
MSE2122 - Nonlinear Optimization
Extra Material

Fernando Dias (based on previous version by
Fabricio Oliveira)

October 26, 2023

Abstract
Main takeaways from Lecture I to VI.

Contents
1 Most important concepts 2

1.1 Introduction . 2
1.2 Convexity . 2
1.3 Weierstrass theorem . 3
1.4 Convexity in functions . 3
1.5 Differentiability . 5
1.6 Optimality Conditions . 5

1.6.1 First-order optimality conditions . 5
1.6.2 Second-order optimality conditions . 6

2 Most important models 8
2.1 Basic algorithms . 8
2.2 Linear search methods . 8
2.3 Descent methods . 8

1

1 Most important concepts
1.1 Introduction

In this course, the focus is on optimisation.
In mathematical optimisation, we build upon concepts and techniques from basic mathematical

subfields. From calculus, analysis, linear algebra, and other, we to model and develop methods
that allow us to find values for variables within a given domain that maximise (or minimise) the value
of a function. In specific, we are trying to solve the following general problem:

min. f(x) (1)
subject to: x ∈ X.

where x ∈ Rn is a vector of n variables, f : Rn 7→ R is a function to be optimised (minimised) and
X ⊆ Rn is a domain containing potential values for x.

Let us separate mathematical programming from (mathematical) optimization. Mathematical
programming is a modelling paradigm in which we rely on (compelling) analogies to model real-world
problems. In that, we look at a given decision problem considering that:

• variables represent decisions or interest, as in a business decision or a course of action. Examples
include setting the parameter of (e.g., prediction) model, production systems layouts, geometries
of structures, topologies of networks, and so forth;

• domain represents business rules or constraints and limitations, representing logic relations, design
or engineering limitations, requirements, and such;

• function is an objective function that measures solution quality, profit or goal.

In general, the rule of thumb for solving a problem is :

The simpler the assumptions on the parts forming the optimisation model, the more efficient
the methods for solving it.

Let us define some additional notation that we will use from now on. Consider a model in the general
(or standard) form:

min. f(x)
subject to: gi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , l

x ∈ X,

More details in Lecture I

1.2 Convexity
In order to understand and apply different optimisation techniques, we first need to understand con-

vexity.

In a nutshell, convexity allows us to infer the global properties of a solution (i.e., that holds for
all of its domain) by considering exclusively local information (such as gradients, for example). Such
property is critical in optimization since most methods we know to perform well in practice are de-
signed to find solutions that satisfy local optimality conditions. Once convexity is attested, one can then
guarantee that these local solutions are, in fact, globally optimal without exhaustively exploring the
solution space.

For a problem of the form:

(P) : min. f(x)
subject to: x ∈ X

to be convex, we need to verify whether f is a convex function and X is a convex set. If both
statements hold, we can conclude that P is a convex problem. We start looking into how to identify

2

convex sets since we can use the convexity of sets to infer the convexity of functions.

We say a set is convex if it contains all points formed by the convex combination of any pair of points
in this set, which is equivalent to saying that the set contains the line segment between any two points
belonging to the set.

Definition 1.1. Convex sets

A set S ⊆ Rn is said to be convex if x =
∑k

j=1 λjxj belongs to S, where
∑k

j=1 λj = 1, λj ≥ 0 and
xj ∈ S for j = 1, . . . , k.

Complete explanation and details in Lecture II

1.3 Weierstrass theorem
The Weierstrass theorem is a result that guarantees the existence of optimal solutions for opti-

mization problems. To make it more precise, let:

(P) : z = min. {f(x) : x ∈ S}
be our optimization problem. If an optimal solution x∗ exists, then f(x∗) ≤ f(x) for all x ∈ S and
z = f(x∗) = min{f(x) : x ∈ S}.

Notice the difference between min. (an abbreviation for minimize) and the operator min. The first
is meant to represent the problem of minimizing the function f in the domain S, while min is shorthand
for minimum, in this case z, assuming it is attainable.

It might be that an optimal solution is not attainable, but a bound can be obtained for the optimal
solution value. The greatest lower bound for z is its infimum (or supremum for maximization prob-
lems), denoted by inf. That is, if z = inf{f(x) : x ∈ S} , then z ≤ f(x) for all x ∈ S and there is no
z > z such that z ≤ f(x) for all x ∈ S. We might sometimes use the notation:

(P) : z = inf{f(x) : x ∈ S}
to represent optimization problems for which one cannot be sure whether an optimal solution is attain-
able. The Weierstrass theorem describes the situations in which those minimums (or maximums) are
guaranteed to be attained, which is the case whenever S is compact.

Theorem 1.2. Weierstrass theorem
Let S ̸= ∅ be a compact set, and let f : S → R be continuous on S. Then there exists a solution
x ∈ S to min. {f(x) : x ∈ S}.

In completion in Lecture II.

