which is form by the intersection of the two half-
spaces, and the level curves of the objective function, with some of the values indicated in the curves.
Notice that that this is a convex problem.
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Figure 28: Example 1

The arrow shows the gradient ∇f(x) at x = (1, 3). Notice that this point is special since at that point,
no vector x− x can be found forming an angle greater than 90◦ with ∇f(x), that is ∇f(x)⊤(x− x) ≥ 0
for any x ∈ S, which means that x is optimal. Since the problem is convex, that is in fact the global
optimum for this problem.

Figure 29 shows a similar situation, but now with one of the constraints being nonlinear. Notice that
of the two points highlighted ((1,2) in orange and (2,1) in purple), the optimality condition only holds
for (2,1). For example, for x = (2, 1) and x = (1, 2) the vector x− x forms a angle greater than 90◦ with
the gradient of f at x, ∇f(x), and thus the condition ∇f(x)(x − x) ≥ 0 does not hold for all S. The
condition does hold for x = (2, 1), as can be seen in Figure 29.

A geometrical interpretation of the optimality condition ξ⊤(x− x) ≥ 0 is as follows. If there exists a
subgradient ξ (or a gradient ∇f(x) if f is differentiable) that serves as a separating hyperplane between
the level curve of f at x and the feasible region S, then there can be no feasible point further into the
lower level set defined by that level curve. Ultimately, this means that there is no feasible point with
smaller objective function value to be found. This is why the separation theorem from Lecture 2 plays
an important role here, since it can be used to state that the feasible options have been exhausted in
terms of potential directions of decrease of objective function value.

4.3.1 Optimality conditions for unconstrained problems
We have developed most of the concepts required to state optimality conditions for unconstrained

optimisation problems, as presented in Corollaries 4.3 and 4.4. We now take an alternative route in
which we do not take into account the feasibility set, but only the differentiability of f . This will be
useful as it will allow us to momentarily depart from the assumption of convexity, which was used to
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Figure 29: Example 2

state Theorem 4.2.

1. First-order optimality conditions:

Let us start defining what it means to be a descent direction.

Theorem 4.5. Descent direction
Suppose f : Rn 7→ R is differentiable at x. If there is d such that ∇f(x)⊤d < 0, there ex-
ists δ > 0 such that f(x+λd) < f(x) for each λ ∈ (0, δ), so that d is a descent direction of f at x.

Proof. By differentiability of f at x, we have that:

f(x+ λd)− f(x)
λ

= ∇f(x)⊤d+ ||d||α(x;λd).

Since ∇f(x)⊤d < 0 and α(x;λd) → 0 when λ → 0 for some λ ∈ (0, δ), we must have f(x +
λd)− f(x) < 0.

The proof uses the first-order expansion around x to show that, f being differentiable, the condi-
tion ∇f(x)⊤d < 0 implies that f(x + λd) < f(x), or put in words, that a step in the direction d
decreases the objective function value.

We can derive the first-order optimality condition in Corollary 4.4 as a consequence from Theorem
4.5. Notice, however, that since convexity is not assumed, all we can say is that this condition is
necessary (but not sufficient) for local optimality.

Corollary 4.6 (First-order necessary condition). Suppose f : Rn → R is differentiable at x. If x
is a local minimum, then ∇f(x) = 0.

Proof. By contradiction, suppose that ∇f(x) ̸= 0. Letting d = −∇f(x), we have that
∇f(x)⊤d = −||∇f(x)||2 < 0. By Theorem 4.5, there exists a δ > 0 such that f(x+ λd) < f(x)
for all λ ∈ (0, δ), thus contradicting the local optimality of x.

Notice that Corollary 4.6 only holds in one direction. The proof uses contradiction once again,
where we assume local optimality of x and show that having ∇f(x) ̸= 0 contradicts the local opti-
mality of x, our initial assumption. To do that, we simply show that having any descent direction
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d (we use −∇f(x) since in this setting it is guaranteed to exist as ∇f(x) ̸= 0) would mean that
small step λ can reduce the objective function value, contradicting the local optimality of x.

2. Second-order optimality conditions:
We now derive necessary conditions for local optimality of x based on second-order differentiability.
As we will see, it requires that the Hessian H(x) of f(x) at x is positive semidefinite.

Theorem 4.7. Second-order necessary condition
Suppose f : Rn → R is twice differentiable at x. If x is a local minimum, then H(x) is positive
semidefinite.

Proof. Take an arbitrary direction d. As f is twice differentiable, we have:

f(x+ λd) = f(x) + λ∇f(x)⊤d+ 1
2λ

2d⊤H(x)d+ λ2||d||2α(x;λd)

since x is a local minimum, Corollary 4.6 implies that ∇f(x) = 0 and f(x+ λd) ≥ f(x).

Rearranging terms and dividing by λ2 > 0 we obtain
f(x+ λd)− f(x)

λ2 = 1
2d

⊤H(x)d+ ||d||2α(x;λd).

Since α(x;λd)→ 0 as λ→ 0, we have that d⊤H(x)d ≥ 0.

The second-order conditions can be used to attest local optimality of x. In the case where H(x) is
positive definite, then this second order condition becomes sufficient for local optimality, since it
implies that the function is ’locally convex’ for a small enough neighbourhood Nϵ(x).

In case f is convex, then the first-order condition ∇f(x) = 0 becomes also sufficient for attest-
ing the global optimality of x. Recall that f is convex if and only if H(x) is positive semidefinite
for all x ∈ Rn, meaning that in this case the second-order necessary conditions are also satisfied at x.

Theorem 4.8
Let f : Rn 7→ R be convex. Then x is a global minimum if and only if ∇f(x) = 0.

Proof. From Corollary 4.6, if x is a global minimum, then ∇f(x) = 0. Now, since f is convex,
we have that:

f(x) ≥ f(x) +∇f(x)⊤(x− x)

Notice that ∇f(x) = 0 implies that ∇f(x)⊤(x − x) = 0 for each x ∈ Rn, thus implying that
f(x) ≤ f(x) for all x ∈ Rn.
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5 Week V
In this lecture, we present methods for solving unconstrained optimisation problems. We start by

defining a general optimisation algorithm that will serve as a reference for deriving variants of optimi-
sation methods. We concentrate first on how to generate step sizes using variants of unidimensional
optimisation methods, the so called line searches. We also present the Armijo rule as an inexact line
search method, widely used in state-of-the-art implementations of optimisation algorithms. Next, we
focus on three variants of multidimensional methods, namely the coordinate descent (derivative free),
the gradient descent method that relies in first order approximations, and the Newton’s method, which
relies on second-order information. We also discuss the effects of having exact and inexact line searches
in each of these methods.

5.1 A prototype of an optimisation method
Most, if not all, optimisation methods are based on the conceptual notion of successively obtaining

directions of potential improvement and suitable step sizes in this direction, until a convergence or ter-
mination criterion (collectively called stopping criteria) is satisfied.

Considering what we have seen so far, we have now the concepts required for describing several uncon-
strained optimisation methods. We start by posing a conceptual optimisation algorithm in a pseudocode
structure. This will be helpful in identifying the elements that differentiate the methods we will discuss.

Algorithm 1 Conceptual optimisation algorithm
1: initialise. iteration count k = 0, starting point x0
2: while stopping criteria are not met do
3: compute direction dk

4: compute step size λk

5: xk+1 = xk + λkdk

6: k = k + 1
7: end while
8: return xk.

Algorithm 1 has two main elements, namely the computation of the direction dk and the step size
λk at each iteration k. In what follows, we present some univariate optimisation methods that can be
employed to calculate step sizes λk. These methods are commonly referred to as line search methods.

5.1.1 Line search methods
Finding an optimal step size λk is in itself an optimisation problem. The name line search refers to

the fact that it consists of a unidimensional search as λk ∈ R.

Suppose that f : Rn 7→ R is differentiable. We define the unidimensional function θ : R 7→ R as:

θ(λ) = f(x+ λd).

Assuming differentiability, we can use the first-order necessary condition θ′(λ) = 0 to obtain optimal
values for the step size λ. This means solving the system:

θ′(λ) = d⊤∇f(x+ λd) = 0

which might pose challenges. First, d⊤∇f(x + λd) is often nonlinear in λ, with optimal solutions not
trivially resting at boundary points for an explicit domain of λ. Moreover, recall that θ′(λ) = 0 is not a
sufficient condition for optimality in general, unless properties such as convexity can be inferred.

In what follows, we assume that strict quasiconvexity holds and therefore θ′(λ) = 0 becomes necessary
and sufficient for optimality. In some contexts, unidimensional strictly quasiconvex functions are called
unimodal.

Theorem 5.1 establishes the mechanism underpinning line search methods. In that, we use the as-
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sumption that the function has a unique minimum (a consequence of being strictly quasiconvex) to
successively reduce the search space until the optimal is contained in a sufficiently small interval l within
an acceptable tolerance.

Theorem 5.1. Line search reduction
Let θ : R→ R be strictly quasiconvex over the interval [a, b], and let λ, µ ∈ [a, b] such that λ < µ. If
θ(λ) > θ(µ), then θ(z) ≥ θ(µ) for all z ∈ [a, λ]. If θ(λ) ≤ θ(µ), then θ(z) ≥ θ(λ) for all z ∈ [µ, b].

θ θ

θ(λ)
θ(µ)

a bλ µ

a b

θ(λ)
θ(µ)

λ µa b

a b

Figure 30: Applying Theorem 5.1 allows to iteratively reduce the search space.

Figure 30 provides an illustration of Theorem 5.1. The line below the x-axis illustrates how the search
space can be reduced between two successive iterations. In fact, most line search methods will iteratively
reduce the search interval (represented by [a, b]) until the interval is sufficiently small to be considered
“a point” (i.e., is smaller than a set threshold l).

Line searches are exact when optimal step sizes λ∗
k are calculated at each iteration k, and inexact

when arbitrarily good approximations for λ∗
k are used instead. As we will see, there is a trade-off between

the number iterations required for convergence and the time taken per iteration that must be taken into
account when choosing between exact and inexact line searches.

5.1.2 Exact line searches
Exact methods are designed to return the optimal step value λ∗ within a pre-specified tolerance l. In

practice, it means that these methods return an interval [ak, bk] such that bk − ak ≤ l.

1. Uniform search
The uniform search consists of breaking the search domain [a, b] into N slices of uniform size
δ = |b−a|

N . This leads to a one-dimensional grid with grid points an = a0 + nδ, n = 0 . . . N where
a0 = a and aN = b. We can then set λ̂ to be:

λ̂ = arg min
i=0,...,n

f(ai)

From Theorem 5.1, we know that the optimal step size λ∗ ∈ [λ̂− δ, λ̂+ δ]. The process can then be
repeated, by making a = λ̂− δ and b = λ̂+ δ (see Figure 31). until |a− b| is less than a prespecified
tolerance l. Without enough repetition of the search, the uniform search becomes an inexact search.

This type of search is particularly useful when setting values for hyperparameters in algorithms
(that is, user defined parameters that influence the behaviour of the algorithm) of performing
any sort of search in a grid structure. One concept related to this type of search is what is
known as the coarse-to-fine approach. Coarse-to-fine approaches use sequences of increasingly fine
approximations (i.e., gradually increasing n) to obtain computational savings in terms of function
evaluations. In fact, the number of function evaluations a line search method executes is one of
the indicators of its efficiency.

2. Dichotomous search
The dichotomous search is an example of a sequential line search method, in which evaluations of

40



θ

a = a0 a1 a2 . . . an = b

λ̂− δ λ̂+ δλ̂

θ(a2)

Figure 31: Grid search with 5 points; Note that θ(a2) = mini=0,...,n θ(ai).

the function θ at a current iteration k are reused in the next iteration k+1 to minimise the number
of function evaluations and thus improve performance.

The word dichotomous refer to the mutually exclusive parts that the search interval [a, b] is di-
vided at each iteration. We start by defining a distance margin ϵ and defining two reference points
λ = a+b

2 − ϵ and µ = a+b
2 + ϵ. Using the function values θ(λ) and θ(µ), we proceed as follows.

(a) If θ(λ) < θ(µ), then move to the left by making ak+1 = ak and bk+1 = µk;
(b) Otherwise, if θ(λ) > θ(µ), then move to the right by making ak+1 = λk and bk+1 = bk.

Notice that, the assumption of strict quasiconvexity implies that θ(λ) = θ(µ) cannot occur, but in
a more general setting one must make sure a criterion for resolving the tie. Once the new search
interval [ak+1, bk+1] is updated, new reference points λk+1 and µk+1 are calculated and the process
is repeated until |a− b| ≤ l. The method is summarised in Algorithm 2. Notice that, at any given
iteration k, one can calculate what will be the size |ak+1 − bk+1|, given by:

bk+1 − ak+1 = 1
2k

(b0 − a0) + 2ϵ
(

1− 1
2k

)
.

This is useful in that it allows predicting the number of iterations Algorithm 2 will require before
convergence. Figure 32 illustrates the process for two distinct functions. Notice that the employ-
ment of the central point a+b

2 as the reference to define the points λ and µ turns the method robust
in terms of interval reduction at each iteration.

Algorithm 2 Dichotomous search
1: initialise. distance margin ϵ > 0, tolerance l > 0, [a0, b0] = [a, b], k = 0
2: while bk − ak > l do
3: λk = ak+bk

2 − ϵ, µk = ak+bk

2 + ϵ
4: if θ(λk) < θ(µk) then
5: ak+1 = ak, bk+1 = µk

6: else
7: ak+1 = λk, bk+1 = bk

8: end if
9: k = k + 1

10: end while
11: return λ = ak+bk

2

3. Golden section search*
The golden section search is named after the golden ratio φ = 1+

√
5

2 , of which the inverse is used
as the ratio of reduction for the search interval [a, b] at each iteration.

Consider that, once again, we rely on two reference points λk and µk. The method is a consequence
of imposing two requirements for the line search:

(a) the reduction in the search interval should not depend on whether θ(λk) > θ(µk) or vice-versa.
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Figure 32: Using the midpoint (a+ b)/2 and Theorem 5.1 to reduce the search space.

(b) at each iteration, we perform a single function evaluation, thus making λk+1 = µk if θ(λk) >
θ(µk) or vice-versa.

From requirement 1, we can infer that bk+1 − ak+1 = bk − λk = µk − ak is required. To find
the interval reduction rate α ∈ (0, 1) that would allow so, we define µk = ak + α(bk − ak) and,
consequently, λk = ak + (1− α)(bk − ak). Notice that this makes bk+1 − ak+1 = α(bk − ak).

Notice the following. Suppose that θ(λk) > θ(µk) at iteration k. We then make ak+1 = λk and
bk+1 = bk, a "movement to the right". From requirement 2, we also make λk+1 = µk so that
θ(λk+1) = θ(µk), avoiding a function evaluation.

From the above, we can calculate the ratio α that would allow the method to work. Notice that:

λk+1 = µk

ak+1 + (1− α)(bk+1 − ak+1) = µk

(1− α)[α(bk − ak)] = µk − λk

(α− α2)(bk − ak) = ak + α(bk − ak)− [ak + (1− α)(bk − αk)]
α2 + α− 1 = 0

to which α = 2
1+

√
5 = 0.618... = 1

φ is the positive solution. Clearly, the same result is obtained
if one consider θ(λk) < θ(µk). Algorithm 3 summarises the golden section search. Notice that at
each iteration, only a single additional function evaluation is required.

Algorithm 3 Golden section search
1: initialise. tolerance l > 0, [a0, b0] = [a, b], α = 0.618, k = 0
2: λk = ak + (1− α)(bk − ak), µk = ak + α(bk − ak)
3: while bk − ak > l do
4: if θ(λk) > θ(µk) then
5: ak+1 = λk, bk+1 = bk, λk+1 = µk, and
6: µk+1 = ak+1 + α(bk+1 − ak+1). Calculate θ(µk+1)
7: else
8: ak+1 = ak, bk+1 = µk, µk+1 = λk, and
9: λk+1 = ak+1 + (1− α)(bk+1 − ak+1). Calculate θ(λk+1)

10: end if
11: k ← k + 1
12: end while
13: return λ = ak+bk

2

Comparing the above method for a given accuracy l, the required number of function evaluations is:

min

n :
uniform: n ≥ b1−a1

l/2 − 1
dichotomous: (1/2)n/2 ≤ l

b1−a1

golden section: (0.618)n−1 ≤ l
b1−a1


For example: suppose we set [a, b] = [−10, 10] and l = 10−6. Then the number of iterations
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required for convergence is
• uniform: n = 4× 106;

• dichotomous: n = 49;

• golden section: n = 36.

A variant of the golden section method uses Fibonacci numbers to define the ratio of interval
reduction. Despite being marginally more efficient in terms of function evaluations, the overhead
of calculating Fibonacci numbers has to be taken into account.

4. Bisection search
Differently form the previous methods, the bisection search relies on derivative information to infer
whether how the search interval should be reduced. For that, we assume that θ(λ) is differentiable
and convex.

We proceed as follows. If θ′(λk) = 0, then λk is a minimiser. Otherwise:

(a) if θ′(λk) > 0, then, for λ > λk, we have θ′(λk)(λ− λk) > 0, which implies θ(λ) ≥ θ(λk) since
θ is convex. Therefore, the new search interval becomes [ak+1, bk+1] = [ak, λk].

(b) if θ′(λk) < 0, we have θ′(λk)(λ− λk) > 0 (and thus θ(λ) ≥ θ(λk)) for λ < λk. Thus, the new
search interval becomes [ak+1, bk+1] = [λk, bk].

As in the dichotomous search, we set λk = 1
2 (bk + ak), which provides robust guarantees of search

interval reduction. Notice that the dichotomous search can be seen as a bisection search in which
the derivative information is estimated using the difference of function evaluation at two distinct
points. Algorithm 4 summarises the bisection method.

Algorithm 4 Bisection method
1: initialise. tolerance l > 0, [a0, b0] = [a, b], k = 0
2: while bk − ak > l do
3: λk = (bk+ak)

2 and evaluate θ′(λk)
4: if θ′(λk) = 0 then return λk

5: else if θ′(λk) > 0 then
6: ak+1 = ak, bk+1 = λk

7: else
8: ak+1 = λk, bk+1 = bk

9: end if
10: k ← k + 1
11: end while
12: return λ = ak+bk

2

5.1.3 Inexact line search
Often, it is worth sacrificing optimality of the step size λk for the overall efficiency of the solution

method in terms of solution time.

There are several heuristics that can be employed to define step sizes and their performance are
related to how the directions dk are defined in Algorithm 1. Next, we present the Armijo rule, arguably
the most used technique to obtain step sizes in efficient implementations of optimisation methods.

1. Armijo rule
The Armijo rule is a condition that is tested to decide whether a current step size λ is acceptable
or not. The step size λ is considered acceptable if:

f(x+ dλ)− f(x) ≤ αλ∇f(x)⊤d.

One way of understanding the Armijo rule is to look at what it means in terms of the function
θ(λ) = f(x+ λd). Notice that, at λ = 0, the Armijo rule becomes:
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θ(λ)− θ(0) ≤ αλθ′(0)
θ(λ) ≤ θ(0) + αλθ′(0). (48)

(49)
That is, θ(λ) has to be less than the deflected linear extrapolation of θ at λ = 0. The deflection is
given by the pre-specified parameter α. In case λ does not satisfy the test in (48), λ is reduced by
a factor β ∈ (0, 1) until the test in (48) is satisfied.

λ βλ

acceptable λk acceptable λk

θapp(λ)

θ(λ)
θapp(βλ)

θ(βλ)

θapp(λ) = θ(0) + αλ(θ′(0)) θapp(λ) = θ(0) + αλ(θ′(0))

θ(0) + λ(θ′(0)) θ(0) + λ(θ′(0))

Figure 33: At first λ0 = λ is not acceptable; after reducing the step size to λ1 = βλ, it enters the
acceptable range where θ(λk) ≤ θapp(λk) = θ(0) + αλk(θ′(0)).

In Figure 33, we can see the acceptable region for the Armijo test. At first, λ does not satisfy
the condition (48), being then reduced to βλ, which, in turn, satisfies (48). In this case, λk would
have been set βλ. Suitable values for α are within (0, 0.5] and for β are within (0, 1), trading of
precision (higher values) and number of tests before acceptance (lower values).

The Armijo rule is called backtracking in some contexts, due to the successive reduction of the step
size caused by the factor β ∈ (0, 1). Some variants might also include rules that prevent the step
size from becoming too small, such as θ(δλ) ≥ θ(0) + αδλθ′(0), with δ > 1.

A possible general pseudocode for the Armijo’s rule heuristic is given in 5.

Algorithm 5 Armijo’s rule heuristic
1: initialise. λ = 1, α, β, k = 0
2: while θ(λ) > θ(0) + αλθ′(0) do
3: λ = λ ∗ β
4: k ← k + 1
5: end while
6: return λ

5.2 Unconstrained optimisation methods
We now focus on developing methods that can be employed to optimise f : Rn 7→ R. We start with

coordinate descent method, which is derivative free, to then discuss the gradient method and Newton’s
method. In essence, the main difference between the three methods is how the directions dk in Algorithm
1 are determined. Also, all of these methods rely on line searches to define optimal step sizes, which can
be any of the methods seen before or any other unidimensional optimisation method.

5.2.1 Coordinate descent
The cordinate descent method relies on a simple yet powerful idea. By focusing on one coordinate at

the time, the method trivially derives directions d having di = 1 for coordinate i and dj ̸=i = 0 otherwise.
As one would suspect, the order in which the coordinates are selected influences the performance of the
algorithm. Some known variants include:

1. Cyclic: coordinates are considered in order 1, . . . , n;
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2. Double-sweep: swap the coordinate order at each iteration;

3. Gauss-Southwell: choose components with largest ∂f(x)
∂xi

;

4. Stochastic: coordinates are selected at random.

Algorithm 6 summarises the general structure of the coordinate descent method. Notice that the
for-loop starting in Line 3 uses the cyclic variant of the coordinate descent method.

Algorithm 6 Coordinate descent method (cyclic)
1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0
2: while ||xk+1 − xk|| > ϵ do
3: for j = 1, . . . n do
4: d = {di = 1, if i = j; di = 0, if i ̸= j}
5: λj = argminλ∈R{f(xk

j + λdj)}
6: xk+1

j = xk
j + λjdj

7: end for
8: k = k + 1
9: end while

10: return xk

Figure 34 shows the progress of the algorithm when applied to solve
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

using the golden section method as line search.
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Figure 34: Coordinate descent method applied to f . Convergence is observed in 4 steps for a tolerance
ϵ = 10−5

The coordinate descent method is the strategy employed in several other methods, such as the Gauss-
Seidel method for solving linear system of equations, which is why some references refer to each of these
iterations as Gauss-Seidel steps. Also, when a collection of coordinates is used to derive a direction,
the term block coordinate descent is used, though a method for deriving directions for each block is still
necessary, for example the gradient method presented next.

5.2.2 Gradient (descent) method
The gradient descent uses the function gradients as the search direction d. Before we present the

method, let us present a result that justifies the use of gradients to derive search directions.

Lemma 5.2. S ppose that f : Rn → R is differentiable at x ∈ Rn and ∇f(x) ̸= 0. Then d =
− ∇f(x)

||∇f(x)|| is the direction of steepest descent of f at x.
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Proof. From differentiability of f , we have:

f ′(x; d) = lim
λ→0+

f(x+ λd)− f(x)
λ

= ∇f(x)⊤d.

Thus, d = argmin||d||≤1{∇f(x)⊤d} = − ∇f(x)
||∇f(x)||

In the proof, we use the differentiability to define a directional derivative for f at direction d, that is,
the change in the value of f by a move of size λ > 0 in the direction d, which is given by ∇f(x)⊤d. If we
minimise this term in d for ||d||2 ≤ 1, we observe that d is a vector of length one that has the opposite
direction of ∇f(x), thus d = − ∇f(x)

||∇f(x)|| .

That provides us with the insight that we can use ∇f(x) to derive (potentially good) directions for
optimising f . Notice that the direction employed is the opposite direction of the gradient for minimisa-
tion problems, being the opposite in case of maximisation. That is the reason why the gradient method
is called the steepest descent method in some references, though gradient and steepest descent might
refer to different methods in specific contexts.

Using the gradient ∇f(x) is also a convenience as it allows for the definition of a straightforward
convergence condition. Notice that, if ∇f(x) = 0, then the algorithm stalls, as xk+1 = xk + λkdk = xk.
In other words, the algorithm converges to points x ∈ Rn that satisfy the first-order necessary conditions
∇f(x) = 0.

The gradient method has many known variants that try to mitigate issues associated with the poor
convergence caused by the natural ’zigzagging’ behaviour of the algorithm (see, for example the gradient
method with momentum and the Nesterov method).

There are also variants that only consider the partial derivatives of some (and not all) of the dimen-
sions i = 1, . . . , n forming blocks of coordinates at each iteration. If these blocks are randomly formed,
these methods are known as stochastic gradient methods.

In Algorithm 7 we provide a pseudocode for the gradient method. In Line 2, the stopping condition
for the while-loop is equivalent of testing ∇f(x) = 0 for a tolerance ϵ.

Algorithm 7 Gradient method
1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = − ∇f(xk)

||∇f(x)||
4: λ = argminλ∈R{f(xk + λd)}
5: xk+1 = xk + λdj

6: k = k + 1
7: end while
8: return xk.

Figure 35 presents the progress of the gradient method using exact (bisection) and inexact (Armijo
rule with α = 0.1 and β = 0.7) line searches. As can be expected, when an inexact line search is em-
ployed, the method overshoots slightly some of the steps, taking a few more iterations to converge.

5.2.3 Newton’s method
One can think of gradient methods as using first-order information to derive directions of improve-

ment, while Newton’s method consists of a step forward also incorporating second-order information.
This can be shown to produce better convergence properties, but at the expense of the extra computa-
tional burden incurred by calculating and manipulating Hessian matrices.

The idea of the Newton’s method is the following. Consider the second-order approximation of f at
xk, which is given by:
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Figure 35: Gradient method applied to f . Convergence is observed in 10 steps using exact line search
and 19 using Armijo’s rule (for ϵ = 10−5)

q(x) = f(xk) +∇f(xk)⊤(x− xk) + 1
2(x− xk)⊤H(xk)(x− xk)

The method uses as direction d that of the extremum of the quadratic approximation at xk, which
can be obtained from the first-order condition ∇q(x) = 0. This renders:

∇q(x) = ∇f(xk) +H(xk)(x− xk) = 0. (50)
(51)

Assuming that H−1(xk) exists, we can use (50) to obtain the following update rule, which is known as
the Newton step:

xk+1 = xk −H−1(xk)∇f(xk) (52)
(53)

Notice that the “pure” Newton’s method has embedded in the direction of the step, its length (i.e.,
the step size) as well. In practice, the method uses d = −H−1(xk)∇f(xk) as a direction combined with a
line search to obtain optimal step sizes and prevent divergence (that is, converge to −∞) in cases where
the second-order approximation might lead to divergence. Fixing λ = 1 renders the natural Newton’s
method, as derived in (52). The Newton’s method can also be seen as employing Newton-Raphson
method to solve the system of equations that describe the first order conditions of the quadratic approx-
imation at xk.

Figure 36 shows the calculation of direction d = −H−1(xk)∇f(xk) for the first iteration of the
Newton’s method. Notice that the direction is the same as the that of the minimum of the quadratic
approximation q(x) at xk. The employment of a line search allows for overshooting the exact minimum,
making the search more efficient.

The Newton’s method might diverge if the initial point is too far from the optimal and fixed step sizes
(such as λ = 1) are used, since the quadratic approximation minimum and the actual function minimum
can become drastically and increasingly disparate. Levenberg-Marquardt method and other trust-region-
based variants address convergence issues of the Newton’s method. As a general rule, combining the
method with an exact line search of a criteria for step-size acceptance that require improvement (such
as employing the Armijo rule for defining the step sizes) if often sufficient for guaranteed convergence.
Figure 37 compares the convergence of the pure Newton’s method and the method employing an exact
line search.

Algorithm 8 presents a pseudocode for the Newton’s method. Notice that in Line 3, an inversion
operation is required. One might be cautious about this operation, since as ∇f(xk) tends to zero, the
Hessian H(xk) tends to become singular, potentially causing numerical instabilities.
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Figure 36: The calculation of the direction d = x∗−x0 in the first two iterations of the Newton’s method
with step size λ fixed to 1 (the pure Newton’s method, in left to right, top to bottom order). Notice in
blue the level curves of the quadratic approximation of the function at the current point xk and how it
improves from one iteration to the next.
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Figure 37: A comparison of the trajectory of both Newton’s method variants. Notice that in the method
using the exact line search, wile the direction d = x∗ − x0 is utilised, the step size is larger in the first
iteration.

Algorithm 8 Newton’s method
1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = −H−1(xk)∇f(xk)
4: λ = argminλ∈R{f(xk + λd)}
5: xk+1 = xk + λd
6: k = k + 1
7: end while
8: return xk

Figure 38 shows the progression of the Newton’s method for f with exact and inexact line searches.
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Figure 38: Newton’s method applied to f . Convergence is observed in 4 steps using exact line search
and 27 using Armijo’s rule (ϵ = 10−5)
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6 Week VI
In this lecture, we present methods for solving unconstrained optimisation problems. We start by

defining a general optimisation algorithm that will serve as a reference for deriving variants of optimi-
sation methods. We concentrate first on how to generate step sizes using variants of unidimensional
optimisation methods, the so called line searches. We also present the Armijo rule as an inexact line
search method, widely used in state-of-the-art implementations of optimisation algorithms. Next, we
focus on three variants of multidimensional methods, namely the coordinate descent (derivative free),
the gradient descent method that relies in first order approximations, and the Newton’s method, which
relies on second-order information. We also discuss the effects of having exact and inexact line searches
in each of these methods.

6.1 Unconstrained optimisation methods
We will now discuss to variants of the gradient and Newton methods that try to exploit the computa-

tional simplicity of gradient methods while encoding of curvature information as the Newton’s method,
but without explicitly relying on second-order derivatives (i.e., Hessian matrices).

6.1.1 Conjugate gradient method
The conjugate gradient method use the notion of conjugacy to guide the search for optimal solutions.

The original motivation for the method comes from quadratic problems, in which one can use conjugacy
to separate the search for the optimum of f : Rn 7→ R into n exact steps.

1. The concept of conjugacy
Let us first define the concept of conjugacy.

Definition 6.1
Let H be an n × n symmetric matrix. The vectors d1, . . . , dn are called (H-)conjugate if they
are linearly independent and d⊤

i Hdj = 0, for all i, j = 1, . . . , n such that i ̸= j.

Notice that H-conjugacy (or simply conjugacy) is a generalisation of orthogonality under the lin-
ear transformation imposed by the matrix H. Notice that orthogonal vectors are H-conjugate
for H = I. Figure 39 illustrate the notion of conjugacy between two vectors d1 and d2 that are
H-conjugate, being H the Hessian of the underlying quadratic function. Notice how it allows one
to generate, from direction d1, a direction d2 that, if used in combination with an exact line search,
would take us to the centre of the curve.
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Figure 39: d1 and d2 are H-conjugates; on the left, H = I.

One can use H-conjugate directions to find optimal solutions for the quadratic function f(x) =
c⊤x + 1

2x
⊤Hx, where H is a symmetric matrix. Suppose we know directions d1, . . . , dn that are

H-conjugate. Then, given an initial point x0, any point x can be described as x = x0 +
∑n

j=1 λjdj .
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We can then reformulate f(x) as a function of the step size λ, i.e.:

f(x) = F (λ) = c⊤(x0 +
n∑

j=1
λjdj) + 1

2(x0 +
n∑

j=1
λjdj)⊤H(x0 +

n∑
j=1

λjdj)

=
n∑

j=1

[
c⊤(x0 + λjdj) + 1

2(x0 + λjdj)⊤H(x0 + λjdj)
]
.

This reformulation exposes an important properties that having conjugate directions d1, . . . , dn

allows us to explore: separability. Notice that F (λ) =
∑n

j=1 Fj(λj), where Fj(λj) is given by:

Fj(λj) = c⊤(x0 + λjdj) + 1
2(x0 + λjdj)⊤H(x0 + λjdj),

and is, ultimately, a consequence of the linear independence of the conjugate directions. Assuming
that H is positive definite, and thus that first-order conditions are necessary and sufficient for
optimality, we can then calculate optimal λj for j = 1, . . . , n as:

F ′
j(λj) = 0

c⊤dj + x⊤
0 Hdj + λjd

⊤
j Hdj = 0

λj = −c
⊤dj + x⊤

0 Hdj

d⊤
j Hdj

, for all j = 1, . . . , n.

This result can be used to devise an iterative method that can obtain optimal solution for quadratic
functions in exactly n iterations. From an initial point x0 and a collection of H-conjugate directions
d1, . . . , dn, the method consists of the successively executing the following step:

xk = xk−1 + λkdk, where λk = −
c⊤dk + x⊤

k−1Hdk

d⊤
k Hdk

Notice the resemblance this method hold with the coordinate descent method. In case H = I, then
the coordinate directions given by di = 1 and dj ̸=i = 0 are H-conjugate and thus, the coordinate
descent method converges in two iterations. Figure 40 illustrates this behaviour. Notice that, on
the left, the conjugate method converges in exactly two iterations, while coordinate descent takes
several steps before finding the minimum. On the right, both methods become equivalent, since,
when H = I, the coordinate directions become also conjugate to each other.

2. Generating conjugate directions
The missing part at this point is how one can generate H-conjugate directions. This can be done
efficiently using an adaptation of the Gram-Schmidt procedure, typically employed to generate
orthonormal bases.

We intend to build a collection of conjugate directions d0, . . . , dn−1, which can be achieved provided
that we have a collection of linearly independent vectors ξ0, . . . , ξn−1.

The method proceed as follows.

(a) First, set d0 = ξ0 as a starting step.

(b) At a given iteration k+ 1, we need to set the coefficients αi
k+1 such that dk+1 is H-conjugate

to d0, . . . , dk and formed by adding ξk+1 to a linear combination of d0, . . . , dk, that is:

dk+1 = ξk+1 +
k∑

l=0
αl

k+1dl.

(c) To obtain H-conjugacy one must observe that, for each i = 0, . . . , k,
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Figure 40: Optimising f with the conjugate method and coordinate descent (left). For H = I, both
methods coincide (right)

dk+1
⊤Hdi = ξk+1

⊤Hdi +
(

k∑
l=0

αl
k+1dl

)⊤

Hdi = 0.

Due to the H-conjugacy, d⊤
l Hdk = 0 for all l ̸= k. Thus the value of αk+1 is:

αi
k+1 =

−ξ⊤
k+1Hdi

d⊤
i Hdi

, for i = 0, . . . , k. (54)

(55)
3. Gradients and conjugate directions

The next piece required for developing a method that could exploit conjugacy is the definition of
what collection of linearly independent vectors ξ0, . . . , ξn−1 could be used to generate conjugate di-
rections. In the setting of developing an unconstrained optimisation method, the gradients ∇f(xk)
can play this part, which is the key result in Theorem 6.2.

Theorem 6.2
Let f(x) = c⊤x+ 1

2x
⊤Hx, where H is an n×n symmetric matrix. Let d1, . . . , dn be H-conjugate,

and let x0 be an arbitrary starting point. Let λj be the optimal solution to Fj(λj) = f(x0+λjdj)
for all j = 1, . . . , n. Then, for k = 1, . . . , n we must have:

(a) xk+1 is optimal to min. {f(x) : x − x0 ∈ L(d1, . . . , dk)} where lL(d1, . . . , dk) =
{
∑k

j=1 µjdj : µj ∈ R, j = 1, . . . , k};
(b) ∇f(xk+1)⊤dj = 0, for all j = 1, . . . , k;
(c) ∇f(x0)⊤dk = ∇f(xk)⊤dk.

The proof of this theorem is based on the idea that, for a given collection of conjugate directions
d0, . . . , dk, xk will be optimal in the space spanned by the conjugate directions d0, . . . , dk, meaning
that the partial derivatives of F (λ) for these directions is zero. This phenomena is sometimes called
the expanding manifold property, since at each iteration L(d0, . . . , dk) expands in one independent
(conjugate) direction at the time. To verify the second point, notice that the optimality condition
for λj ∈ arg min{Fj(λj)} is d⊤

j ∇f(x0 + λdj) = 0.

4. Conjugate gradient method
We have now all parts required for describing the conjugate gradient method. The method uses the
gradients ∇f(xk) as linearly independent vectors to generate conjugate directions, which are then
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used as search directions dk.

In specific, the method operates generating a sequence of iterates:

xk+1 = xk + λkdk,

where d0 = −∇f(x0). Given a current iterate xk+1 with −∇f(xk+1) ̸= 0, we use Gram-Schmidth
procedure, in particular (55), to generate a conjugate direction dk+1 by making the linearly inde-
pendent vector ξk+1 = ∇f(xk+1). Thus, we obtain:

dk+1 = −∇f(xk+1) + αkdk, with αk = ∇f(xk+1)⊤Hdk

d⊤
k Hdk

. (56)

Notice that, since ∇f(xk+1)−∇f(xk) = H(xk+1 − xk) = λkHdk and dk = −∇f(xk) + αk−1dk−1,
αk can be simplified to be:

αk = ∇f(xk+1)⊤Hdk

d⊤
k Hdk

= ∇f(xk+1)⊤(∇f(xk+1)−∇f(xk))
(−∇f(xk) + αk−1dk−1)⊤(∇f(xk+1)−∇f(xk))

= ||∇f(xk+1)||2

||∇f(xk)||2 ,

where the last relation follows from Theorem 6.2. Algorithm 9 summarises the conjugate gradient
method.

Algorithm 9 Conjugate gradient method
1: initialise. tolerance ϵ > 0, initial point x0, direction d0 = −∇f(x0), k = 1
2: while ||∇f(xk)|| > ϵ do
3: y0 = xk−1
4: d0 = −∇f(y0)
5: for j = 1, . . . , n do
6: λj = argminλ≥0f(yj−1 + λdj−1)
7: yj = yj−1 + λjdj−1

8: dj = −∇f(yj) + αjdj−1, where αj = ||∇f(yj)||2

||∇f(yj−1)||2 .
9: end for

10: xk = yn, k = k + 1
11: end while
12: return xk.

The conjugate gradient method using αk = ||∇f(xk+1)||2

||∇f(xk)||2 is due to Fletcher and Reeves 2.

An alternative version of the method uses:

αk = ∇f(xk+1)⊤(∇f(xk+1)−∇f(xk))
||∇f(xk)|| ,

which is known for having better numerical properties for solving problems that are not quadratic.
Figure 41 illustrates the behaviour of the conjugate gradient method when applied to solve f(x) =
e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10) using both exact and inexact line searches.

If f : Rn 7→ R is a quadratic function, then the method is guaranteed to converge in exactly n
iterations. However, the method can be applied to any differentiable function f , in which setting
the method behaves as successively solving quadratic approximations of f , in a similar fashion
to that of Newton’s method, but without requiring second-order (Hessian) information, which is
the most demanding aspect associated with Newton’s method. When employed to non-quadratic

2(Fletcher, Reeves, and Colin M. Reeves. "Function minimization by conjugate gradients." The computer journal 7.2
(1964): 149-154.)
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Figure 41: Conjugate gradient method applied to f . Convergence is observed in 24 steps using exact
line search and 28 using Armijo’s rule (ϵ = 10−6)

functions, the process of obtaining conjugate directions is restarted at the current point xk after n
steps (represented in the loop staring in Line 5 in Algorithm 2).

Equation (56) exposes an important property of the conjugate gradient method. In general, the
employment of second-order terms is helpful for the optimisation method because it encodes cur-
vature information on the definition of the search direction. The conjugate gradient method is also
capable of encoding curvature information, not by using Hessians, but by weighting the current
direction (given by the gradient) −∇f(xk+1) and the previous direction αkdk, which naturally com-
pensates for the curvature encoded in the original matrix H (which is the Hessian of the quadratic
approximation).

6.1.2 Quasi Newton: BFGS method
Quasi-Newton methods is a term referring to methods that use approximations for the inverse of the

Hessian of f at x, H−1(x), that do not explicitly require second-order information (i.e., Hessians) neither
expensive inversion operations.

In quasi-Newton methods, we consider the search direction dk = −Dk∇f(xk), where Dk acts as the
approximation for the inverse Hessian H−1(x). To compute Dk, we use local curvature information, in
the attempt to approximate second-order derivatives. For that, let us define the terms:

pk = λkdk = xk+1 − xk

qk = ∇f(xk+1)−∇f(xk) = H(xk+1 − xk) = Hpk.

Starting from an initial guess D0, quasi-Newton methods progress by successively updating Dk+1 =
Dk + Ck, with Ck being such that it only uses the information in pk and qk and that, after n updates,
Dn converges to H−1.

For that to be the case, we require that pj , j = 1, . . . , k are eigenvectors of Dk+1H with unit eigen-
value, that is:

Dk+1Hpj = pj , for j = 1, . . . , k. (57)

This condition guarantees that, at the last iteration, Dn = H−1. To see that, first, notice the following
from (57).
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Dk+1Hpj = pj , j = 1, . . . , k
Dk+1qj = pj , j = 1, . . . , k
Dkqj + Ckqj = pj j = 1, . . . , k
pj = DkHpj + Ckqj = pj + Ckqj , j = 1, . . . , k − 1,

which implies that Ckqj = 0 for j = 1, . . . , k − 1.

Now, for j = k, we require that:

Dk+1qk = pk

Dkqk + Ckqk = pk

(Dk + Ck)qk = pk

This last condition allows, after n iterations, to recover:

Dn = [p0, . . . , pn−1][q0, . . . , qn−1]−1 = H(xn) (58)

Condition (58) is called the secant condition as a reference to the approximation to the second-order
derivative. Another way of understanding the role this condition has is by noticing the following.

Dk+1qk = pk

Dk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk

∇f(xk+1) = ∇f(xk) +D−1
k+1(xk+1 − xk), (59)

where D−1
k+1 can be seen as an approximation to the Hessian H, just as Dk+1 is an approximation to

H−1. Now, consider the second-order approximation of f at xk:

q(x) = f(xk) +∇f(xk)⊤(x− xk) + 1
2(x− xk)⊤H(xk)(x− xk).

We can now notice the resemblance the condition (59) holds with:

∇q(x) = ∇f(xk) +H(xk)⊤(x− xk) = 0.

In other words, at each iteration, the updates are made such that the optimality conditions in terms of
the quadratic expansion remains valid.