1.4 Convexity in functions
Now, we turn our attention to identifying the convexity of functions. Consider the general problem:

(P) : min. f(x)
subject to: g(x) ≤ 0

x ∈ X

with f : Rn 7→ R, g : Rn 7→ Rm and X ⊆ Rn. Assuming X is a convex set, the next step towards attest-
ing that (P) is a convex problem is to check whether f and g are convex. It is important to textbfasise
(perhaps redundantly at this point) how crucial it is for us to attest to the convexity (P) since it allows
us to generalise local optimality results to the whole domain of the problem.

The convexity of functions has a different definition than that used to define convex sets.

3

Definition 1.3. Convexity of a function I

Let f : S 7→ R where S ⊆ Rn is a nonempty convex set. The function f is said to be convex on S if
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for each x1, x2 ∈ S and for each λ ∈ [0, 1].

Convexity can be also expressed via lower level set and epigraph. Let us first consider level sets,
one type of set spawned by functions.

Definition 1.4. Lower level set
Let S ⊆ Rn be a nonempty set. The lower level set of f : Rn 7→ R for α ∈ R is given by

Sα = {x ∈ S : f(x) ≤ α}.

Figure 1 illustrates the lower-level sets of two functions. The lower level set Sα can be seen as the
projection of the function image onto the domain for a given level α.

f(x) f(x)

x x

α α

Figure 1: The lower level sets Sα (in blue) of two functions, given a value of α. Notice the nonconvexity
of the level set of the nonconvex function (on the right)

Epigraphs, on the other hand, can be used to show the convexity of functions. Let us first formally
define epigraphs.

Definition 1.5. Ephigraph

Let S ⊆ Rn be a nonempty set and f : S 7→ R. The epigraph of f is
epi(f) = {(x, y) : x ∈ S, y ∈ R, y ≥ f(x)} ⊆ Rn+1

Figure 2 illustrates the epigraphs of two functions. Notice that the second function (on the right) is
neither convex nor epigraph. We can use the convexity of epigraphs (and the technical results associated
with the convexity of sets) to show the convexity of functions.

Theorem 1.6. Convex epigraphs
Let S ⊆ Rn be a nonempty convex set and f : S 7→ R. Then f is convex if and only if epi(f) is a
convex set.

f(x) f(x)

x x

epi(f) epi(f)

Figure 2: The epigraph epi()f of a convex function is a convex set (in grey on the left).

4

Proof. First, suppose f is convex and let (x1, y1), (x2, y2) ∈ epi(f) for λ ∈ (0, 1). Then
λy1 + (1− λ)y2 ≥ λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).

As λx1 + (1− λ)x2 ∈ S, (λx1 + (1− λ)x2, λy1 + (1− λ)y2) ∈ epi(f).
Conversely, suppose epi(f) is convex. Therefore x1, x2 ∈ S: (x1, f(x1)) ∈ epi(f), (x2, f(x2)) ∈
epi(f) and (λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)) ∈ epi(f) for λ ∈ (0, 1), implying that λf(x1) +
(1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).

The proof starts with the implication “if f is convex, then epi(f) is convex”. For that, it assumes
that f is convex and uses the convexity of f to show that any convex combination of x1,x2 in S will also
be in the epi(f), which is the definition of a convex set.

To prove the implication “if epi(f) is convex, then f is convex”, we define a convex combina-
tion of points in epi(f) and use the definition of epi(f) to show that f is convex by setting y =
λf(x1) + (1− λ)f(x2) and x = λx1 + (1− λ)x2.

More details in Lecture III.

1.5 Differentiability
Besides convexity, differentiability is another important factor in optimisation.

Definition 1.7
Let S ⊆ Rn be a nonempty set. The function f : S 7→ R is differentiable at x ∈ int(S) if there exists
a vector ∇f(x), called a gradient vector, and a function α : Rn 7→ R such that

f(x) = f(x) +∇f(x)⊤(x− x) + ||x− x||α(x; x− x)
where limx 7→x α(x; x−x) = 0. If this is the case for all x ∈ int(S), we say the function is differentiable
in S.

The gradient is the first-order approximation while the Hessian is the second-order, if the function is
twice differentiable.

We say that a function is twice-differentiable if it has a second-order Taylor expansion. Having
second-order expansions can be useful. It allows for encoding curvature information in the approxima-
tion, which is characterised by the Hessian, and to verify convexity (or strict convexity) by testing for
semi-definiteness (positive definiteness).

Let fij(x) = ∂2f(x)
∂xi∂xj

. Recall that the Hessian matrix H(x) at x is given by

H(x) =

f11(x) . . . f1n(x)
...

fn1(x) . . . fnn(x)

Second-order differentiability can be defined as follows.

Definition 1.8. Second-order differentiability

Let S ⊆ Rn be a nonempty set, and let f : S 7→ R. Then f is twice differentiable at x ∈ int(S) if
there exists a vector ∇f(x) ∈ Rn, an n × n symmetric matrix H(x) (the Hessian), and a function
α : Rn 7→ R such that

f(x) = f(x) +∇f(x)⊤(x− x) + 1
2(x− x)⊤H(x)(x− x) + ||x− x||2α(x; x− x)

where limx 7→x α(x; x − x) = 0. If this is the case for all x ∈ S, we say that the function is twice
differentiable in S.

More details in Lecture IV.