The Davidon-Fletcher-Powell (DFP) is one classical quasi-Newton method available. It employs up-
dates of the form:

Dk+1 = Dk + CDF P = Dk + pkp
⊤
k

p⊤
k qk
− Dkqkq

⊤
k Dk

q⊤
k Dkqk

We can verify that CDF P satisfies conditions (57) and (58). For that, notice that:

(1) CDF P qj = CDF PHpj

= pkp⊤
k Hpj

p⊤
k

qk
− Dkqkp⊤

k HDkHpj

q⊤
k

Dkqk
= 0, for j = 1, . . . , k − 1;

(2) CDF P qk = pkp⊤
k qk

p⊤
k

qk
− Dkqkq⊤

k Dkqk

q⊤
k

Dkqk
= pk −Dkqk.

In a pseudocode form, the update proposed by DFP can be sumarized in the algorithm below (see
10.
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Algorithm 10 Quasi-Newton (DFP) method
1: initialise. tolerance ϵ > 0, initial point x0, D0 = I, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = −Dk∇f(xk)
4: λ = argminλ∈R{f(xk + λd)}
5: xk+1 = xk + λdj

6: pk = λd
7: qk = ∇f(xk+1)−∇f(xk)
8: Dk+1 = Dk + pkp⊤

k

p⊤
k

qk
− Dkqkq⊤

k Dk

q⊤
k

Dkqk

9: k = k + 1
10: end while
11: return xk.

The main difference between available quasi-Newton methods is the nature of the matrix C employed
in the updates. Over the years, several ideas emerged in terms of generating updates that satisfied the
above properties. The most widely used quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS), which has been widely shown to have remarkable practical performance. BFGS is part of the
Broyden family of updates, given by:

CB = CDF P + ϕ
τjvkv

⊤
k

p⊤
k qk

,

where vk = pk −
(

1
τk

)
Dkqk, τk = q⊤

j Dkqk

p⊤
k

qk
, and ϕ ∈ (0, 1). The extra term in the Broyden family of

updates is designed to help with mitigating numerical difficulties from near-singular approximations.

It can be shown that all updates from the Broyden family also satisfy the quasi-Newton conditions
(57) and (58). The BFGS update is obtained for ϕ = 1, which renders:

CBF GS
k = pkp

⊤
k

p⊤
k qk

(
1 + q⊤

k Dkqk

p⊤
k qk

)
− Dkqkp

⊤
k + pkq

⊤
k Dk

p⊤
k qk

.

The BFGS method is often presented explicitly approximating the Hessian H instead of its in-
verse, which is useful when using specialised linear algebra packages that rely on the “backslash”
operator to solve linear systems of equations. Let Bk be the current approximation of H. Then
Dk+1 = B−1

k+1 = (Bk + C
BF GS

k )−1, with:

C
BF GS

k = qkq
⊤
k

q⊤
k pk

− Bkpkp
⊤
k Bk

p⊤
k Bkpk

.

The update for the inverse Hessian H−1 can then be obtained using the Sherman-Morrison formula.

The Quasi-Newton algorithm with BFGS update is below (as seen in 11.

Algorithm 11 Quasi-Newton (BFGS) method
1: initialise. tolerance ϵ > 0, initial point x0, D0 = I, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = −Dk∇f(xk)
4: λ = argminλ∈R{f(xk + λd)}
5: xk+1 = xk + λdj

6: pk = λd
7: qk = ∇f(xk+1)−∇f(xk)
8: Dk+1 = Dk

pkp⊤
k

p⊤
k

qk

(
1 + q⊤

k Dkqk

p⊤
k

qk

)
− Dkqkp⊤

k +pkq⊤
k Dk

p⊤
k

qk

9: k = k + 1
10: end while
11: return xk.
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Figure 42: BFGS method applied to f . Convergence is observed in 11 steps using exact line search and
36 using Armijo’s rule (ϵ = 10−6)

Figure 42 illustrates the behaviour of the BFGS method when applied to solve:

f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

using both exact and inexact line searches. Notice how the combination of imprecisions both in the
calculation of H−1 and in the line search turns the search noisy. This combination (BFGS combined
with Armijo rule) is, however, widely used in efficient implementations of several nonlinear optimisation
methods.

A variant of BFGS, called the limited memory BFGS (l-BFGS) utilises efficient implementations that
do not require storing the whole approximation for the Hessian, but only a few most recent pk and qk

vectors.

6.2 Complexity, convergence and conditioning
Several aspects must be considered when analysing the performance of algorithms under a given

setting and, in each, a multitude of theoretical results that can be used to understand, even if to some
extent, the performance of a given optimisation method

We focus on three key properties that one should be aware when employing the methods we have
seen to solve optimisation problems. The first two, complexity and convergence refer to the algorithm
itself, but often involve considerations related to the function being optimised. Conditioning, on the
other hand, is a characteristic exclusively related to the problem at hand. Knowing how the “three C’s”
can influence the performance of an optimisation problem is central in making good choices in terms of
which optimisation method to employ.

6.2.1 Complexity
Algorithm complexity analysis is a discipline from computer science that focus on deriving worst-case

guarantees in terms of the number of computational steps required for an algorithm to converge, given
an input of known size. For that, we use the following definition to identify efficient, generally referred
to as polynomial, algorithms.

Definition 6.3. Polynomial algorithms

Given a problem P , a problem instance X ∈ P with length L(X) in binary representation, and an
algorithm A that solves X, let fA(X) be the number of elementary calculations required to run A on
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X. Then, the running time of A on X is proportional to
f∗

A(n) = sup
X
{fA(X) : L(X) = n}.

Algorithm A is polynomial for a problem P if f∗
A(n) = O(np) for some integer p.

Notice that this sort of analysis only render bounds on the worst-case performance. Though it can be
informative under a general setting, there are several well known examples in that experimental practice
does not correlate with the complexity analysis. One famous example is the simplex method for linear
optimisation problems, which despite not being a polynomial algorithm, presents widely-demonstrated
reliable (polynomial-like) performance.

6.2.2 Convergence
In the context of optimisation, local analysis is typically more informative regarding to the behaviour

of optimisation methods. This analysis tend to disregard initial steps further from the initial points and
concentrate on the behaviour of the sequence {xk} to a unique point x.

The convergence is analysed by means of rates of convergence associated with error functions e :
Rn 7→ R such that e(x) ≥ 0. Typical choices for e include:

• e(x) = ||x− x||;
• e(x) = |f(x)− f(x)|.
The sequence {e(xk)} is then compared to the geometric progression βk, with k = 1, 2, . . . , and

β ∈ (0, 1). We say that a method presents linear convergence if exists q > 0 and β ∈ (0, 1) such that
e(x) ≤ qβk for all k. An alternative way of posing this result is stating that:

lim
k→∞

sup e(xk+1)
e(xk) ≤ β.

We say that an optimisation method converges superlinearly if the rate of convergence tends to zero.
That is, if exists β ∈ (0, 1), q > 0 and p > 1 such that e(xk) ≤ qβpk for all k. For k = 2, we say that the
method presents quadratic convergence. Any p-order convergence is obtained if:

lim
k→∞

sup e(xk+1)
e(xk)p

<∞, which is true if lim
k→∞

sup e(xk+1)
e(xk) = 0.

Linear convergence is the most typical convergence rate for nonlinear optimisation methods, which is
satisfactory if β is not too close to one. Certain methods are capable of achieving superlinear convergence
for certain problems, being Newton’s method an important example.

In light of what we discussed, let us analyse the convergence rate of some of the methods earlier
discussed. We start by posing the convergence of gradient methods.

Theorem 6.4. Convergence of the gradient method
Let f(x) = 1

2x
⊤Hx where H is a positive definite symmetric matrix. Suppose f(x) is minimised with

the gradient method using an exact line search. Let λ = mini=1,...,n λi and λ = maxi=1,...,n λi, where
λi are eigenvalues of H. Then, for all k,

f(xk+1)
f(xk) ≤

(
λ− λ
λ+ λ

)2

Theorem 6.4 implies that, under certain assumptions, the gradient methods present linear conver-
gence. Moreover, this result shows that the convergence rate is dependent on the scaling of the function,
since it depends on the ratio of eigenvalues of H, which in turn can be modified by scaling f . This results
exposes an important shortcoming that gradient methods present: the dependence on the conditioning
of the problem, which we will discuss shortly. Moreover, this result can be extended to incorporate
functions other than quadratic and also inexact line searches.

The convergence of Newton’s method is also of interest since, under specific circumstances, it presents
a quadratic convergence rate. Theorem 6.5 summarises these conditions.
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Theorem 6.5. Convergence of Newton’s method - general case
Let g : Rn → Rn be differentiable, x such that g(x) = 0, and let {e(xk)} = {||xk − x||}. Moreover, let
Nδ(x) = {x : ||x− x|| ≤ δ} for some δ > 0. Then

1. There exists δ > 0 such that if x0 ∈ Nδ(x), the sequence {xk} with xk+1 = xk −
(∇g(xk)⊤)−1g(xk) belongs to Nδ(x) and converges to x, while {e(xk)} converges superlinearly.

2. If for some L > 0, M > 0, and for all x, y ∈ Nδ(x), λ ∈ (0, δ]
||∇g(x)−∇g(y)|| ≤ L||x− y|| and ||(∇g(xk)⊤)−1|| ≤M,

then, if x0 ∈ Nδ(x), we have for k = 0, 1, . . .
||xk+1 − x|| ≤

LM

2 ||xk − x||2.
If LMδ

2 < 1 and x0 ∈ Nδ(x), {e(xk)} converges quadratically.

Notice that the convergence of the method is analysed in two distinct phases. In the first phase,
referred to as ’damped’ phase, superlinear convergence is observed within the neighbourhood Nδ(x) de-
fined by δ. The second phase is where quadratic convergence is observed and it happens when δ < 2

LM ,
which in practice can only be interpreted as small enough, as the constants L (the Lipschitz constant)
and M (a finite bound for the norm of the Hessian) cannot be easily estimated in practical applications.

However, it is interesting to notice that the convergence result for Newton’s method do not depend
on the scaling of the problem, like the gradient method. This property, called affine invariance is one of
the greatest features that Newton’s method possess.

Figure 43 compare the convergence of four methods presented considering f(x) = e(−(x1−3)/2) +
e((4x2+x1)/10) + e((−4x2+x1)/10), employing exact line search and using e(x) = ||xk − x||. Notice how the
quadratic convergence of Newton’s method compare with the linear convergence of the gradients method.
The other two, conjugate gradients and BFGS, present superlinear convergence.
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Figure 43: Convergence comparison for the four methods

6.2.3 Conditioning
The condition number of a symmetric matrix is given by

κ = ||A||2||A−1||2 = maxi=1,...,n{λi

}
min

i=1,...,n
{λi} = λ

λ

The condition number κ is an important measure in optimisation, since it can be used to predict
how badly scaled a problem might be. Large κ values mean that numerical errors will be amplified after
repeated iterations, in particular matrix inversions.

Roughly speaking, having κ ≥ 10k means that at each iteration, k digits of accuracy are lost. As
general rule, one would prefer smaller κ numbers, but good values are entirely problem dependent.

One way of understanding the role that the conditioning number κ has is to think the role that the
eigenvalues of the Hessian have in the shape of the level curves of quadratic approximations of a general
function f : Rn 7→ R. First, let us consider the Hessian H(x) at a given point x ∈ Rn is the identity
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matrix I, for which all eigenvalues are 1 and eigenvectors are ei, i = 1, . . . , n, where ei is the vector
with component 1 in the position i and zero everywhere else. This means that in the direction of the
n-eigenvectors, the ellipsoid formed by the level curves (specifically, the lower level sets) of f stretch
by the same magnitude and, therefore, the level curves of the quadratic approximation are in fact a
circle. Now, suppose that for one of the dimensions i of the matrix H(x), we have one of the eigenvalues
greater than 1. What we would see is that the level curves of the quadratic approximation will be more
stretched in that dimension i than in the others. The reason for that is because the Hessian plays a
role akin to that of a characteristic matrix in an ellipsoid (specifically due to the second order term
1
2 (x− xk)⊤H(xk)(x− xk) in the quadratic approximation).

Thus, larger κ will mean that the ratio between the eigenvalues is larger, which in turn implies that
there is eccentricity in the lower level sets (i.e., the lower level sets are far wider in one direction than in
others), which ultimately implies that first-order methods struggle since often the gradients often point
to directions that only show descent for small step sizes.

he gradient method with exact line search for different κ:
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In the figure above, it is illustrated the effect of different condition numbers on the performance of the
gradient method. As can be seen, the method require more iterations for higher conditioning numbers,
in accordance to the convergence result presented in Theorem 6.4.
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7 Week VII
In this lecture, we discuss the optimality conditions for constrained optimisation problems. We show

how geometrical optimality can be converted into an algebraic representation using the Fritz-John opti-
mality conditions. Next, we discuss the Karush-Kuhn-Tucker optimality condition, which require further
regularity conditions on the constraints to hold as necessary conditions for optimality. We show that
these regularity conditions can be translated into constraint qualification conditions, and discuss the
main constraint qualification conditions one could use in practice.

7.1 Optimality for constrained problems
We now investigate how to derive optimality conditions for the problem:

(P ) : min. f(x) : x ∈ S.

In particular, we are interested in understanding the role of the feasibility set S on the optimality
conditions of constrained optimisation problems in the form of P . Let us first define two geometric
elements that we will use to derive the optimality conditions for P .

Definition 7.1. Cone of feasible directions
et S ⊆ Rn be a nonempty set, and let x ∈ clo(S). The cone of feasible directions D at x ∈ S is given by:

D = {d : d ̸= 0, and x+ λd ∈ S for all λ ∈ (0, δ) for some δ > 0}.

Definition 7.2. Cone of descent directions
et S ⊆ Rn be a nonempty set, f : Rn → R, and x ∈ clo(S). The cone of improving (i.e., descent)
directions F at x ∈ S is:

F = {d : f(x+ λd) < f(x) for all λ ∈ (0, δ) for some δ > 0}.

These cones are geometrical descriptions of the regions that, from a given point x, one can obtain
feasible (D) and improving (F ) solutions. This is useful because it allows us to express the optimality
conditions for x as it observes that F ∩D = ∅ holds. In other words, x is optimal if no feasible direction
can improve the objective function value.

Although having a geometrical representation of such sets can be useful in solidifying the conditions
for which a feasible solution is also optimal, we need to derive an algebraic representation of such sets
that can be used in computations. Let us define an algebraic representation for F to reach that objec-
tive. Let us assume that f : S ⊂ Rn 7→ R is differentiable. Recall that d is a descent direction at x if
∇f(x)⊤d < 0. Thus, we can define the set F0.

F0 = {d : ∇f(x)⊤d < 0}

As an algebraic representation for F , notice that F0 is an open half-space formed by the hyperplane with
normal ∇f(x). Figure 44 illustrates the condition F0 ∩D = ∅.

Theorem 7.3 establishes that the condition F0 ∩ D = ∅ is necessary for optimality in constrained
optimisation problems.

Theorem 7.3. Geometric necessary condition
Let S ⊆ Rn be a nonempty set, and let f : S → R be differentiable at x ∈ S. If x is a local optimal
solution to

(P ) : min. {f(x) : x ∈ S},
then F0 ∩D = ∅, where F0 = {d : ∇f(x)⊤d < 0} and D is the cone of feasible directions.
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The proof for this theorem consists of using the separation theorem to show that F0 ∩D = ∅ implies
that the first-order optimality condition ∇f(x)⊤d ≥ 0 holds.

S

D

F0

x∇f(x)

Figure 44: Illustration of the cones F0 and D for the optimal point x. Notice that D is an open set.

As discussed earlier (in Lecture 4), these conditions become sufficient for optimality in the presence
of convex. Moreover, if f is strictly convex, then F = F0. If f is linear, it might be worth considering
F ′

0 = {d ̸= 0 : ∇f(x)⊤d ≤ 0} to allow for considering orthogonal directions.

7.1.1 Inequality constrained problems
In mathematical programming applications, a set of inequalities typically expresses the feasibility set

S. Let us redefine P as:

(P ) : min. f(x)
subject to: gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,
where gi : Rn 7→ R, are differentiable functions for i = 1, . . . ,m and X ⊂ R is an nonempty open set.
The differentiability of gi, i = 1, . . . ,m, allows for the definition of a proxy for D using the gradients of
the binding constraints i ∈ I = {i : gi(x) = 0} at x. This set, denoted by G0, is defined as:

G0 = {d : ∇gi(x)⊤d < 0, i ∈ I}.

The use of G0 is a convenient algebraic representation since it can be shown that G0 ⊆ D, which is
stated in Lemma 7.4. As F0 ∩D = ∅ must hold for a locally optimal solution x ∈ S, F0 ∩G0 = ∅ must
also hold.

Lemma 7.4 Let S = {x ∈ X : gi(x) ≤ 0 for all i = 1, . . . ,m}, where X ⊂ Rn is a nonempty open
set and gi : Rn → R a differentiable function for all i = 1, . . . ,m. For a feasible point x ∈ S, let
I = {i : gi(x) = 0} be the index set of the binding (or active) constraints. Let

G0 = {d : ∇gi(x)⊤d < 0, i ∈ I}
Then G0 ⊆ D, where D is the cone of feasible directions.

In settings in which gi is affine for some i ∈ I, it might be worth considering lG′
0 = {d ̸= 0 :

∇gi(x)⊤d ≤ 0, i ∈ I} so those orthogonal feasible directions can also be represented. Notice that in this
case, D ⊆ G′

0.

7.2 Fritz-John conditions
The Fritz-John conditions are the algebraic conditions that must be met for F0 ∩ G0 = ∅ to hold.

These algebraic conditions are convenient as they only involve the gradients of the binding constraints,
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and they can be verified computationally.

Theorem 7.5. Fritz-John necessary conditions
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for all
i = 1, . . . ,m. Additionally, let x be feasible and I = {i : gi(x) = 0}. If x solves P locally, there exist
scalars ui, i ∈ {0} ∪ I, such that:

u0∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m
ui ≥ 0, i = 0, . . . ,m
u = (u0, . . . , um) ̸= 0

Proof. Since x solves P locally, Theorem 7.3 guarantees that there is no d such that ∇f(x)⊤d < 0
and ∇gi(x)⊤d < 0 for each i ∈ I. Let A be the matrix whose rows are ∇f(x)⊤ and ∇gi(x)⊤ for i ∈ I.

We can use Farkas’ theorem to show that if Ad < 0 is inconsistent, there is nonzero p ≥ 0 such that
A⊤p = 0. Letting p = (u0, ui1 , . . . , ui|I|) for I = {i1, . . . , i|I|} and making ui = 0 for i ̸= I, the result
follows.

The proof considers that, if x is optimal, then f(x)⊤d ≥ 0 holds and a matrix A formed by:

A =


∇f(x)
∇gi1(x)

...
∇gi|I|(x)


with I = {i1, . . . , i|I|}, will violate Ad < 0. This is used with a variant of Farkas’ theorem (known as
Gordan’s theorem) to show that the alternative system A⊤p = 0, with p ≥ 0 holds, which, by setting
p = [u0, ui1 , . . . , ui|I|] and enforcing that the remainder of the gradients ∇gi(x), for i /∈ I, are removed
by setting ui = 0, which leads precisely to the Fritz-John conditions.

The multipliers ui, for i = 0, . . . ,m, are named Lagrangian multipliers due to the connection with
Lagrangian duality, as we will see later. Also, notice that for nonbinding constraints (gi(x) < 0 for i /∈ I),
ui must be zero to form the Fritz-John conditions. This condition is called complementary slackness.

Unfortunately, The Fritz-John conditions are too weak, which is problematic in some rather common
settings. A point x satisfies the Fritz-John conditions only if F0 ∩ G0 = ∅, which is trivially satisfied
when G0 = ∅.

For example, the Fritz-John conditions are trivially satisfied for points where some of the gradient
vanishes (i.e., ∇f(x) = 0 or ∇gi(x) = 0 for some i = 1, . . . ,m). Sets with no relative interior near x also
satisfy Fritz-John conditions.

An interesting case is for problems with equality constraints, as illustrated in Figure 45. In general,
if the additional regularity condition that the gradients ∇gi(x) are linearly independent does not hold,
x trivially satisfies the Fritz-John conditions.

7.3 Karush-Kuhn-Tucker conditions
The Karush-Kuhn-Tucker (KKT) conditions are the Frizt-John conditions with an extra regularity

requirement for x ∈ S. This regularity requirement is called constraint qualification and, in a general
sense, is meant to prevent the trivial case G0 = ∅, thus making the optimality conditions stronger (i.e.,
more stringent).

This is achieved by making u0 = 1 in Theorem 7.5, which ultimately implies that the gradients
∇gi(x) for i ∈ I must be linearly independent. This condition is called linearly independent constraint
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Figure 45: All points in the blue segment satisfy FJ conditions, including the minimum x.

qualification (LICQ) and is one of several known constraint qualifications that can be used to guarantee
regularity of x ∈ S.

Theorem 7.6 establishes the KKT conditions as necessary for local optimality of x assuming that
LICQ holds. For notational simplicity, let us assume for now that:

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, x ∈ X}.

Theorem 7.6. Karush-Kuhn-Tucker necessary conditions
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for
all i = 1, . . . ,m. Additionally, for a feasible x, let I = {i : gi(x) = 0} and suppose that ∇gi(x) are
linearly independent for all i ∈ I. If x solves P locally, there exist scalars ui for i ∈ I such that:

∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m
ui ≥ 0, i = 1, . . . ,m

Proof. By Theorem 7.5, there exists nonzero (ûi) for i ∈ {0} ∪ I such that:

û0∇f(x) +
m∑

i=1
ûi∇gi(x) = 0

ûi ≥ 0, i = 0, . . . ,m

Note that û0 > 0, as the linear independence of ∇gi(x) for all i ∈ I implies that
∑m

i=1 ûi∇gi(x) ̸= 0.
Now, let ui = ûi/u0 for each i ∈ I and ui = 0 for all i ̸∈ I.

The proof builds upon the Fritz-John conditions, which under the assumption that the gradients of
the active constraints ∇gi(x) for i ∈ I are independent, the multipliers ûi can be rescaled so that u0 = 1.

The general conditions, including inequality and equality constraints, are posed as follows. Notice
that the Lagrange multipliers vi associated with the equality constraints h(x) = 0 for i = 1, . . . , l are
not restricted in sign, and the complementary slackness condition is not explicitly stated since it holds
redundantly. These can be obtained by replacing equality constraints h(x) = 0 with two equivalent
inequalities h−(x) ≤ 0 and −h+(x) ≤ 0 and writing the conditions in Theorem 7.6. Also, notice that,
without constraints, the KKT conditions reduce to the unconstrained first-order condition ∇f(x) = 0.
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Figure 46: Graphical illustration of the KKT conditions at the optimal point x

∇f(x) +
m∑

i=1
ui∇gi(x) +

l∑
i=1

vi∇hi(x) = 0 (dual feasibility 1)

uigi(x) = 0, i = 1, . . . ,m (complementary slackness)
x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m (primal feasibility)
hi(x) = 0, i = 1, . . . , l
ui ≥ 0, i = 1, . . . ,m (dual feasibility 2)

The KKT conditions can be interpreted geometrically as follows. Consider the cone spanned by the
active constraints at x, defined as N(x) = {

∑
i∈I ui∇gi(x) : ui ≥ 0}. A solution x will then satisfy

the KKT conditions if −∇f(x) ∈ N(x), which is equivalent to −∇f(x) =
∑m

i=1 ui∇gi(x). Figure 46
illustrates this condition.

7.4 Constraint qualification
Constraint qualification is a technical condition that needs to be assessed in the context of nonlinear

optimisation problems. As we rely on an algebraic description of the set of directions G0 that serves as
a proxy for D, it is important to be sure that the former is a reliable description of the latter.

Specifically, constraint qualification can be seen as a certification that the geometry of the feasible
region and gradient information obtained from the constraints that form it are related to an optimal
solution. Remind that gradients can only provide a first-order approximation of the feasible region,
which might lead to mismatches. This is typically when the feasible region has cusps or a single feasible
point.

Constraint qualification can be seen as certificates for proper relationships between the set of feasible
directions:

G′
0 = {d ̸= 0 : ∇gi(x)⊤d ≤ 0, i ∈ I}

and the cone of tangents (or tangent cone):

T = {d : d = lim
k→∞

λk(xk − x), lim
k→∞

xk = x, xk ∈ S, λk > 0,∀k} (60)

with S = {gi(x) ≤ 0, i = 1, . . . ,m;h(x) = 0, i = 1, . . . , l;x ∈ X}.

The cone of tangents represents all directions in which the feasible region allows for an arbitrarily
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Figure 49: Case III

small movement from the point x while retaining feasibility. As the name suggests, it is normally formed
by the tangent lines to S at x. However, if the point is in the interior of S ⊆ Rn, then T = Rn.

One way of interpreting the cone of tangents as defined in (60) is the following: consider a sequence
of feasible points x ∈ S in any trajectory you like, but in a way that the sequence converges to x. Then,
take the last (in a limit sense, since k →∞) xk and consider this direction from which xk came onto x.
The collection of all these directions from all possible trajectories is what forms the cone of tangents.

Constraint qualification holds when T = G′
0 holds for x, a condition named Abadie’s constraint qual-

ification. In the presence of equality constraints, the condition becomes T = G′
0 ∩H0, with:

H0 = {d : ∇hi(x)⊤d = 0, i = 1, . . . , l}.

In the figures below, it illustrates the tangent cone T and the cone of feasible directions (G′
0) for cases

when constraint qualification holds (Figures 47 and 48) for which case T = G′
0, and a case for when it

does not (Figure 49, where T = ∅ and G′
0 is given by the dashed black line).

In the figure above, CQ holds for 47 and 48, since the tangent cone T and the cone of feasible
directions G′

0 (denoted by the dashed black lines and a grey area) match; for 49, they do not match, as
T = ∅.

The importance of Abadie constraint qualification is that it allows for generalising the KKT condi-
tions by replacing the condition with the linear independence of the gradients ∇gi(x) for i ∈ I. This
allows us to state the KKT conditions as presented in Theorem 7.7.
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Theorem 7.7. Karush-Kuhn-Tucker necessary conditions II
Consider the problem

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, x ∈ X}.
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for all
i = 1, . . . ,m. Additionally, for a feasible x, let I = {i : gi(x) = 0} and suppose that Abadie CQ holds
at x. If x solves P locally, there exist scalars ui for i ∈ I such that:

∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m
ui ≥ 0, i = 1, . . . ,m.

Despite being a more general result, Theorem 7.7 is of little use, as Abadie’s constraint qualification
cannot be straightforwardly verified in practice. Alternatively, we can rely on verifiable constraint qual-
ification conditions that imply Abadie’s constraint qualification. Examples include:

1. Linear independence (LI)CQ: holds at x if ∇gi(x), for i ∈ I, as well as ∇hi(x), i = 1, . . . , l are
linearly independent.

2. Affine CQ: holds for all x ∈ S if gi, for all i = 1, . . . ,m, and hi, for all i = 1, . . . , l, are affine.
3. Slater’s CQ: holds for all x ∈ S if gi is a convex function for all i = 1, . . . ,m, hi is an affine

function for all i = 1, . . . , l, and there exists x ∈ S such that gi(x) < 0 for all i = 1, . . . ,m.

Slater’s constraint qualification is the most frequently used, particularly in convex optimisation prob-
lems. One important point to notice is the requirement of not having an empty relative interior, which
can be a source of error.

Consider, for example: P = {min. x1 : x2
1 + x2 ≤ 0, x2 ≥ 0}. Notice that P is convex and therefore

the KKT system for P is: (
1
0

)
+
(

0 0
1 −1

)(
u1

u2

)
= 0;u1, u2 ≥ 0,

which has no solution. Thus, the KKT conditions are not necessary for the global optimality of (0, 0).
This is due to the lack of CQ since the feasible region is the single point (0, 0) and that KKT conditions
are only sufficient (not necessary) in the presence of convexity.

Corollary 7.8 summarises the setting in which one should expect the KKT conditions to be necessary
and sufficient conditions for global optimality, i.e., convex optimisation.

Corollary 7.8 (Necessary and sufficient KKT conditions). Suppose that Slater’s CQ holds. Then, if f
is convex, the conditions of Theorem 7.7 are necessary and sufficient for x to be a globally optimal
solution.
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8 Week VIII
In this lecture, we look into the notion of Lagrangian duality, which consists of a theoretical frame-

work that allows deriving not only optimality conditions for constrained optimisation problems, but also
solution methods build upon results from duality theory. First, we consider Lagrangian duality under
the notion of relaxation, and show how primal and dual solutions are related. Then we describe the
notion of strong duality, a key property that connect Lagrangian duality and optimality conditions for
constrained problems. Lastly, we discuss the subgradient method, one of the most widespread methods
for solving constrained optimisation problems using Lagrangian duals.

8.1 The concept of relaxation
The idea of using relaxations is central in several constrained optimisation methods. Generally,

it consists of techniques that remove constraints from the problem to allow for a version, i.e., a relax-
ation, that is simpler to solve and/or can provide information to be used for solving the original problem.

A classic example of the employment of relaxations for solving constrained problems is the branch-
and-bound method that uses linear (continuous) relaxations of integer problems to guide the search for
optimal solutions that are also integers. However, there are several other settings in which relaxations
are purposely derived to lead to problems with a convenient structure that can be exploited.

Let f : Rn → R and S ⊆ Rn. Consider the following problem:

(P ) : min. {f(x) : x ∈ S}

Definition 8.1 provides the conditions for PR to be a relaxation of P , where:

(PR) : min. {fR(x) : x ∈ SR}

with fR : Rn → R, SR ⊆ Rn.

Definition 8.1. Relaxation
PR is a relaxation of P if and only if:

1. fR(x) ≤ f(x), for all x ∈ S;
2. S ⊆ SR.

In specific, PR is said to be a relaxation for P if fR(x) bounds f(x) from below (in a minimisation
setting) for all x ∈ S and the enlarged feasible region SR contains S.

The motivation for using relaxations arises from the possibility of finding a solution to the original
problem P by solving PR. Such a strategy would only make sense if PR possess some attractive prop-
erty or feature that we can use in our favour to, e.g., improve solution times or create separability that
can be further exploited using parallelised computation (which we will discuss in more detail in the up-
coming lectures). Theorem 8.2 presents the technical result that allows for using relaxations for solving P .

Theorem 8.2. Relaxation theorem
Let us define:

(P ) : min. {f(x) : x ∈ S} and (PR) : min. {fR(x) : x ∈ SR}

If PR is a relaxation of P , then the following hold:

1. if PR is infeasible, so is P ;
2. if xR is an optimal solution to PR such that xR ∈ S and fR(xR) = f(xR), then xR is optimal

to P as well.

Proof. Result (1) follows since S ⊆ SR. To show (2), notice that f(xR) = fR(xR) ≤ fR(x) ≤ f(x)
for all x ∈ S.
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The first part of the proof is a consequence of S ⊂ SR, meaning that if x /∈ S, then x /∈ SR. The
second part combines the optimality of xR (first inequality) and the definition of a relaxation (second
inequality) to derive the optimality condition of xR for P , which is f(xR) ≤ f(x) for all x ∈ S.

8.2 Lagrangian dual problems
Lagrangian duality is the body of theory supporting the use of Lagrangian relaxations to solve con-

strained optimisation problems. In what follows, we refer to the relaxation obtained using Lagrangian
duality as the (Lagrangian) dual problem. Consequently, we refer to the original problem as the primal
problem.

Let f : Rn → R, g : Rn → Rm, h : Rn → Rl, and assume that X ⊆ Rn is an open set. Then, consider
P defined as:

(P ) : min. f(x)
subject to: g(x) ≤ 0

h(x) = 0
x ∈ X.

For a given set of dual variables (u, v) ∈ Rm+l with u ≥ 0, the Lagrangian relaxation (or Lagrangian dual
function) of P is:

(D) : θ(u, v) = inf
x∈X

ϕ(x, u, v)

where:

ϕ(x, u, v) := f(x) + u⊤g(x) + v⊤h(x)

is the Lagrangian function.

Notice that the Lagrangian dual function θ(u, v) has a built-in optimisation problem in x, meaning
that evaluating θ(u, v) still requires solving an optimisation problem, which amounts to finding the min-
imiser x for ϕ(x, u, v), given (u, v).

8.2.1 Weak and strong duality
Weak and robust duality are, to some extent, consequences of Theorem 8.2 and the fact that the

Lagrangian relaxation is indeed a relaxation of P . We start with the equivalent to Definition 8.1,
referred to as weak duality.

Theorem 8.3. Weak Lagrangian duality
Let x be a feasible solution to P , and let (u, v) be such that u ≥ 0, i.e., feasible for D. Then
θ(u, v) ≤ f(x).

Proof. From feasibility, u ≥ 0, g(x) ≤ 0 and h(x) = 0. Thus, we have that
θ(u, v) = inf

x∈X
{f(x) + u⊤g(x) + v⊤h(x)} ≤ f(x) + u⊤g(x) + v⊤h(x) ≤ f(x).

Which completes the proof.

The proof uses the fact that the infimal of the Lagrangian function ϕ(x, u, v), and in fact, any value
for ϕ(x, u, v) for all primal feasible x and dual feasible u ≥ 0 (a condition for the Lagrangian relaxation
to be indeed a relaxation) bounds to f(x). This arises from observing g(x) ≤ 0 for a feasible x.
The Lagrangian dual problem is the problem used to obtain the best possible relaxation bound θ(u, v)
for f(x), in light of Theorem 8.3. This can be achieved by optimising θ(u, v) in the space of the dual
variables (u, v), that is:

(D) : θ(u, v) = inf
x∈X

ϕ(x, u, v).

The use of Lagrangian dual problems is an alternative for dealing with constrained optimisation prob-
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lems, as they allow to convert of the constrained primal into a (typically) unconstrained dual that is
potentially easier to handle or present exploitable properties that can benefit specialised algorithms, such
as separability.

Employing Lagrangian relaxations to solve optimisation problems is possible due to the following
important results, which are posed as corollaries of Theorem 8.3.

Corollary 8.4 (Weak Lagrangian duality II).
sup
u,v
{θ(u, v) : u ≥ 0} ≤ inf

x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}.

Proof. We have θ(u, v) ≤ f(x) for any feasible x and (u, v), thus implying: supu,v{θ(u, v) : u ≥ 0} ≤
infx{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}

Corollary 8.5 (Strong Lagrangian duality). If f(x) = θ(u, v), u ≥ 0, and x ∈ {x ∈ X : g(x) ≤ 0, h(x) =
0}, then x and (u, v) are optimal solutions to P and D, respectively.

Proof. Use part (2) of Theorem 8.2 with D being a Lagrangian relaxation.

Notice that Corollary 8.5 implies that if the optimal solution value of the primal and the dual problems
match, the respective primal and dual solutions are optimal. However, to use Lagrangian relaxations to
solve constrained optimisation problems, we need the opposite clause also to hold, which is called strong
duality and, unfortunately, does not always hold.

1. Geometric interpretation of Lagrangian duality
Let us focus on a graphical interpretation of Lagrangian dual problems to investigate the cases in
which strong duality can hold. For that, let us first define some auxiliary elements.

For the sake of simplicity, consider (P ) : min. {f(x) : g(x) ≤ 0, x ∈ X} with f : Rn 7→ R, a single
constraint g : Rn 7→ R and X ⊆ Rn an open set.

Let us define the mapping G = {(y, z) : y = g(x), z = f(x), x ∈ X}, which consists of a mapping
of points x ∈ X to the (y, z)-space obtained using (f(x), g(x)). In this setting, solving P means
finding a point with minimum ordinate z for which y ≤ 0. Figure 50 illustrates this setting.

x ∈ X

(g(x), f(x))
G

(y, z) = (g(x), f(x))

y = g(x)

z = f(x)

Figure 50: Illustration of the mapping G, in which solving P amounts to finding the lowermost point on
the vertical axis (the ordinate) still contained within G.

Now, assume that u ≥ 0 is given. The Lagrangian function is given by:

θ(u) = min
x
{f(x) + ug(x) : x ∈ X},

, which can be represented by a hyperplane of the form z = α − uy. Therefore, optimising the
Lagrangian dual problem (D) : supu{θ(u)} consists of finding the slope −u that would achieve
the maximum intercept on the ordinate z while being a supporting hyperplane for G. Figure 51
illustrates this effect. Notice that, in this case, the optimal values of the primal and dual problems
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z = f(x)

y = g(x)

G

z + uy = α

z + uy = α

θ(u)

(y, z) = (g(x), f(x) = θ(u)

Figure 51: Solving the Lagrangian dual problem is the same as finding the coefficient u such that
z = α − uy is a supporting hyperplane of G with the uppermost intercept α. Notice that, for u, the
hyperplane supports G at the same point that solves P .

coincide.
The perturbation function v(y) = min. {f(x) : g(x) ≤ y, x ∈ X} is an analytical tool that plays

an important role in understanding when strong duality holds, which, in essence, is the underlying
reason why the optimal values of the primal and dual problems coincide.

Specifically, notice that v(y) is the greatest monotone nonincreasing lower envelope of G. Moreover,
the reason why f(x) = θ(u) is related to the convexity of v(y), which implies that:

v(y) ≥ v(0)− uy for all y ∈ R.

Notice that this is a consequence of Theorem 12 from Lecture 2 (that states that convex sets have
supporting hyperplanes for all points on their boundary) and Theorem 5 in Lecture 3 (that convex
functions have convex epigraphs)

A duality gap exists when the perturbation function v(y) does not have supporting hyperplanes
within all its domains, which is otherwise the case when v(y) is convex. Figure 1 illustrates a case
in which v(y) is not convex and therefore θ(u) < f(x).

z = f(x)

y = g(x)

G

z + uy = α

θ(u)

(y, z) = (g(x), f(x)

Figure 52: An example in which the perturbation function v(y) is not convex. Notice the consequent
mismatch between the intercept of the supporting hyperplane and the lowermost point on the ordinate
still contained in G.

Let us illustrate the above with two numerical examples. First, consider the following problem:

(P ) : min. x2
1 + x2

2

x1 + x2 ≥ 4
x1, x2 ≥ 0.

The Lagrangian dual function is given by:
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(D) : θ(u) = inf{x2
1 + x2

2 + u(−x1 − x2 + 4) : x1, x2 ≥ 0}
= inf{x2

1 − ux1 : x1 ≥ 0}+ inf{x2
2 − ux2 : x2 ≥ 0}+ 4u

=
{
−1/2u2 + 4u, if u ≥ 0
−4u, 1 + 4u2 if u < 0.

The primal problem P as a constrained optimisation problem, and the dual problem D, as an
unconstrained optimisation problem. Notice how the Lagrangian dual function is discontinuous
due to the implicit minimisation in x of θ(u) = infx∈X ϕ(x, u):

0 1 2 3 4
x1

0

1

2

3

4

x 2

4
6

8
10

12

14
16

18

20

22

Figure 53: P

Figures 53 and 54 provide a graphical representation of the primal problem P and dual problem
D. As can be seen, both problems have as optimal value f(x1, x2) = θ(u) = 8, with the optimal
solution x = (2, 2) for P and u = 4 for D.

To draw the (g, f) map of X, we proceed as follows. First, notice that:
v(y) = min. {x2

1 + x2
2 : −x1 − x2 + 4 ≥ y}

which shows that (x1, x2) = (0, 0) if y > 4. For y ≤ 4, v(y) can be equivalently rewritten as:

v(y) = min. {x2
1 + x2

2 : −x1 − x2 + 4 = y}.
Let h(x) = −x1 − x2 + 4 and f(x) = x2

1 + x2
2. Now, the optimality conditions for x to be an

optimum for v are such that:
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Figure 54: D

∇f(x) + u∇h(x) = 0⇒
{

2x1 − u = 0
2x2 − u = 0

⇒ x1 = x2 = u/2.

From the definition of h(x), we see that u = 4 − y, and thus x = ( 4−y
2 , 4−y

2 ), which, substituting
in f(x) gives v(y) = (4 − y)2/2. Note that v(y) ≥ v(0) − uy holds for all y ∈ R, that is, v(y) is
convex. Also, notice that the supporting hyperplane is exactly z = 8− 4y.

Now, let us consider a second example: the feasible set is not convex, so the mapping G will not
be convex either. For that, consider the problem:

(P ) : min. − 2x1 + x2

subject to: x1 + x2 = 3
x1, x2 ∈ X.

Where X = {(0, 0), (0, 4), (4, 4), (4, 0), (1, 2), (2, 1)}. The optimal point x = (2, 1). The Lagrangian
dual function is given by:
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z
G
v(y)
z + uy =

Figure 55: The G mapping for the first example.

0 1 2 3 4
x1

0

1

2

3

4

x 2

x1 + x2 = 3
2x1 + x2 = 3

X

Figure 56: P

θ(v) = min{(−2x1 + x2) + v(x1 + x2 − 3) : (x1, x2) ∈ X}

=


−4 + 5v, if v ≤ −1
−8 + v, 5 if − 1 ≤ v ≤ 2
−3v,+p1 if v ≥ 2.

Figure 56 provides a graphical representation of the problem. Notice that to obtain the Lagrangian
dual function, one must simply take the lowermost segments of the hyperplanes obtained when con-
sidering each x ∈ X, which leads to a piecewise concave function, as represented in Figure 57.

The primal problem P as a constrained optimisation problem and the dual problem D. Notice how
the Lagrangian dual function is concave and piecewise linear, despite the nonconvex nature of P :
Similarly to the previous example, we can plot the G mapping, which in this case consists of the
points x ∈ X mapped as (h(x), f(x)), with h(x) = x1 + x2 − 3 and f(x) = −2x1 + x2. Notice that
v(y) in this case is discontinuous, represented by the three lowermost points. v(y) does not have
a supporting hyperplane at the minimum of P , which illustrates the existence of a duality gap, as
stated by the fact that −3 = f(x) > θ(v) = −6.
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Figure 57: (D) : max. θ(v)
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z + uy =
v(y)
v(y) G

Figure 58: The G mapping for the second example. The blue dots represent the perturbation function
v(y), which is not convex and thus cannot be supported everywhere. Notice the duality gap represented
by the difference between the intercept of z = −6− 2y and the optimal value of P at (0,-3).

2. Strong duality
From the previous graphical interpretation and related examples, it becomes clear that there is a
strong tie between strong duality and the convexity of P . This is formally described in Theorem 8.6.

Theorem 8.6. Strong duality
Let X ⊆ Rn be a nonempty convex set. Moreover, let f : Rn → R and g : Rn → Rm be convex
functions, and let h : Rn → Rl be an affine function: h(x) = Ax − b. Suppose that Slater’s
constraint qualification holds. Then:

inf
x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup

u,v
{θ(u, v) : u ≥ 0},

where θ(u, v) = infx∈X{f(x) + u⊤g(x) + v⊤h(x)} is the Lagrangian function. Furthermore, if
infx{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} is finite and achieved at x, then lsupu,v{θ(u, v) : u ≥ 0}
is achieved at (u, v) with u ≥ 0 and u⊤g(x) = 0.

The proof for the strong duality theorem follows the following outline:

(a) Let γ = infx{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}. Suppose that −∞ < γ <∞, hence finite (for
unbounded problems, f(x) = −∞ implies θ(u, v) = −∞ since θ(u, v) ≤ f(x) from Theorem
8.3; the right-hand side holds by assumption of the existence of a feasible point from Slater’s
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constraint qualification).
(b) Formulate the inconsistent system:

f(x)− γ < 0, g(x) ≤ 0, h(x) = 0, x ∈ X.
(c) Use the separation theorem (or a variant form of Farkas theorem) to show that (u0, u, v) with

u0 > 0 and u ≥ 0 exists such that, after scaling using u0 one obtains θ(u, v) := f(x)+u⊤g(x)+
v⊤h(x) ≥ γ, x ∈ X, which requires the assumption of Slater’s constraint qualification.

(d) From weak duality (Theorem 8.3), we have that θ(u, v) ≤ γ, which combined with the above,
yields θ(u, v) = γ.

(e) Finally, an optimal x solving the primal problem implies that g(x) ≤ 0, h(x) = 0, x ∈ X, and
f(x) = γ. From 3, we have u⊤g(x) ≥ 0. As g(x) ≤ 0 and u ≥ 0, u⊤g(x) ≥ 0 = 0.

The proof uses a variant of the Farkas theorem that states the existence of a solution for the system
u0(f(x)− γ) + u⊤g(x) ≥ 0, x ∈ X with (u0u, v) ̸= 0, what can be shown to be the case if Slater’s
constraint qualification holds. This, combined with weak duality stated in Theorem 8.3, yields
strong duality.

8.2.2 Employing Lagrangian duality for solving optimisation problems
Weak duality can be used to derive a stopping criterion for solution methods that generate both

primal and dual feasible solutions, also known as primal-dual pairs. Such methods are typically referred
to as primal-dual methods, the primal-dual interior point method (which we will discuss in detail in an
upcoming lecture) and perhaps the most widely known.

For feasible x and (u, v), one can bound how suboptimal f(x) is, by noticing that:

f(x)− f(x) ≤ f(x)− θ(u, v),

which is a consequence of f(x) ≥ θ(u, v) (i.e., weak duality). We say that x is ϵ-optimal, with
ϵ = f(x)− θ(u, v).

In essence, (u, v) is a certificate of (sub-)optimality of x, as (u, v) proves that x is ϵ-optimal. More-
over, in case strong duality holds, under the conditions of Theorem 6, one can expect ϵ to converge to zero.

To see how this is the case, observe the following. First, as can be seen in Theorem 8.6, a consequence
of strong duality is that complementarity conditions u⊤g(x) ≥ 0 = 0 hold for an optimal primal-dual
pair (x, (u, v)). Secondly, notice that, by definition, x and (u, v) are primal and dual feasible, respectively.

The last component missing is to notice that, if x is a minimiser for ϕ(x, u, v) = f(x)+u⊤g(x)+v⊤h(x),
then we must have:

∇f(x) +
m∑

i=1
ui∇gi(x) +

l∑
i=1

vi∇hi(x) = 0.

Combining the above, one can see that we have listed all of the KKT optimality conditions, which
under the assumptions of Theorem 8.6 are known to be necessary and sufficient for global optimality.
In this case, any primal-dual pair for which the objective function values match will automatically be
a point satisfying the KKT conditions and, therefore, globally optimal. This provides an alternative
avenue to search for optimal solutions, relying on Lagrangian dual problems.

8.2.3 Saddle point optimality and KKT conditions
An alternative perspective for establishing necessary and sufficient conditions for strong duality in-

volves identifying saddle points for the Lagrangian dual problem.

Let us first define saddle points in the context of Lagrangian duality. Let:

(P ) : min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}.

Let us define the Lagrangian function ϕ(x, u, v) = f(x) + u⊤g(x) + v⊤h(x). A solution (x, u, v) is called
a saddle point if x ∈ X, u ≥ 0, and:

ϕ(x, u, v) ≤ ϕ(x, u, v) ≤ ϕ(x, u, v)
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for all x ∈ X and (u, v) such that u ≥ 0.

Notice that this definition implies that:

• x minimises ϕ(x, u, v) when (u, v) is fixed at (u, v);
• (u, v) maximises ϕ(x, u, v) when x is fixed at x.
This insight allows for the development of methods that can alternatively solve the Lagrangian dual

problem in the space of primal variables x and dual variables (u, v) in a block-coordinate descent fashion.

Theorem 8.7 establishes the relationship between the existence of saddle points for Lagrangian dual
problems and zero duality gaps.

Theorem 8.7. Saddle point optimality and zero duality gap
A solution (x, u, v) with x ∈ X and u ≥ 0 is a saddle point for the Lagrangian function
ϕ(x, u, v) = f(x) + u⊤g(x) + v⊤h(x) if and only if:

1. ϕ(x, u, v) = min. {ϕ(x, u, v) : x ∈ X}
2. g(x) ≤ 0, h(x) = 0, and
3. u⊤g(x) = 0

Moreover, (x, u, v) is a saddle point if and only if x and (u, v) are optimal solutions for the primal
(P) and dual (D) problems, respectively, with f(x) = θ(u, v).

From Theorem 8.7, it becomes clear that there is a strong connection between the existence of saddle
points and the KKT conditions for optimality. Figure 59 illustrates the existence of a saddle point and
the related zero optimality gap.

172 4 Duality

x

λ, µ

x*

λ, µ* *
φ (       )λ, µ

f (x*) =    (        )λ, µ* *φ

(x*,        )λ, µ
(x,       )λ, µ

Fig. 4.11. Graphical illustration of saddle point (x∗, λ∗, µ∗) of the Lagrangian

Illustrative Example 4.10 (Duality gap). Consider the same problem
as the one considered in the Illustrative Example 4.7,

minimize
x1, x2

−2x1 + x2

subject to

x1 + x2 =
5

2
(x1, x2) ∈ X ,

where X = {(0, 0), (0, 2), (2, 0), (2, 2), (5/4, 5/4)}. Its dual function is given by
the explicit expression

φ(λ) =





−2 +
3λ

2
if λ ≤ −1

−4 − λ

2
if −1 ≤ λ ≤ 2

−5λ

2
if λ ≥ 2 ,

shown in Fig. 4.12. The optimal solution of the dual problem is λ∗ = −1 with
objective function value φ(λ∗) = −7/2.
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x
<latexit sha1_base64="r49wv4wfWIPtkOnce+sDr9Qxb+E=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC/YD2lA220m7drMJuxuxhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOISvNY3ptpgn5ER5KHnFFjrebToFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3vgZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ7tW9Sw3ryr1Wh5HEc7gHC7Bg2uowx00oAUMEJ7hFd6cB+fFeXc+lq0FJ585hT9yPn8A4WuM7A==</latexit><latexit sha1_base64="r49wv4wfWIPtkOnce+sDr9Qxb+E=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC/YD2lA220m7drMJuxuxhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOISvNY3ptpgn5ER5KHnFFjrebToFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3vgZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ7tW9Sw3ryr1Wh5HEc7gHC7Bg2uowx00oAUMEJ7hFd6cB+fFeXc+lq0FJ585hT9yPn8A4WuM7A==</latexit><latexit sha1_base64="r49wv4wfWIPtkOnce+sDr9Qxb+E=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC/YD2lA220m7drMJuxuxhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOISvNY3ptpgn5ER5KHnFFjrebToFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3vgZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ7tW9Sw3ryr1Wh5HEc7gHC7Bg2uowx00oAUMEJ7hFd6cB+fFeXc+lq0FJ585hT9yPn8A4WuM7A==</latexit><latexit sha1_base64="r49wv4wfWIPtkOnce+sDr9Qxb+E=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSIuix4MVjC/YD2lA220m7drMJuxuxhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOISvNY3ptpgn5ER5KHnFFjrebToFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3vgZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ7tW9Sw3ryr1Wh5HEc7gHC7Bg2uowx00oAUMEJ7hFd6cB+fFeXc+lq0FJ585hT9yPn8A4WuM7A==</latexit>

✓(u, v)
<latexit sha1_base64="bYWvOrdJwWJS2mGtTUuVzWxgSRQ=">AAAB8nicbZBNS8NAEIYnftb6VfXoZbEIFaQkRdBjwYvHCvYD0lA22027dLMJu5NCKf0ZXjwo4tVf481/47bNQVtfWHh4Z4adecNUCoOu++1sbG5t7+wW9or7B4dHx6WT05ZJMs14kyUy0Z2QGi6F4k0UKHkn1ZzGoeTtcHQ/r7fHXBuRqCecpDyI6UCJSDCK1vK7OORIK9n1+KpXKrtVdyGyDl4OZcjV6JW+uv2EZTFXyCQ1xvfcFIMp1SiY5LNiNzM8pWxEB9y3qGjMTTBdrDwjl9bpkyjR9ikkC/f3xJTGxkzi0HbGFIdmtTY3/6v5GUZ3wVSoNEOu2PKjKJMEEzK/n/SF5gzlxAJlWthdCRtSTRnalIo2BG/15HVo1aqe5cebcr2Wx1GAc7iACnhwC3V4gAY0gUECz/AKbw46L86787Fs3XDymTP4I+fzB4i3kLI=</latexit><latexit sha1_base64="bYWvOrdJwWJS2mGtTUuVzWxgSRQ=">AAAB8nicbZBNS8NAEIYnftb6VfXoZbEIFaQkRdBjwYvHCvYD0lA22027dLMJu5NCKf0ZXjwo4tVf481/47bNQVtfWHh4Z4adecNUCoOu++1sbG5t7+wW9or7B4dHx6WT05ZJMs14kyUy0Z2QGi6F4k0UKHkn1ZzGoeTtcHQ/r7fHXBuRqCecpDyI6UCJSDCK1vK7OORIK9n1+KpXKrtVdyGyDl4OZcjV6JW+uv2EZTFXyCQ1xvfcFIMp1SiY5LNiNzM8pWxEB9y3qGjMTTBdrDwjl9bpkyjR9ikkC/f3xJTGxkzi0HbGFIdmtTY3/6v5GUZ3wVSoNEOu2PKjKJMEEzK/n/SF5gzlxAJlWthdCRtSTRnalIo2BG/15HVo1aqe5cebcr2Wx1GAc7iACnhwC3V4gAY0gUECz/AKbw46L86787Fs3XDymTP4I+fzB4i3kLI=</latexit><latexit sha1_base64="bYWvOrdJwWJS2mGtTUuVzWxgSRQ=">AAAB8nicbZBNS8NAEIYnftb6VfXoZbEIFaQkRdBjwYvHCvYD0lA22027dLMJu5NCKf0ZXjwo4tVf481/47bNQVtfWHh4Z4adecNUCoOu++1sbG5t7+wW9or7B4dHx6WT05ZJMs14kyUy0Z2QGi6F4k0UKHkn1ZzGoeTtcHQ/r7fHXBuRqCecpDyI6UCJSDCK1vK7OORIK9n1+KpXKrtVdyGyDl4OZcjV6JW+uv2EZTFXyCQ1xvfcFIMp1SiY5LNiNzM8pWxEB9y3qGjMTTBdrDwjl9bpkyjR9ikkC/f3xJTGxkzi0HbGFIdmtTY3/6v5GUZ3wVSoNEOu2PKjKJMEEzK/n/SF5gzlxAJlWthdCRtSTRnalIo2BG/15HVo1aqe5cebcr2Wx1GAc7iACnhwC3V4gAY0gUECz/AKbw46L86787Fs3XDymTP4I+fzB4i3kLI=</latexit><latexit sha1_base64="bYWvOrdJwWJS2mGtTUuVzWxgSRQ=">AAAB8nicbZBNS8NAEIYnftb6VfXoZbEIFaQkRdBjwYvHCvYD0lA22027dLMJu5NCKf0ZXjwo4tVf481/47bNQVtfWHh4Z4adecNUCoOu++1sbG5t7+wW9or7B4dHx6WT05ZJMs14kyUy0Z2QGi6F4k0UKHkn1ZzGoeTtcHQ/r7fHXBuRqCecpDyI6UCJSDCK1vK7OORIK9n1+KpXKrtVdyGyDl4OZcjV6JW+uv2EZTFXyCQ1xvfcFIMp1SiY5LNiNzM8pWxEB9y3qGjMTTBdrDwjl9bpkyjR9ikkC/f3xJTGxkzi0HbGFIdmtTY3/6v5GUZ3wVSoNEOu2PKjKJMEEzK/n/SF5gzlxAJlWthdCRtSTRnalIo2BG/15HVo1aqe5cebcr2Wx1GAc7iACnhwC3V4gAY0gUECz/AKbw46L86787Fs3XDymTP4I+fzB4i3kLI=</latexit>

u, v
<latexit sha1_base64="Sr0hRTa6j8BrbMDnsOG3VUMeeH8=">AAACAnicbVBPS8MwHP11/pvzX9WTeAkOwYOMdgh6HHjxOMFtwlZGmqVbWJqWJB2MUrz4Vbx4UMSrn8Kb38Z0K6ibDwIv7/0eye/5MWdKO86XVVpZXVvfKG9WtrZ3dvfs/YO2ihJJaItEPJL3PlaUM0FbmmlO72NJcehz2vHH17nfmVCpWCTu9DSmXoiHggWMYG2kvn3Ui4ydp9MkO/+5TLK+XXVqzgxombgFqUKBZt/+7A0ikoRUaMKxUl3XibWXYqkZ4TSr9BJFY0zGeEi7hgocUuWlsxUydGqUAQoiaY7QaKb+TqQ4VGoa+mYyxHqkFr1c/M/rJjq48lIm4kRTQeYPBQlHOkJ5H2jAJCWaTw3BRDLzV0RGWGKiTWsVU4K7uPIyaddrruG3F9VGvaijDMdwAmfgwiU04Aaa0AICD/AEL/BqPVrP1pv1Ph8tWUXmEP7A+vgGjlqYHA==</latexit><latexit sha1_base64="Sr0hRTa6j8BrbMDnsOG3VUMeeH8=">AAACAnicbVBPS8MwHP11/pvzX9WTeAkOwYOMdgh6HHjxOMFtwlZGmqVbWJqWJB2MUrz4Vbx4UMSrn8Kb38Z0K6ibDwIv7/0eye/5MWdKO86XVVpZXVvfKG9WtrZ3dvfs/YO2ihJJaItEPJL3PlaUM0FbmmlO72NJcehz2vHH17nfmVCpWCTu9DSmXoiHggWMYG2kvn3Ui4ydp9MkO/+5TLK+XXVqzgxombgFqUKBZt/+7A0ikoRUaMKxUl3XibWXYqkZ4TSr9BJFY0zGeEi7hgocUuWlsxUydGqUAQoiaY7QaKb+TqQ4VGoa+mYyxHqkFr1c/M/rJjq48lIm4kRTQeYPBQlHOkJ5H2jAJCWaTw3BRDLzV0RGWGKiTWsVU4K7uPIyaddrruG3F9VGvaijDMdwAmfgwiU04Aaa0AICD/AEL/BqPVrP1pv1Ph8tWUXmEP7A+vgGjlqYHA==</latexit><latexit sha1_base64="Sr0hRTa6j8BrbMDnsOG3VUMeeH8=">AAACAnicbVBPS8MwHP11/pvzX9WTeAkOwYOMdgh6HHjxOMFtwlZGmqVbWJqWJB2MUrz4Vbx4UMSrn8Kb38Z0K6ibDwIv7/0eye/5MWdKO86XVVpZXVvfKG9WtrZ3dvfs/YO2ihJJaItEPJL3PlaUM0FbmmlO72NJcehz2vHH17nfmVCpWCTu9DSmXoiHggWMYG2kvn3Ui4ydp9MkO/+5TLK+XXVqzgxombgFqUKBZt/+7A0ikoRUaMKxUl3XibWXYqkZ4TSr9BJFY0zGeEi7hgocUuWlsxUydGqUAQoiaY7QaKb+TqQ4VGoa+mYyxHqkFr1c/M/rJjq48lIm4kRTQeYPBQlHOkJ5H2jAJCWaTw3BRDLzV0RGWGKiTWsVU4K7uPIyaddrruG3F9VGvaijDMdwAmfgwiU04Aaa0AICD/AEL/BqPVrP1pv1Ph8tWUXmEP7A+vgGjlqYHA==</latexit><latexit sha1_base64="Sr0hRTa6j8BrbMDnsOG3VUMeeH8=">AAACAnicbVBPS8MwHP11/pvzX9WTeAkOwYOMdgh6HHjxOMFtwlZGmqVbWJqWJB2MUrz4Vbx4UMSrn8Kb38Z0K6ibDwIv7/0eye/5MWdKO86XVVpZXVvfKG9WtrZ3dvfs/YO2ihJJaItEPJL3PlaUM0FbmmlO72NJcehz2vHH17nfmVCpWCTu9DSmXoiHggWMYG2kvn3Ui4ydp9MkO/+5TLK+XXVqzgxombgFqUKBZt/+7A0ikoRUaMKxUl3XibWXYqkZ4TSr9BJFY0zGeEi7hgocUuWlsxUydGqUAQoiaY7QaKb+TqQ4VGoa+mYyxHqkFr1c/M/rJjq48lIm4kRTQeYPBQlHOkJ5H2jAJCWaTw3BRDLzV0RGWGKiTWsVU4K7uPIyaddrruG3F9VGvaijDMdwAmfgwiU04Aaa0AICD/AEL/BqPVrP1pv1Ph8tWUXmEP7A+vgGjlqYHA==</latexit>

x
<latexit sha1_base64="HwqKAvK1Valz0rk+s5ovyCnTtWg=">AAAB83icbVDLSgMxFL1TX7W+Rl26CRbBVZkpgi4LblxWsA/oDCWTZtrQTDIkGbEM/Q03LhRx68+482/MtLPQ1gOBwzn3cG9OlHKmjed9O5WNza3tnepubW//4PDIPT7papkpQjtEcqn6EdaUM0E7hhlO+6miOIk47UXT28LvPVKlmRQPZpbSMMFjwWJGsLFSEEhrFtn8aT50617DWwCtE78kdSjRHrpfwUiSLKHCEI61HvheasIcK8MIp/NakGmaYjLFYzqwVOCE6jBf3DxHF1YZoVgq+4RBC/V3IseJ1rMkspMJNhO96hXif94gM/FNmDORZoYKslwUZxwZiYoC0IgpSgyfWYKJYvZWRCZYYWJsTTVbgr/65XXSbTZ8y++v6q1mWUcVzuAcLsGHa2jBHbShAwRSeIZXeHMy58V5dz6WoxWnzJzCHzifP7qskhI=</latexit><latexit sha1_base64="HwqKAvK1Valz0rk+s5ovyCnTtWg=">AAAB83icbVDLSgMxFL1TX7W+Rl26CRbBVZkpgi4LblxWsA/oDCWTZtrQTDIkGbEM/Q03LhRx68+482/MtLPQ1gOBwzn3cG9OlHKmjed9O5WNza3tnepubW//4PDIPT7papkpQjtEcqn6EdaUM0E7hhlO+6miOIk47UXT28LvPVKlmRQPZpbSMMFjwWJGsLFSEEhrFtn8aT50617DWwCtE78kdSjRHrpfwUiSLKHCEI61HvheasIcK8MIp/NakGmaYjLFYzqwVOCE6jBf3DxHF1YZoVgq+4RBC/V3IseJ1rMkspMJNhO96hXif94gM/FNmDORZoYKslwUZxwZiYoC0IgpSgyfWYKJYvZWRCZYYWJsTTVbgr/65XXSbTZ8y++v6q1mWUcVzuAcLsGHa2jBHbShAwRSeIZXeHMy58V5dz6WoxWnzJzCHzifP7qskhI=</latexit><latexit sha1_base64="HwqKAvK1Valz0rk+s5ovyCnTtWg=">AAAB83icbVDLSgMxFL1TX7W+Rl26CRbBVZkpgi4LblxWsA/oDCWTZtrQTDIkGbEM/Q03LhRx68+482/MtLPQ1gOBwzn3cG9OlHKmjed9O5WNza3tnepubW//4PDIPT7papkpQjtEcqn6EdaUM0E7hhlO+6miOIk47UXT28LvPVKlmRQPZpbSMMFjwWJGsLFSEEhrFtn8aT50617DWwCtE78kdSjRHrpfwUiSLKHCEI61HvheasIcK8MIp/NakGmaYjLFYzqwVOCE6jBf3DxHF1YZoVgq+4RBC/V3IseJ1rMkspMJNhO96hXif94gM/FNmDORZoYKslwUZxwZiYoC0IgpSgyfWYKJYvZWRCZYYWJsTTVbgr/65XXSbTZ8y++v6q1mWUcVzuAcLsGHa2jBHbShAwRSeIZXeHMy58V5dz6WoxWnzJzCHzifP7qskhI=</latexit><latexit sha1_base64="HwqKAvK1Valz0rk+s5ovyCnTtWg=">AAAB83icbVDLSgMxFL1TX7W+Rl26CRbBVZkpgi4LblxWsA/oDCWTZtrQTDIkGbEM/Q03LhRx68+482/MtLPQ1gOBwzn3cG9OlHKmjed9O5WNza3tnepubW//4PDIPT7papkpQjtEcqn6EdaUM0E7hhlO+6miOIk47UXT28LvPVKlmRQPZpbSMMFjwWJGsLFSEEhrFtn8aT50617DWwCtE78kdSjRHrpfwUiSLKHCEI61HvheasIcK8MIp/NakGmaYjLFYzqwVOCE6jBf3DxHF1YZoVgq+4RBC/V3IseJ1rMkspMJNhO96hXif94gM/FNmDORZoYKslwUZxwZiYoC0IgpSgyfWYKJYvZWRCZYYWJsTTVbgr/65XXSbTZ8y++v6q1mWUcVzuAcLsGHa2jBHbShAwRSeIZXeHMy58V5dz6WoxWnzJzCHzifP7qskhI=</latexit>

u, v
<latexit sha1_base64="SSpLPfk7cnNfeJfUL4EXu6lLGe0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8CAlKYIeC148VrQf0Iay2U7apZtN2N0USuhP8OJBEa/+Im/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b19sTVJrH8slME/QjOpQ85Iwaaz2mV5N+ueJW3YXIOng5VCBXo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXoqQRaj9brDojF9YZkDBW9klDFu7viYxGWk+jwHZG1Iz0am1u/lfrpia89TMuk9SgZMuPwlQQE5P53WTAFTIjphYoU9zuStiIKsqMTadkQ/BWT16HVq3qWX64rtRreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnBfn3flYthacfOYU/sj5/AEdZY2f</latexit><latexit sha1_base64="SSpLPfk7cnNfeJfUL4EXu6lLGe0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8CAlKYIeC148VrQf0Iay2U7apZtN2N0USuhP8OJBEa/+Im/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b19sTVJrH8slME/QjOpQ85Iwaaz2mV5N+ueJW3YXIOng5VCBXo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXoqQRaj9brDojF9YZkDBW9klDFu7viYxGWk+jwHZG1Iz0am1u/lfrpia89TMuk9SgZMuPwlQQE5P53WTAFTIjphYoU9zuStiIKsqMTadkQ/BWT16HVq3qWX64rtRreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnBfn3flYthacfOYU/sj5/AEdZY2f</latexit><latexit sha1_base64="SSpLPfk7cnNfeJfUL4EXu6lLGe0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8CAlKYIeC148VrQf0Iay2U7apZtN2N0USuhP8OJBEa/+Im/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b19sTVJrH8slME/QjOpQ85Iwaaz2mV5N+ueJW3YXIOng5VCBXo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXoqQRaj9brDojF9YZkDBW9klDFu7viYxGWk+jwHZG1Iz0am1u/lfrpia89TMuk9SgZMuPwlQQE5P53WTAFTIjphYoU9zuStiIKsqMTadkQ/BWT16HVq3qWX64rtRreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnBfn3flYthacfOYU/sj5/AEdZY2f</latexit><latexit sha1_base64="SSpLPfk7cnNfeJfUL4EXu6lLGe0=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8CAlKYIeC148VrQf0Iay2U7apZtN2N0USuhP8OJBEa/+Im/+G7dtDtr6wsLDOzPszBskgmvjut9OYWNza3unuFva2z84PCofn7R0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b19sTVJrH8slME/QjOpQ85Iwaaz2mV5N+ueJW3YXIOng5VCBXo1/+6g1ilkYoDRNU667nJsbPqDKcCZyVeqnGhLIxHWLXoqQRaj9brDojF9YZkDBW9klDFu7viYxGWk+jwHZG1Iz0am1u/lfrpia89TMuk9SgZMuPwlQQE5P53WTAFTIjphYoU9zuStiIKsqMTadkQ/BWT16HVq3qWX64rtRreRxFOINzuAQPbqAO99CAJjAYwjO8wpsjnBfn3flYthacfOYU/sj5/AEdZY2f</latexit>

f(x) = ✓(u, v)
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Figure 59: Illustration of a saddle point for the Lagrangian dual problem

8.3 Properties of Lagrangian functions
Lagrangian duals are a useful framework for devising solution methods for constrained optimisation

problems if solving the dual problem can be done efficiently or exposes some exploitable structure.

77



One important property that Lagrangian dual functions present is that they are concave piecewise
linear in the dual multipliers. Moreover, they are continuous and thus have subgradients everywhere.
However, they are typically not differentiable, requiring the employment of a nonsmooth optimisation
method to be appropriately solved. Theorem 8.8 establishes the concavity of the Lagrangian dual func-
tion.

Theorem 8.8. Concavity of Lagrangian dual functions
Let X ⊆ Rn be a nonempty compact set, and let f : Rn → R and β : Rn → Rm+l, with
w⊤β(x) =

(
u
v

)⊤(g(x)
h(x)
)

be continuous. Then θ(w) = infx{f(x) + w⊤β(x) : x ∈ X} is concave in Rm+l

Proof. Since f and β are continuous and X is compact, θ is finite on Rm+l. Let w1, w2 ∈ Rm+l,
and let λ ∈ (0, 1). We have:

θ[λw1 + (1− λ)w2] = inf
x
{f(x) + [λw1 + (1− λ)w2]⊤β(x) : x ∈ X}

= inf
x
{λ[f(x) + w⊤

1 β(X)] + (1− λ)[f(x) + w⊤
2 β(x)] : x ∈ X}

≥ λ inf
x
{f(x) + w⊤

1 β(x) : x ∈ X}+ (1− λ) inf
x
{f(x) + w⊤

2 β(x) : x ∈ X}

= λθ(w1) + (1− λ)θ(w2).

The proof uses the fact that the Lagrangian function θ(w) is the infimum of affine functions in w and
therefore concave. An alternative approach to show the concavity of the Lagrangian function is to show
that it has subgradients everywhere. This is established in Theorem 8.9.

Theorem 8.9. Lagrangian Dual Subgradient
Let X ⊂ Rn be a nonempty compact set, and let f : Rn 7→ R and β : Rn 7→ Rm+l, with
w⊤β(x) =

(
u
v

)⊤(g(x)
h(x)
)

be continuous. If x ∈ X(w) = {x ∈ X : x = argmin{f(x) + w⊤β(x)}}, then
β(x) is a subgradient of θ(w).

Proof. Since f and β are continuous and X is compact, X(w) ̸= ∅ for any w ∈ Rm+l. Now, let
w ∈ Rm+l and x ∈ X(w). Then:

θ(w) = inf{f(x) + w⊤β(x) : x ∈ X}
≤ f(x) + w⊤β(x)
= f(x) + (w − w)⊤β(x) + w⊤β(x)
= θ(w) + (w − w)⊤β(x).

Theorem 8.9 can be used to derive a simple optimisation method for Lagrangian functions using
subgradient information that is easily available from the term β(w).

8.3.1 The subgradient method
One challenging aspect concerning the solution of Lagrangian dual functions is that they are often not

differentiable. This requires an adaptation of the gradient method to consider subgradient information
instead.

The challenge with using subgradients (instead of gradients) is that subgradients are not guaranteed
to be descent directions (as opposed to gradients being the steepest descent direction under adequate
norms). Nevertheless, for suitable step size choices, convergence can be observed. Figure 60 illustrates
that subgradients are not necessarily descent directions.

Algorithm 12 summarises the subgradient method. Notice that the stopping criterion emulates the
optimality condition 0 ∈ ∂θ(wk). However, in practice, one also enforces more heuristically driven crite-
ria, such as a maximum number of iterations or a given number without observable improvement on the
θ(w) value.
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Figure 60: One possible subgradient β(xk) that is a descent direction for suitable step size. Notice that
other subgradients without descent direction are available within the subdifferential ∂θ(wk).

Algorithm 12 Subgradient method
1: initialise. tolerance ϵ > 0, initial point w0, iteration count k = 0.
2: while ||β(xk)||2 > ϵ do
3: xk ← argminx{θ(wk) = infx{f(x) + w⊤

k β(x)}}
4: LBk = max{LBk, θ(wk)}
5: update λk

6: wk+1 = wk + λkβ(xk).
7: k ← k + 1.
8: end while
9: return LBk = θ(wk).

One critical aspect of the subgradient method is the step size update described in Step 5 of Algorithm
12. Theoretical convergence is guaranteed if Step 5 generates a sequence {λk} such that:∑∞

k=0 λk → ∞ and limk→∞ λk = 0. However, discrepant performance can be observed for distinct
parametrisation of the method.

The classical step update rule employed for the subgradient method is known as the Polyak rule,
which gives

λk+1 = αk(LBk − θ(wk))
||β(xk)||2

with αk ∈ (0, 2) and LBk being the best-available lower-estimate of θ(w). The following result inspires
this rule.

Proposition 8.10. Improving step size
f wk is not optimal, then, for all optimal dual solutions w, we have

||wk+1 − w|| < ||wk − w||
for all step sizes λk such that

0 < λk <
2(θ(w)− θ(wk))
||β(xk)||2 .

Proof. We have that ||wk+1 − w||2 = ||wk + λkβ(xk)− w||2 =
||wk − w||2 − 2λk(w − wk)⊤β(xk) + (λk)2||β(xk)||2.

By the subgradient inequality: θ(w)− θ(wk) ≤ (w − wk)⊤βk. Thus
||wk+1 − w||2 ≤ ||wk − w||2 − 2λk(θ(w)− θ(wk))⊤β(xk) + (λk)2||β(xk)||2.

Parameterising the last two terms by γk = λk||β(xk)||2

θ(w)−θ(wk) leads to

||wk+1 − w||2 ≤ ||wk − w||2 −
γk(2− γk)(θ(w)− θ(wk))2

||β(xk)||2 .

Notice that if 0 < λk <
2(θ(w)−θ(wk))

||β(xk)||2 then 0 < γk < 2 and, thus, ||wk+1 − w|| < ||wk − w||.

In practice, since θ(w) is not known, it must be replaced by a proxy LBk, which is chosen to be a
lower bound on θ(w) to satisfy the subgradient inequality still. The αk is then reduced from the nominal
value 2 to correct for the estimation error of term θ(w)− θ(wk).
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9 Week IX
In this lecture, we look into the class of feasible direction methods, also known as primal methods.

9.1 The concept of feasible directions
Feasible direction methods are a class of methods that incorporate both improvement and feasibility

requirements when devising search directions. As feasibility is observed throughout the solution process,
they are referred to as primal methods. However, it depends on the geometry of the feasible region, and
it might be so that the method allows for some infeasibility in the algorithm, as we will see later.

An improving feasible direction can be defined as follows.

Definition 9.1. Improving Feasible Direction

Consider the problem min. {f(x) : x ∈ S} with f : Rn → R and ∅ ≠ S ⊆ Rn. A vector d is a feasible
direction at x ∈ S if exists δ > 0 such that x+ λd ∈ S for all λ ∈ (0, δ). Moreover, d is an improving
feasible direction at x ∈ S if there exists a δ > 0 such that f(x + λd) < f(x) and x + λd ∈ S for
λ ∈ (0, δ).

The key feature of feasible direction methods is deriving such directions and associated step sizes that
retain feasibility, even if approximately. Similarly to the other methods we have discussed in the past
lectures, these methods progress following two basic steps:

1. Obtain an improving feasible direction dk and a step size λk;

2. Make xk+1 = xk + λkdk.

As a general rule, for a feasible direction method to perform satisfactorily, it must be that the cal-
culation of the directions dk and step sizes λk are simple enough. Often, these steps can be reduced
to closed forms or, more frequently, solving linear or quadratic programming problems or even posing
modified Newton systems.

9.2 Conditional gradient - the Frank-Wolfe method
The conditional gradient method is named as such due to the direction definition step, in which the

direction d is selected such that the angle between the gradient ∇f(x) and d is as close to 180◦ degrees
as the feasible region S allows.

Recall that, if ∇f(xk) is a descent direction, then:

∇f(xk)⊤(x− xk) < 0 for x ∈ S.
A straightforward way to obtain improving feasible directions d = (x − xk) is by solving the direction
search problem DS of the form:

(DS) : min. {∇f(xk)⊤(x− xk) : x ∈ S}.
Problem DS consists of finding the furthest feasible point in the direction of the gradient, that is,

we move in the direction of the gradient, under the condition that we stop if the line search mandates
so or that the search reaches the boundary of the feasible region. This is precisely what gives the name
conditional gradient.

By letting xk = argminx∈S{∇f(xk)⊤(x− xk)} and obtaining λk ∈ (0, 1] employing a line search, the
method iterates making:

xk+1 = xk + λk(xk − xk).
One important condition to observe is that λk has to be constrained such that λ ∈ (0, 1] to guarantee
feasibility, as xk is feasible by definition. Also, notice that the condition ∇f(xk) = 0 might never be
achieved since it might be so that the unconstrained optimum is outside the feasible region S. After two
successive iterations, we will observe that xk = xk−1 and thus that dk = 0. This eventual stall of the
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Figure 61: The Frank-Wolfe method applied to a problem with linear constraints. The algorithm takes
2 steps using an exact line search (left) and 15 with an Armijo line search (right).

algorithm will happen at a point xk satisfying first-order (constrained) optimality conditions. Therefore,
the term ∇f(x)⊤dk will become zero regardless of whether the minimum of them function belongs to S
and is hence used as the stopping condition of the algorithm. Algorithm 13 summarises the Frank-Wolfe
method.

Algorithm 13 Franke-Wolfe method
1: initialise. ϵ > 0, x0 ∈ S, k = 0.
2: while ∇|f(x)⊤dk| > ϵ do
3: xk = argmin{∇f(xk)⊤d : x ∈ S}
4: dk = xk − xk

5: λk = argminλ{f(xk + λdk) : 0 ≤ λ ≤ λ}
6: xk+1 = xk + λkdk

7: k = k + 1
8: end while
9: return xk

Notice that the subproblems for a polyhedral feasibility set are linear programming problems, mean-
ing that the Frank-Wolfe method can be restarted fairly efficiently using dual simplex at each iteration.

Figure 61 shows the employment of the FW method for optimising a nonlinear function within a
polyhedral feasibility set. We consider the problem:

min. e−(x1−3)/2 + e(4x2+x1−20)/10 + e(−4x2+x1)/10

subject to: 2x1 + 3x2 ≤ 8
x1 + 4x2 ≤ 6, x1, x2 ≥ 0

starting from (0, 0) and using an exact line search to set step sizes λ ∈ [0, 1]. Notice that the method
can be utilised with inexact line searches as well.

9.3 Sequential quadratic programming
Sequential quadratic programming (SQP) is a method inspired by the idea that the KKT system of a

nonlinear problem can be solved using Newton’s method. It consists perhaps of the most general method
for considering both nonlinear constraints and objective functions.

81



To see how that works, let us first consider an equality constraint problem P as:
P = min. {f(x) : h(x) = 0, i = 1, . . . , l}.

The KKT conditions for P are given by the system W (x, v) where:

W (x, v) =
{
∇f(x) +

∑l
i=1 vi∇hi(x) = 0

hi(x) = 0, i = 1, . . . , l
Using the Newton(-Raphson) method, we can solve W (x, v). Starting from (xk, vk), we can solve W (x, v)
by successively employing Newton steps of the form:

W (xk, vk) +∇W (xk, vk)
[
x− xk

v − vk

]
= 0. (61)

Upon closer inspection, one can notice that the term ∇W (x, v) is given by:

∇W (xk, vk) =
[
∇2L(xk, vk) ∇h(xk)⊤

∇h(xk) 0

]
,

where:

∇2L(xk, vk) = ∇2f(xk) +
l∑

i=1
vk

i∇2hi(xk)

is the Hessian of the Lagrangian function:

L(x, v) = f(x) + v⊤h(x)
at xk. Now, setting d = (x− xk), we can rewrite (61) as:

∇2L(xk, vk)d+∇h(xk)⊤v = −∇f(xk) (62)
∇h(xk)d = −h(xk), (63)

which can be repeatedly solved until:

||(xk, vk)⊤ − (xk−1, vk−1)⊤|| = 0,
i.e., convergence is observed. Then, (xk, vk) is a KKT point by definition.

This is fundamentally the underlying idea of SQP. However, the approach is taken under a more
specialised setting. Instead of relying on Newton steps, we resort to successively solving quadratic sub-
problems of the form:

QP (xk, vk) : min. f(xk) +∇f(xk)⊤d+ 1
2d

⊤∇2L(xk, vk)d (64)

subject to: hi(xk) +∇hi(xk)⊤d = 0, i = 1, . . . , l. (65)

Notice that QP is a linearly constrained quadratic programming problem, for which we have seen several
solution approaches. Moreover, notice that the optimality conditions of QP are given by (62) and (63),
where v is the dual variable associated with the constraints in (65), which, in turn, represent first-order
approximations of the original constraints.

The objective function in QP can be interpreted as being a second-order approximation of f(x) en-
hanced with the term (1/2)

∑l
i=1 v

k
i d

⊤∇2hi(xk)d that captures constraint curvature information.

An alternative interpretation for the objective function of QP is to notice that it consists of the
second-order approximation of the Lagrangian function L(x, v) = f(x) +

∑l
i=1 vihi(x) at (xk, vk), which

is given by:

L(x, v) ≈ L(xk, vk) +∇xL(xk, vk)⊤d+ 1
2d

⊤∇2L(xk, vk)d

= f(xk) + vk⊤
h(xk) + (∇f(xk) + vk⊤∇h(xk))⊤d+ 1

2d
⊤(∇2f(xk) +

l∑
i=1

vk
i∇2hi(xk))d

To see this, notice that terms f(xk), vk⊤h(xk) are constants and that ∇h(xk)⊤(x− xk) = 0 (from (65),
as h(xk) = 0).
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The general subproblem in the SQP method can be stated as:

QP (xk, uk, vk) : min. ∇f(xk)⊤d+ 1
2d

⊤∇2L(xk, uk, vk)d

subject to: gi(xk) +∇gi(xk)⊤d ≤ 0, i = 1, . . . ,m
hi(xk) +∇hi(xk)⊤d = 0, i = 1, . . . , l,

which includes inequality constraints gi(x) ≤ 0 for i = 1, . . . ,m in a linearised from and their respective
associated Lagrangian multipliers ui, for i = 1, . . . ,m. This is possible since we use an optimisation
setting rather than a Newton system that only allows for equality constraints, even though the latter can
be obtained by introducing slack variables. Several options could be considered to handle this quadratic
problem, including employing a primal/dual interior point method.

A pseudocode for the standard SQP method is presented in Algorithm 14.

Algorithm 14 SQP method
1: initialise. ϵ > 0, x0 ∈ S, u0 ≥ 0, v0, k = 0.
2: while ||dk|| > ϵ do
3: dk = argminQP (xk, uk, vk)
4: obtain uk+1, vk+1 from QP (xk, uk, vk)
5: xk+1 = xk + dk, k = k + 1.
6: end while
7: return xk.

Notice that in Line 4, dual variable values are retrieved from the constraints in QP (xk, uk, vk). There-
fore, QP (xk, uk, vk) needs to be solved by an algorithm that can return these dual variables, such as the
(dual) simplex method.

Figure 62 illustrates the behaviour of the SQP method on the problem. Notice how the trajectory
might eventually become infeasible due to the consideration of linear approximations of the nonlinear
constraint.

min. {2x2
1 + 2x2

2 − 2x1x2 − 4x1 − 6x2 : x2
1 − x2 ≤ 0, x1 + 5x2 ≤ 5, x1 ≥ 0, x2 ≥ 0}

One important feature of the SQP method is that it closely mimics Newton’s method’s convergence
properties; therefore, under appropriate conditions, superlinear convergence can be observed. Moreover,
the BFGS method can be used to approximate ∇2L(xk, vk), which can turn the method dependent only
on first-order derivatives.

Notice that because the constraints are considered implicitly in the subproblem QP (xk, uk, vk), one
cannot devise a line search for the method, which, in turn, being based on successive quadratic approxi-
mations, presents a risk for divergence.

The l1-SQP is a modern variant of SQP that addresses divergence issues arising in the SQP method
when considering solutions that are far away from the optimum while presenting superior computational
performance.

In essence, l1-SQP relies on a similar principle to penalty methods, encoding penalisation for infea-
sibility in the objective function of the quadratic subproblem. In the context of SQP algorithms, these
functions are called “merit” functions. This not only allows for considering line searches (since feasibility
becomes encoded in the objective function with feasibility guaranteed at a minimum. cf. penalty meth-
ods) or relying on a trust region approach, ultimately preventing divergence issues.

Let us consider the trust-region based l1-penalty QP subproblem, which can be formulated as:
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Figure 62: The SQP method converges in 6 iterations with ϵ = 10−6

l1 −QP (xk, vk) :

min. ∇f(xk)⊤d+ 1
2d

⊤∇2L(xk, vk)d

+ µ

[
m∑

i=1
[gi(xk) +∇gi(xk)⊤d]+ +

l∑
i=1
|hi(xk) +∇hi(xk)⊤d|

]
subject to: −∆k ≤ d ≤ ∆k,

where µ is a penalty term, [ · ] = max{0, ·}, and ∆k is a trust region term. This variant is of particu-
lar interest because the subproblem l1−QP (xk, vk) can be recast as a QP problem with linear constraints:

l1 −QP (xk, vk) :

min. ∇f(xk)⊤d+ 1
2d

⊤∇2L(xk, vk)d+ µ

[
m∑

i=1
yi +

l∑
i=1

(z+
i − z

−
i )
]

subject to: −∆k ≤ d ≤ ∆k

yi ≥ gi(xk) +∇gi(xk)⊤d, i = 1 . . . ,m
z+

i − z
−
i = hi(xk) +∇hi(xk)⊤d, i = 1, . . . , l

y, z+, z− ≥ 0.

The subproblem l1 −QP (xk, vk) enjoys the same benefits as the original form, meaning it can be solved
with efficient simplex-method-based solvers.

The trust-region variant of l1-SQP is globally convergent (does not diverge) and enjoys a superlinear
convergence rate, as the original SQP. The l1-penalty term is often called a merit function in the litera-
ture. Alternatively, one can disregard the trust region and employ a line search (exact or inexact), which
would also enjoy globally convergent properties.
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9.4 Generalised reduced gradient
The generalised reduced gradient method resembles, in many aspects, the simplex method for linear

optimisation problems. It derives from Wolfe’s reduced gradient. The term “reduced” refers to consid-
ering a reduced variable space formed by a subset of the decision variables.

9.4.1 Wolfe’s reduced gradient
Let us consider the linearly constrained problem:

(P ) : min. f(x)
subject to: Ax = b

Ax ≥ 0,

where f : Rn → R is differentiable, A is m× n and b ∈ Rm.

To ease the illustration, we assume linear programming nondegeneracy, i.e., that any m columns of
A are linearly independent and every extreme point of the feasible region has at least m positive com-
ponents and at most n−m zero components.

Being so, let us define a partition of A as A = (B,N), x⊤ = (x⊤
B , x

⊤
N ), where B is an invertible m×m

matrix with xB > 0 as a basic vector and xN ≥ 0 as a nonbasic vector. This implies that ∇f(x)⊤ can
also be partitioned as ∇f(x)⊤ = (∇Bf(x)⊤,∇Nf(x)⊤).

In this context, for d to be an improving feasible direction, we must observe that:

1. ∇f(x)⊤d < 0
2. Ad = 0, with dj ≥ 0 if xj = 0 to retain feasibility.
We will show how to obtain a direction d that satisfies conditions 1 and 2. For that, let d⊤ = (d⊤

B , d
⊤
N ).

We have that 0 = Ad = BdB +Ndn for any dN , implying that dB = −B−1NdN . Moreover:

∇f(x)⊤d = ∇Bf(x)⊤dB +∇Nf(x)⊤dN

= (∇Nf(x)⊤ −∇Bf(x)⊤B−1N)dN (66)
The term r⊤

N = (∇Nf(x)⊤ − ∇Bf(x)⊤B−1N) is referred to as the reduced gradient as it expresses
the gradient of the function in terms of the nonbasic directions only. Notice that the reduced gradient r
resembles the reduced costs from the simplex method. In fact:

r⊤ = (r⊤
B , r

⊤
N ) = ∇f(x)−∇Bf(x)⊤B−1A

= (∇Bf(x)−∇Bf(x)⊤B−1B,∇Nf(x)−∇Bf(x)⊤B−1N)
= (0,∇Nf(x)−∇Bf(x)⊤B−1N),

and thus ∇f(x) = r⊤d.

Therefore, dN must be chosen such that r⊤
NdN < 0 and dj ≥ 0 if xj = 0. One way of achieving so is

employing the classic Wolfe’s rule, which states that:

dj =
{
−rj , if rj ≤ 0,
−xjrj , if rj > 0.

Notice that the rule is related to the direction of the optimisation. For rj ≤ 0, one wants to increase
the value of xj in that coordinate direction, making dj non-negative. On the other hand, if the reduced
gradient is positive (rj > 0), one wants to reduce the value of xj , unless it is already zero, a safeguard
created by multiplying xj in the definition of the direction d.

The following result guarantees the convergence of Wolfe’s reduced gradient to a KKT point.
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Theorem 9.2
Let x be a feasible solution to P such that x = (x⊤

B , x
⊤
N ) and xB > 0. Consider that A is decomposed

into (B,N). Let r⊤ = ∇f(x)⊤ −∇Bf(x)⊤B−1A and let d be formed using Wolfe’s rule. Then:

1. if d ̸= 0, then d is an improving direction;

2. if d = 0, then x is a KKT point.

Proof. d is a feasible direction by construction. Now, notice that:

∇f(x)⊤d = ∇Bf(x)⊤dB +∇Nf(x)⊤dN

= [∇Nf(x)⊤ −∇Bf(x)⊤B−1N ]dN =
∑

j /∈IB

rjdj

where IB is the index set of basic variables. By construction (using Wolfe’s rule), either d = 0 or
∇f(x)⊤d < 0, being thus an improvement direction.

x is a KKT point if and only if there exists (u⊤
B , u

⊤
N ) ≥ (0, 0) and v such that:

(∇Bf(x)⊤,∇Nf(x)⊤) + v⊤(B,N)− (u⊤
B , u

⊤
N ) = (0, 0) (67)

u⊤
BxB = 0, u⊤

NxN = 0. (68)

Since xB > 0 and uB ≥ 0, u⊤
BxB = 0 if and only if uB = 0. From top row in (67), v⊤ = −∇Bf(x)B−1.

Substituting in the bottom row of (67), we obtain u⊤
N = ∇Nf(x)⊤ −∇Bf(x)⊤B−1N = rN .

Thus, the KKT conditions reduce to rN ≥ 0 and r⊤
NxN = 0, only observed when d = 0 by definition.

Algorithm 15 presents a pseudocode for Wolfe’s reduced gradient. A few implementation details stand
out. First, notice that the basis is selected by choosing the largest components in value, which differs from
the simplex method by allowing nonbasic variables to assume nonzero values. Moreover, notice that a line
search is employed conditioned on bounds on the step size λ to guarantee that feasibility x ≥ 0 is retained.

Algorithm 15 Wolfe’s reduced gradient method
1: initialise. ϵ > 0, x0 with Axk = b, k = 0, columns aj , j = 1, . . . , n of A
2: while ||dk|| > ϵ do
3: Ik = index set for m largest components of xk

4: Let A = (B,N), where B = {aj : j ∈ Ik}, and N = {aj : j /∈ Ik}
5: rk⊤ = ∇f(xk)⊤ −∇Bf(xk)⊤B−1A

6: dk
j =

{
−rk

j , if j /∈ Ik and rj ≤ 0;
−rjxj , if j /∈ Ikandrj > 0.

7: dB = −B−1NdN

8: if d = 0 then
9: return xk

10: end if

11: λ =
{

+∞, if dk ≥ 0;
min{xk

j /d
k
j : dk

j < 0}, if dk < 0.
12: λk = argmin{f(xk + λdk) : 0 ≤ λ ≤ λ}.
13: xk+1 = xk + λkdk; k = k + 1.
14: end while
15: return xk.

9.4.2 Generalised reduced gradient method
The generalised reduced gradient extends Wolfe’s method by:
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1. Nonlinear constraints are considered via first-order approximation at xk

h(xk) +∇h(xk)⊤(x− xk) = 0⇒ h(xk)⊤x = h(xk)⊤xk.

With an additional restoration phase that aims to recover feasibility via projection or Newton’s
method.

2. Consideration of superbasic variables. In that, xN is further partitioned into x⊤
N = (x⊤

S , x
⊤
N ′).

The superbasic variables xS (with index set JS , 0 ≤ |JS | ≤ n −m), are allowed change value, while
xN ′ are kept at their current value. Hence, d⊤ = (d⊤

B , d
⊤
S , d

⊤
N ′), with dN ′ = 0. From Ad = 0, we obtain

dB = −B−1SdS . Thus d becomes:

d =

 dB

dS

dN ′

 =

−B−1S
I
0

 dS .
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10 Week X
In this lecture, we consider a class of methods known as the barrier methods. We describe the be-

haviour of such methods in terms of finding optimal solutions for constrained optimisation problems, and
provide a general convergence result. Then, we describe the most widespread barrier method, generally
known as the interior point method for solving LPs. We develop the main settings of the algorithm and
discuss some implementation aspects.

10.1 Barrier functions
In essence, barrier methods also use proxies for the constraints in the objective function so that an

unconstrained optimisation problem can be solved instead. However, the concept of barrier functions
differs from penalty functions in that they are defined to prevent the solution search method from leaving
the feasible region, which is why some of these methods are also called interior point methods.

Consider the primal problem P being defined as:

(P ) : min. f(x)
subject to: g(x) ≤ 0

x ∈ X.

We define the barrier problem BP as:

(BP ) : inf
µ
θ(µ)

subject to: µ > 0

where θ(µ) = infx{f(x) + µB(x) : g(x) < 0, x ∈ X} and B(x) is a barrier function. The barrier
function is such that its value approaches +∞ as the boundary of the region {x : g(x) ≤ 0} is ap-
proached from its interior. In practice, the constraint g(x) < 0 can be dropped, as the barrier function
automatically enforces them.

The barrier function B : Rm → R is such that:

B(x) =
m∑

i=1
ϕ(gi(x)), where

{
ϕ(y) ≥ 0, if y < 0;
ϕ(y) = +∞, when y → 0−.

(69)

Examples of barrier functions that impose this behaviour are:

• B(x) = −
∑m

i=1
1

gi(x)

• B(x) = −
∑m

i=1 ln(min{1,−gi(x)}) .

Perhaps the most important barrier function is the Frisch’s log barrier function, used in the highly
successful primal-dual interior point methods. We will describe its use later. The log barrier is defined as:

B(x) = −
m∑

i=1
ln(−gi(x)).

Figure 63 illustrates the behaviour of the barrier function. Ideally, the barrier function B(x) has
the role of an indicator function, which is zero for all feasible solutions x ∈ {x : g(x) < 0} but as-
sume infinite value if a solution is at the boundary g(x) = 0 or outside the feasible region. This is
illustrated in the dashed line in Figure 63. The barrier functions for different values of barrier term µ
illustrate how the log barrier mimics this behaviour, becoming more and more pronounced as µ decreases.
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Figure 63: The barrier function for different values of µ

10.2 The barrier method
Similar to what was developed for penalty methods, we can devise a solution method that successively

solves the barrier problem θ(µ) for decreasing the barrier term µ.

We start by stating the result that guarantees convergence of the barrier method.

Theorem 10.1. Convergence of barrier methods
Let f : Rn → R and g : Rn → R be continuous functions and X ∈ Rn a nonempty closed set in
problem P . Suppose {x ∈ Rn : g(x) < 0, x ∈ X} is not empty. Let x be the optimal solution of
P such that, for any neighbourhood Nϵ(x) = x : ||x− x|| ≤ ϵ, there exists x ∈ X ∩ Nϵ for which
g(x) < 0. Then:

min{f(x) : g(x) ≤ 0, x ∈ X} = lim
µ→0+

θ(µ) = inf
µ>0

θ(µ).

Letting θ(µ) = f(xµ) + µB(xµ), where B(x) is a barrier function as described in (69), xµ ∈ X and
g(xµ) < 0, the limit of {xµ} is optimal to P and µB(xµ)→ 0 as µ→ 0+.

Proof. First, we show that θ(µ) is a nondecreasing function in µ. For µ > λ > 0 and x such that
g(x) < 0 and x ∈ X, we have:

f(x) + µB(x) ≥ f(x) + λB(x)
inf
x
{f(x) + µB(x)} ≥ inf

x
{f(x) + λB(x)}

θ(µ) ≥ θ(λ).
From these, we conclude that limµ→0+ θ(µ) = inf{θ(µ) : µ > 0}. Now, let ϵ > 0. As x is optimal, by
assumption there exists some x̂ ∈ X with g(x̂) < 0 such that f(x)+ϵ > f(x̂). Then, for µ > 0 we have:

f(x) + ϵ+ µB(x̂) > f(x̂) + µB(x̂) ≥ θ(µ).

Letting µ → 0+, it follows that f(x) + ϵ ≥ limµ→0+ θ(µ), which implies f(x) ≥ limµ→0+ θ(µ) =
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inf{θ(µ) : µ > 0}. Conversely, since B(x) ≥ 0 and g(x) < 0 for some µ > 0, we have:

θ(µ) = inf{f(x) + µB(x) : g(x) < 0, x ∈ X}
≥ inf{f(x) : g(x) < 0, x ∈ X}
≥ inf{f(x) : g(x) ≤ 0, x ∈ X} = f(x).

Thus f(x) ≤ limµ→0+ θ(µ) = inf{θ(µ) : µ > 0}. Therefore, f(x) = limµ→0+ θ(µ) = inf{θ(µ) : µ >
0 ≥}.

The proof has three main steps. First, we show that θ(µ) is a nondecreasing function in µ, which
implies that limµ→0+ θ(µ) = inf{θ(µ) : µ > 0}. This can be trivially shown as only feasible solutions x
must be considered.

Next, we show the convergence of the barrier method by showing that infµ>0 θ(µ) = f(x), where
x = argmin{f(x) : g(x) ≤ 0, x ∈ X} = limµ→0+ θ(µ) = infµ>0 θ(µ). The optimality of x implies that
f(x̂) − f(x) < ϵ for feasible x̂ and ϵ > 0. Moreover, B(x̂) ≥ 0 by definition. In the last part, we argue
that including the boundary can only improve the objective function value, leading to the last inequality.
It is worth highlighting that, to simplify the proof, we have assumed that the barrier function has the
form described in (69). However, a proof in the veins of Theorem 10.1 can still be developed for the
Frisch log barrier (for which B(x) is not necessarily nonnegative) since, essentially, (69) only needs to be
observed in a neighbourhood of g(x) = 0.

The result in Theorem 10.1 allows the design of an optimisation method that, starting from a strictly
feasible (interior) solution, is based on successively reducing the barrier term until a solution with an
arbitrarily small barrier term is obtained. Algorithm 16 present a pseudo code for such a method.

Algorithm 16 Barrier method
1: initialise. ϵ > 0, x0 ∈ X with g(xk) < 0, µk, β ∈ (0, 1), k = 0.
2: while µkB(xk) > ϵ do
3: xk+1 = argmin{f(x) + µkB(x) : x ∈ X}
4: µk+1 = βµk, k = k + 1
5: end while
6: return xk.

One important aspect to notice is that starting the algorithm requires a strictly feasible point, which,
in some applications, might be challenging to obtain. This characteristic renders the name interior point
methods for this class of algorithms.

Consider the following example. Let P = {(x + 1)2 : x ≥ 0}. Let us assume we use the barrier
function B(x) = − ln(x). Then, the unconstrained barrier problem becomes:

(BP ) : min.
x

(x+ 1)2 − µ ln(x). (70)
Since this is a convex function, the first-order condition f ′(x) = 0 is necessary and sufficient for opti-

mality. Thus, solving 2(x+1)− µ
x = 0 we obtain the positive root and unique solution xµ = −1

2 +
√

4+8µ
4 .

Figure X shows the behaviour of the problem as µ converges to zero. As can be seen, as µ → 0, the
optimal solution xµ converges to the constrained optimum x = 0.

We now consider a more involved example. Let us consider the problem:

P = min. {(x1 − 2)4 + (x1 − 2x2)2 : x2
1 − x2 ≤ 0}

with B(x) = − 1
x2

1−x2
. We implemented Algorithm 16 and solved it with two distinct values for the

penalty term µ and reduction term β. Figure 64 illustrates the trajectory of the algorithm with each
parameterisation, exemplifying how these can affect the convergence of the method.

10.3 Interior point method for LP/QP problems
Perhaps ironically, the most successful applications of barrier methods in terms of efficient imple-

mentations are devoted to solving linear and quadratic programming (LP/QP) problems. In the last
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Figure 64: Example 1: solving a one-dimensional problem with the barrier method

decade, the primal-dual interior point method has become the algorithm of choice for many applications
involving large-scale LP/QP problems.

To see how barrier methods can be applied to LP problems, consider the following primal/dual pair
formed by an LP primal P :

(P ) : min. c⊤x

subject to: Ax = b : v
x ≥ 0 : u

and its respective dual formulation D:

(D) : max. b⊤v

subject to: A⊤v + u = c

u ≥ 0, v ∈ Rm.

The optimal solution (x, v, u) = w is such that it satisfies KKT conditions of P , given by:

Ax = b, x ≥ 0
A⊤v + u = c, u ≥ 0, v ∈ Rm

u⊤x = 0.
These are going to be useful as a reference for the next developments. We start by considering the barrier
problem for P by using the logarithmic barrier function to represent the condition x ≥ 0. Thus, the
barrier problem BP can be defined as:

(BP ) : min. c⊤x− µ
n∑

i=1
ln(xj)

subject to: Ax = b.

Notice that this problem is a strictly equality-constrained problem that can be solved using the con-
strained variant of Newton’s method (which simply consists of employing Newton’s method to solve the
KKT conditions of equality-constrained problems). Moreover, observe that the KKT conditions of BP
are:
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Figure 65: The trajectory of the barrier method for problem P . Notice how the parameters influence
the trajectory and number of iterations. The parameters on the left require 27 iterations, while those on
the right require 40 for convergence.

Ax = b, x > 0

A⊤v = c− µ
(

1
x1
, . . . ,

1
xn

)

Notice that, since µ > 0 and x > 0, u = µ
(

1
x1
, . . . , 1

xn

)
serves as an estimate for the Lagrangian dual

variables. To further understand the relationship between the optimality conditions of BP and P , let us
define X ∈ Rn×n and U ∈ Rn×n as:

X = diag(x) =


. . .

xi

. . .

 and U = diag(u) =


. . .

ui

. . .


and let e = [1, . . . , 1]⊤ be a vector of ones of suitable dimension. We can rewrite the KKT conditions of
BP as:

Ax = b, x > 0 (71)
A⊤v + u = c (72)
u = µX−1e ⇒ XUe = µe. (73)

Notice how the condition (73) resembles the complementary slackness from P , but relaxed to be µ instead
of zero. This system is often called the perturbed KKT system.

Theorem 10.13 guarantees that wµ = (xµ, vµ, uµ) approaches the optimal primal-dual solution of P
as µ → 0+. The trajectory formed by successive solutions {wµ} is called the central path due to the
interiority enforced by the barrier function. When the barrier term µ is large enough, the solution of the
barrier problem is close to the analytic centre of the feasibility set. The analytic centre of a polyhedral
set S = {x ∈ Rn : Ax ≤ b} is given by:

max.
x

m∏
i=1

(bi − a⊤
i x)

subject to: x ∈ X,

Which corresponds to finding the point of maximum distance to each of the hyperplanes forming the

3In fact, we require a slight variant of Theorem 1 that allows for B(x) ≥ 0 only being required in a neighbourhood of
g(x) = 0.
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polyhedral set. This is equivalent to the convex problem:

min.
x

m∑
i=1
− ln

(
bi − a⊤

i x
)

subject to: x ∈ X,

And thus justifying the nomenclature.

One aspect should be observed for defining the stopping criterion. Notice that the term u⊤x is such
that it measures the duality gap at a given solution. That is, notice that:

c⊤x = (A⊤v + u)⊤x

= (A⊤v)⊤x+ u⊤x

= v⊤(Ax) + u⊤x

c⊤x− b⊤v = u⊤x =
n∑

i=1
uixi =

n∑
i=1

(
µ

xi

)
xi = nµ.

This gives the total slack violation that can be used to determine the algorithm’s convergence.

10.3.1 Primal/dual path-following interior point method
The primal/dual path-following interior point method (IPM) is the specialised version of the setting

described earlier for solving LP/QP problems.

It consists of building upon employing logarithmic barriers to LP/QP problems and solving the sys-
tem (71) - (73) using Newton’s method. However, instead of solving the problem to optimality for each
µ, only a single Newton step is taken before the barrier term µ is reduced.

Suppose we start with a µ > 0 and a wk = (xk, vk, uk) sufficiently close to wµ. Then, for a sufficiently
small β ∈ (0, 1), βµ will lead to a wk+1 sufficiently close to wβµ. Figure 66 illustrates this effect, showing
how a suboptimal solution xk does not necessarily need to be in the central path (denoted by the dashed
line) to guarantee convergence, as long as they are guaranteed to remain within the same neighbourhood
Nµ(θ) of the central path.

x+∞

xµ2

xµ1

xk

xk+1 c

Nµ2(θ)

Nµ1(θ)

Figure 66: an illustrative representation of the central path and approximately how the IPM follows it.

For example, let Nµ(θ) = ||Xµ Uµe − µe|| ≤ θµ. Then, by selecting β = 1 − σ√
n

, σ = θ = 0.1, and
µ0 = (x⊤u)/n, successive Newton steps are guaranteed to remain within Nµ(θ).

To see how the setting works, let the perturbed KKT system (71) – (73) for each µ̂ be denoted as
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H(w) = 0. Let J(w) be the Jacobian of H(w) at w.

Applying Newton’s method to solve H(w) = 0 for w, we obtain:

J(w)dw = −H(w) (74)
where dw = (w − w). By rewriting dw = (dx, dv, du), (74) can be equivalently stated as:A 0⊤ 0

0 A⊤ I
U 0⊤ X

dx

dv

du

 =

 0
0

µ̂e−X Ue

 . (75)

The system (75) is often called the Newton’s system.

In practice, the updates incorporate primal and dual infeasibility, which precludes the need for ad-
ditional mechanisms to guarantee primal and dual feasibility throughout the algorithm. This can be
achieved with a simple modification in the Newton system, rendering the direction update step: A 0⊤ 0

0 A⊤ I
Uk 0⊤ Xk

dk+1
x

dk+1
v

dk+1
u

 = −

 Axk − b
A⊤vk + uk − c
XkUke− µk+1e

 , (76)

To see how this still leads to primal and dual feasible solutions, consider the primal residuals (i.e.,
the amount of infeasibility) as rp(x, u, v) = Ax− b and the dual residuals rd(x, u, v) = A⊤v+u− c. Now,
let r(w) = r(x, u, v) = (rp(x, u, v), rd(x, u, v)), recalling that wk = (x, v, u). The optimality conditions
can be expressed as requiring that the residuals vanish, that is r(w) = 0.

Now, consider the first-order Taylor approximation for r at w for a step dw:

r(w + dw) ≈ r(w) +Dr(w)dw,

Where Dr(w) is the derivative of r evaluated at w, given by the two first rows of the Newton system
(75). The step dw for which the residue vanishes is:

Dr(w)dw = −r(w), (77)
Which is the same as (61) without the bottom equation. Now, if we consider the directional derivative
of the square of the norm of r in the direction dw, we obtain:

d

dt
||r(w + tdw)||22

∣∣∣∣
t→0+

= 2r(w)⊤Dr(w)dw = −2r(w)⊤r(w), (78)

Which is strictly decreasing. That is, the step dw is such that it will make the residual decrease and
eventually become zero. From that point onwards, the Newton system will take the form of (75).

The algorithm proceeds by iteratively solving the system (76) with µk+1 = βµk with β ∈ (0, 1) until
nµk is less than a specified tolerance. Algorithm 17 summarises a simplified form of the IPM.

Algorithm 17 Interior point method (IPM) for LP
1: initialise. primal-dual feasible wk, ϵ > 0, µk, β ∈ (0, 1), k = 0.
2: while nµ = c⊤xk − b⊤vk > ϵ do
3: compute dwk+1 = (dxk+1 , dvk+1 , duk+1) using (76) and wk.
4: wk+1 = wk + dwk+1

5: µk+1 = βµk, k = k + 1
6: end while
7: return wk.

Figure 67 illustrates the behaviour of the IPM when employed to solve the linear problem:

min. x1 + x2

subject to: 2x1 + x2 ≥ 8
x1 + 2x2 ≥ 10,
x1, x2 ≥ 0

94



Considering two distinct initial penalties µ. Notice how higher penalty values enforce a more central
convergence of the method.
Some points are worth noticing concerning Algorithm 17. First, notice that a fixed step size is consid-

0 2 4 6 8 10
x

0

2

4

6

8

x x0

2x1 + x2 8
x1 + 2x2 10
z *  level curve

 = 10.0,  = 0.5
 = 2.0,  = 0.5

Figure 67: IPM applied to an LP problem with two different barrier terms

ered in Line 4. A line search can be incorporated to prevent infeasibility and improve numerical stability.
Typically, it is used λk

i = min{α,−xk
i

dk
i

} with α < 1 but close to 1.

Also, even though the algorithm is initialised with a feasible solution wk, this might, in practice,
not be necessary. Implementations of the infeasible IPM method can efficiently handle primal and dual
infeasibility.

Under specific conditions, the IPM can be shown to have complexity of O(
√
n ln(1/ϵ)), which is

polynomial and of much better worst-case performance than the simplex method, which makes it the al-
gorithm of choice for solving large-scale LPs. Another important advantage is that IPM can be modified
with little effort to solve a wider class of problems under the class of conic optimisation problems.

Predictor-corrector methods are variants of IPM that incorporate a two-phase direction calculation
using a predicted direction dpred

w , calculated by setting µ = 0 and a correcting direction, which is com-
puted considering the impact that dcor

w would have in the term X Ue.

Let ∆X = diag(dpred
x ) and ∆U = diag(dpred

u ).
Then:

(X + ∆X)(U + ∆U)e = XUe+ (U∆X +X∆U)e+ ∆X∆Ue
= XUe+ (0−XUe) + ∆X∆Ue
= ∆X∆Ue (79)

Using the last equation (79), the corrector Newton step becomes Udx +Xdu = µ̂e−∆X∆Ue.
Finally, dk

w is set to be a combination of dpred
w and dcor

w .
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11 Week XI
In this lecture, we discuss the strategy of employing penalty functions to solve constrained optimisa-

tion problems. We also discuss the concept of penalised functions and demonstrate their asymptotical
convergence properties. We consider a specific penalty method that has ties with Lagrangian duality,
the augmented Lagrangian method of multipliers (ALMM). Moreover, we present a variant of ALMM,
the alternating direction method of multipliers (ADMM), that allows for parallelisation of problems with
suitable structure.

11.1 Penalty functions
The employment of penalty functions is a paradigm for solving constrained optimisation problems.

The central idea of this paradigm is to convert the constrained optimisation problem into an uncon-
strained optimisation problem that is augmented with a penalty function, which penalises violations of
the original constraints. The role of the penalty function is to allow steering the search towards feasible
solutions in the search for optimal solutions.

Consider the problem (P ) : min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}. A penalised version of P is
given by:

(Pµ) : min. {f(x) + µα(x) : x ∈ X},

where µ > 0 is a penalty term and α(x) : Rn 7→ R is a penalty function of the form:

α(x) =
m∑

i=1
ϕ(gi(x)) +

l∑
i=1

ψ(hi(x)). (80)

For α(x) to be a suitable penalty function, one must observe that ϕ : Rn 7→ R and ψ : Rn 7→ R are
continuous and satisfy:

ϕ(y) = 0 if y ≤ 0 and ϕ(y) > 0 if y > 0
ψ(y) = 0 if y = 0 and ψ(y) > 0 if y ̸= 0.

Typical options are ϕ(y) = ([y]+)p with p ∈ Z+ and ψ(y) = |y|p with p = 1 or p = 2.

Figure 68 illustrates the solution of (P ) : min. {x2
1 + x2

2 : x1 + x2 = 1, x ∈ R2} using a penalty-
based approach. Using α(x1, x2) = (x1 + x2 − 1)2, the penalised auxiliary problem Pµ becomes (Pµ) :
min. {x2

1 + x2
2 +µ(x1 + x2− 1)2 : x ∈ R2}. Since fµ is convex and differentiable, necessary and sufficient

optimality conditions ∇fµ(x) = 0 imply:

x1 + µ(x1 + x2 − 1) = 0
x2 + µ(x1 + x2 − 1) = 0,

which gives x1 = x2 = µ
2µ+1 .

One can notice that, as µ increases, the solution of the unconstrained penalised problem, represented
by the level curves, becomes closer to the optimal of the original constrained problem P , represented by
the dot on the hyperplane defined by x1 + x2 = 1.
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Figure 69: Geometric representation of penalised problems in the mapping G = [h(x), f(x)]
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Figure 68: Solving the constrained problem P (top left) by gradually increasing the penalty term µ (0.5,
1, and 5, in clockwise order)

11.1.1 Geometric interpretation
A similar geometrical analysis to that performed with the Lagrangian duals can be employed for

understanding how penalised problems can obtain optimal solutions. For that, let us the problem from
the previous example (P ) : min. {x2

1 + x2
2 : x1 + x2 = 1, x ∈ R2}. Let G : R2 → R2 be a mapping

{[h(x), f(x)] : x ∈ R2}, and let v(ϵ) = min. {x2
1 + x2

2 : x1 + x2 − 1 = ϵ, x ∈ R2}. The optimal solution is
x1 = x2 = 1+ϵ

2 with v(ϵ) = (1+ϵ)2

2 .
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Minimising f(x) + µ(h(x)2) consists of moving the curve downwards until a single contact point ϵµ
remains. One can notice that, as µ → ∞, f + µh becomes sharper (µ2 > µ1), and ϵµ converges to the
optimum ϵµ. Figure 69 illustrates this behaviour.

The shape of the penalised problem curve is due to the following. First, notice that:

min.
x
{f(x) + µ

l∑
i=1

(hi(x))2}

= min.
x,ϵ
{f(x) + µ||ϵ||2 : hi(x) = ϵ, i = 1, . . . , l}

= min.
ϵ
{µ||ϵ||2 + min.

x
{f(x) : hi(x) = ϵ, i = 1, . . . , l}}

= min.
ϵ
{µ||ϵ||2 + v(ϵ)}.

Consider l = 1, and let xµ = argminx{f(x) + µ
∑l

i=1(hi(x))2} with h(xµ) = ϵµ, implying that
ϵµ = argminϵ{µ||ϵ||2 + v(ϵ)}. Then, the following holds:

1. f(xµ) + µ(h(xµ))2 = µϵ2µ + v(ϵµ)⇒ f(xµ) = v(ϵµ), since h(xµ) = ϵµ;
2. and v′(ϵµ) = ∂

∂ϵ (f(xµ) + µ(h(xµ))2 − µϵ2µ) = −2µϵµ.
Therefore, (h(xµ), f(xµ)) = (ϵµ, v(ϵµ)). Denoting f(xµ)+µh(xµ)2 = kµ, we see the parabolic function

f = kµ − µϵ2 matching v(ϵµ) for ϵ = ϵµ and has the slope −2µϵ, matching that of v(ϵ) at that point.

11.1.2 Penalty function methods
The convergent behaviour of the penalised problem as the penalty term µ increases inspires the de-

velopment of a simple yet powerful method for optimising constrained optimisation problems.

That is, consider the problem P defined as:

(P ) : min. f(x)
gi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . , l,
x ∈ X.

We seek to solve P by solving supµ{θ(µ)} for µ > 0, where:

θ(µ) = min. {f(x) + µα(x) : x ∈ X}
and α(x) is a penalty function as defined in (80). For that to be possible, we need first to state a
convergence result guaranteeing that:

min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup
µ≥0

θ(µ) = lim
µ→∞

θ(µ).

In practice, that would mean that µk can be increased at each iteration k until a suitable tolerance is
achieved. Theorem 11.1 states the convergence of penalty based methods.

Theorem 11.1. Convergence of penalty-based methods
Consider the problem P , where f , gi for i = 1, . . . ,m, and hi for i = 1, . . . , l are continuous, and
X ⊂ Rn a compact set. Suppose that, for each µ, there exists xµ = argmin{f(x) + α(x) : x ∈ X},
where α is a suitable penalty function and {xµ} is contained within X. Then:

min
x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup

µ≥0
{θ(µ)} = lim

µ→∞
θ(µ),

where θ(µ) = minx{f(x) + µα(x) : x ∈ X} = f(xµ) + µα(xµ). Also, the limit of any convergent
subsequence of {xµ} is optimal to the original problem and µα(xµ)→ 0 as µ→∞.

Proof. We first show that θ(µ) are nondecreasing function of µ. Let 0 < λ < µ. From the definition
of θ(µ), we have that:
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f(xµ) + λα(xµ) ≥ f(xλ) + λα(xλ) (81)
Adding and subtracting µα(xµ) in the left side of (81), we conclude that θ(µ) ≥ θ(λ). Now, for
x ∈ X with g(x) ≤ 0 and h(x) = 0, notice that α(x) = 0. This implies that:

f(x) = f(x) + µα(x) ≥ inf
x
{f(x) + µα(x) : x ∈ X} = θ(µ) (82)

and, therefore, θ(µ) is bounded above, and thus supµ≥0 θ(µ) = limµ→∞ θ(µ). For that to be the
case, we must have that µα(xµ)→ 0 as µ→∞. Moreover, we notice from (82) that:

min
x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} ≥ lim

µ→∞
θ(µ). (83)

On the other hand, take any convergent subsequence {xµk
} of {xµ}µ→∞ with limit x. Then:

sup
µ≥0

θ(µ) ≥ θ(µk) = f(xµk
) + µα(xµk

) ≥ f(xµk
).

Since xµk
→ x as µ→∞ and f is continuous, this implies that supµ≥0 θ(µ) ≥ f(x). Combined with

(83), we have that f(x) = supµ≥0{θ(µ)} and thus the result follows.

The proof starts by demonstrating the nonincreasing behaviour of penalty functions and nondecreas-
ing behaviour of θ(µ) to allow for convergence. By noticing that:

f(xµ) + λα(xµ) + µα(xµ)− µα(xµ) = θ(µ) + (λ− µ)α(xµ) ≥ f(xλ) + λα(xλ) = θ(λ)
and that λ − µ < 0, we can infer that θ(µ) ≥ θ(λ). It is also interesting to notice how the objective
function f(x) and infeasibility α(x) behave as we increase the penalty coefficient µ. For that, notice that
using the same trick in the proof for two distinct values 0 < λ < µ, we have:

1. f(xµ) + λα(xµ) ≥ f(xλ) + λα(xλ)
2. f(xλ) + µα(xλ) ≥ f(xµ) + µα(xµ).
Notice that in 1, we use the fact that xλ = argminxθ(λ) = argminx{f(x) + λα(x)} and therefore,

must be less or equal then f(xµ) + λα(xµ) for an arbitrary xµ ∈ X. The same logic is employed in 2,
but reversed in λ and µ. Adding 1 and 2, we obtain (µ − λ)(α(xλ) − α(xµ)) ≥ 0 and conclude that
α(xµ) ≤ α(xλ) for µ > λ, i.e., that α(x) is nonincreasing in µ.

Moreover, from the first inequality, we have that f(xµ) ≥ f(xλ). Notice how this goes in line with
what one would expect from the method: as we increase the penalty coefficient µ, the optimal infea-
sibility, measured by α(xµ) decreases, while the objective function value f(xµ) worsens at it is slowly
“forced” to be closer to the original feasible region.

Note that the assumption of compactness plays a central role in this proof, such that θ(µ) can be
evaluated for any µ as µ → ∞. Though this is a strong assumption, it tends to not be so restrictive in
practical cases, since variables typically lie within finite lower and upper bounds. Finally, notice that
α(x) = 0 implies that x is feasible for gi for i = 1, . . . ,m, and hi for i = 1, . . . , l, and thus optimal for P .
This is stated in the following corollary.

Corollary 11.2. If α(xµ) = 0 for some µ, then xµ is optimal for P .

Proof. If α(xµ) = 0, then xµ is feasible. Moreover, xµ is optimal, since
θ(µ) = f(xµ) + µα(xµ)

= f(xµ) ≤ inf{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}.

A technical detail of the proof of Theorem 11.1 is that the convergence of such approach is asymp-
totically, i.e., by making µ arbitrarily large, xµ can be made arbitrarily close to the true optimal x and
θ(µ) can be made arbitrarily close to the optimal value f(x). In practice, this strategy tends to be prone
to computational instability.

The computational instability arises from the influence that the penalty term exerts in some of the
eigenvalues of the Hessian of the penalised problem. Let Hµ(xµ) be the Hessian of the penalised function
at xµ. Recall that conditioning is measured by κ = maxi=1,...,n λi

mini=1,...,n λi
, where {λi}i=1,...,n are the eigenvalues

of Hµ(xµ). Since the influence is only on some of the eigenvalues, this affects the conditioning of the
problem and might lead to numerical instabilities. An indication of that can be seen in Figure 68, where
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one can notice the elongated profile of the function as the penalty term µ increases.

Consider the following example. Let the penalised function fµ(x) = x2
1 + x2

2 + µ(x1 + x2 − 1)2.

The Hessian of fµ(x) is:

∇2fµ(x) =
[
2(1 + µ) 2µ

2µ 2(1 + µ)

]
.

Solving det(∇2fµ(x)− λI) = 0, we obtain λ1 = 2, λ2 = 2(1 + 2µ), with eigenvectors (1,−1) and (1, 1),
which gives κ = (1 + 2µ). This illustrates that the eigenvalues, and consequently the conditioning num-
ber, is proportional to the penalty term.

11.2 Augmented Lagrangian method of multipliers
For simplicity, consider the (primal) problem P as (P ) : min. {f(x) : hi(x) = 0, i = 1, . . . , l}. The

augmented Lagrangian method of multipliers arises from the idea of seeking for a penalty term that
would allow for exact convergence for a finite penalty.

Considering the geometrical interpretation in Figure 69, one might notice that a horizontal shift in
the penalty curve would allow for the extreme point of the curve to match the optimum on the z ordinate.

Therefore, we consider a modified penalised problem of the form:

fµ(x) = f(x) + µ

l∑
i=1

(hi(x)− θi)2

where θi is the shift term. One can notice that:

fµ(x) = f(x) + µ

l∑
i=1

(hi(x)− θi)2

= f(x) + µ

l∑
i=1

hi(x)2 −
l∑

i=1
2µθihi(x) + µ

l∑
i=1

θ2
i

= f(x) +
l∑

i=1
vihi(x) + µ

l∑
i=1

hi(x)2,

with vi = −2µθi. The last term is a constant and can be dropped.

The term augmented Lagrangian refers to the fact that fµ(x) is equivalent to the Lagrangian function
of problem P , augmented by the penalty term.

This allows for noticing important properties associated with the augmented Lagrangian fµ(x). For
example, assume that (x, v) is a KKT solution to P . Then the optimality condition:

∇xfµ(x) = ∇f(x) +
l∑

i=1
vi∇hi(x) + 2µ

l∑
i=1

hi(x)∇hi(x) = 0,

implies that the optimal solution x can be recovered using a finite penalty term µ, unlike with the previous
penalty-based method. The existence of finite penalty terms µ > 0 that can recover optimality has an in-
teresting geometrical interpretation, in light of what was previously discussed. Consider the same setting
from Figure 69, but now we consider curves of the form f+vh+µh2 = k. This is illustrated in Figure 70.

Optimising the augmented Lagrangian function amounts to finding the curve f+vh+µh2 = k in which
v(ϵ) = k. The expression for k can be conveniently rewritten as f = −µ [h+ (v/2µ)]2 +

[
k + (v2/4µ)

]
,

exposing that f is a parabola shifted by h = −v/2µ.

11.2.1 Augmented Lagrangian method of multipliers
We can employ an unconstrained optimisation method to solve the augmented Lagrangian function:

Lµ(x, v) = f(x) +
l∑

i=1
vihi(x) + µ

l∑
i=1

hi(x)2,
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Figure 70: Geometric representation of augmented Lagrangians in the mapping G = [h(x), f(x)]

which amount to rely on strong duality and search for KKT points (or primal-dual pairs) (x, v) by iter-
atively operating in the primal (x) and dual (v) spaces. In particular, the strategy consists of:

1. Primal space: optimise Lµ(x, vk) using an unconstrained optimisation method;

2. Dual space: perform a dual variable update step retaining the optimality condition∇xL(xk+1, vk) =
∇xL(xk+1, vk+1) = 0.

This strategy is akin to applying the subgradient method to solving the augmented Lagrangian dual.
The update step for the dual variable is given by:

vk+1 = vk + 2µh(xk+1).

The motivation for the dual step update stems from the following observation:

1. h(xk) is a subgradient of Lµ(x, v) at xk for any v.

2. The step size is devised such that the optimality condition of the Lagrangian function is retained,
i.e., ∇xL(xk, vk+1) = 0.

Part 2 refers to the following:

∇xL(xk, vk+1) = ∇f(xk) +
l∑

i=1
vk+1

i ∇hi(xk) = 0

= ∇f(xk) +
l∑

i=1
(vk

i + 2µhi(xk))∇hi(xk) = 0

= ∇f(xk) +
l∑

i=1
vk

i∇hi(xk)+
l∑

i=1
2µhi(xk)∇hi(xk) = ∇xLµ(xk, vk) = 0.

That is, by employing vk+1 = vk + 2µh(xk+1) one can retain optimality in the dual variable space for
the Lagrangian function from the optimality conditions of the penalised functions, which is a condition
for x to be a KKT point.

Algorithm 18 summarises the augmented Lagrangian method of multipliers (ALMM).

Algorithm 18 Augmented Lagrangian method of multipliers (ALMM)
1: initialise. tolerance ϵ > 0, initial dual solution v0, iteration count k = 0
2: while |h(xk)| > ϵ do
3: xk+1 = argminLµ(x, vk)
4: vk+1 = vk + 2µh(xk+1)
5: k = k + 1
6: end while
7: return xk.
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The method can be specialised such that µ is individualised for each constraint and updated pro-
portionally to the observed infeasibility hi(x). Such a procedure is still guaranteed to converge, as the
requirement in Theorem 11.1 that µ→∞ is still trivially satisfied.

One important point about the augmented Lagrangian method of multipliers is that linear convergence
is to be expected, due to the gradient-like step taken to find optimal dual variables. This is often the
case with traditional Lagrangian duality based approaches.

11.2.2 Alternating direction method of multipliers - ADMM
ADMM is a distributed version of the augmented Lagrangian method of multipliers, and is more

suited to large problems with a decomposable structure.
Consider the problem P to be of the following form:

(P ) : min. f(x) + g(y)
subject to: Ax+By = c.

We would like to be able to solve the problem separately for x and y, which could, in principle be
achieved using ALMM. However, the consideration of the penalty term prevents the problem from being
completely separable. To see that, let

ϕ(x, y, v) = f(x) + g(y) + v⊤(c−Ax−By) + µ(c−Ax−By)2

be the augmented Lagrangian function. One can notice that the penalty term µ(c−Ax−By)2 prevents
the separation of the problem in terms of the x and y variables. However, separability can be recovered
is one employs a coordinate descent approach in which three blocks are considered: x, y, and v. The
ADMM is summarised in Algorithm 19.

Algorithm 19 ADMM
1: initialise. tolerance ϵ > 0, initial dual and primal solutions v0 and y0, k = 0
2: while |c−Axk −Byk| and ||yk+1 − yk|| > ϵ do
3: xk+1 = argminϕµ(x, yk, vk)
4: yk+1 = argminϕµ(xk+1, y, vk)
5: vk+1 = vk + 2µ(c−Axk+1 −Byk+1)
6: k = k + 1
7: end while
8: return (xk, yk).

One important feature regarding ADMM is that the coordinate descent steps are taken in a cyclic
order, not requiring more than one (x, y) update step. Variants consider more than one of these steps,
but no clear benefit in practice has been observed. Moreover, µ can be updated according to the amount
of infeasibility observed at iteration k, but no generally good update rule is known.

ADMM is particularly relevant as a method for (un)constrained problems in which it might expose a
structure that can be exploited, such as having in some of the optimisation problems (in Lines 3 and 4
in Algorithm 2) that might have solutions in closed forms.
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