1.6 Optimality Conditions
1.6.1 First-order optimality conditions

Let us start defining what it means to be a descent direction.

5

Theorem 1.9. Descent direction
Suppose f : Rn 7→ R is differentiable at x. If there is d such that ∇f(x)⊤d < 0, there exists δ > 0
such that f(x + λd) < f(x) for each λ ∈ (0, δ), so that d is a descent direction of f at x.

Proof. By differentiability of f at x, we have that:

f(x + λd)− f(x)
λ

= ∇f(x)⊤d + ||d||α(x; λd).

Since∇f(x)⊤d < 0 and α(x; λd)→ 0 when λ→ 0 for some λ ∈ (0, δ), we must have f(x+λd)−f(x) <
0.

The proof uses the first-order expansion around x to show that, f being differentiable, the condition
∇f(x)⊤d < 0 implies that f(x + λd) < f(x), or put in words, that a step in the direction d decreases
the objective function value.

We can derive the first-order optimality condition as a consequence from Theorem 1.9. Notice, how-
ever, that since convexity is not assumed, all we can say is that this condition is necessary (but not
sufficient) for local optimality.

Corollary 1.10 (First-order necessary condition). Suppose f : Rn → R is differentiable at x. If x is a
local minimum, then ∇f(x) = 0.

Proof. By contradiction, suppose that ∇f(x) ̸= 0. Letting d = −∇f(x), we have that ∇f(x)⊤d =
−||∇f(x)||2 < 0. By Theorem 1.9, there exists a δ > 0 such that f(x + λd) < f(x) for all λ ∈ (0, δ),
thus contradicting the local optimality of x.

Notice that Corollary 1.10 only holds in one direction. The proof uses contradiction once again, where
we assume local optimality of x and show that having ∇f(x) ̸= 0 contradicts the local optimality of x,
our initial assumption. To do that, we simply show that having any descent direction d (we use −∇f(x)
since in this setting it is guaranteed to exist as ∇f(x) ̸= 0) would mean that small step λ can reduce the
objective function value, contradicting the local optimality of x.

1.6.2 Second-order optimality conditions
We now derive necessary conditions for local optimality of x based on second-order differentiability.

As we will see, it requires that the Hessian H(x) of f(x) at x is positive semidefinite.

Theorem 1.11. Second-order necessary condition
Suppose f : Rn → R is twice differentiable at x. If x is a local minimum, then H(x) is positive
semidefinite.

Proof. Take an arbitrary direction d. As f is twice differentiable, we have:

f(x + λd) = f(x) + λ∇f(x)⊤d + 1
2λ2d⊤H(x)d + λ2||d||2α(x; λd)

since x is a local minimum, Corollary 1.10 implies that ∇f(x) = 0 and f(x + λd) ≥ f(x).

Rearranging terms and dividing by λ2 > 0 we obtain
f(x + λd)− f(x)

λ2 = 1
2d⊤H(x)d + ||d||2α(x; λd).

Since α(x; λd)→ 0 as λ→ 0, we have that d⊤H(x)d ≥ 0.

The second-order conditions can be used to attest local optimality of x. In the case where H(x) is
positive definite, then this second order condition becomes sufficient for local optimality, since it implies
that the function is ’locally convex’ for a small enough neighbourhood Nϵ(x).

6

In case f is convex, then the first-order condition ∇f(x) = 0 becomes also sufficient for attesting the
global optimality of x. Recall that f is convex if and only if H(x) is positive semidefinite for all x ∈ Rn,
meaning that in this case the second-order necessary conditions are also satisfied at x.

Theorem 1.12
Let f : Rn 7→ R be convex. Then x is a global minimum if and only if ∇f(x) = 0.

Proof. From Corollary 1.10, if x is a global minimum, then ∇f(x) = 0. Now, since f is convex, we
have that:

f(x) ≥ f(x) +∇f(x)⊤(x− x)

Notice that ∇f(x) = 0 implies that ∇f(x)⊤(x − x) = 0 for each x ∈ Rn, thus implying that
f(x) ≤ f(x) for all x ∈ Rn.

Full details in Lecture V

7

2 Most important models
2.1 Basic algorithms

The rudimentary conceptual optimisation algorithm (as seen in Lecture V):

Algorithm 1 Conceptual optimisation algorithm
1: initialise. iteration count k = 0, starting point x0
2: while stopping criteria are not met do
3: compute direction dk

4: compute step size λk

5: xk+1 = xk + λkdk

6: k = k + 1
7: end while
8: return xk.

In algorithm 1, it has two main elements, namely the computation of the direction dk and the step
size λk at each iteration k.

2.2 Linear search methods
For the step size, the strategy is divided into two main categories: exact and inexact search. For the

former, it calculates the optimal step size by iteratively closing the gaps between two possible candidates
in a pre-defined interval. The latter uses arbitrarily good approximations.

For exact, many algorithms have been proposed, such as uniform search, dichotomous search and
bisection section. A special case is the golden search which uses the golden ratio as inverse rate of
reduction for the search interval in each iteration.

For inexact, the most common strategy is to approximate the behaviour in order to speed up the
overall efficiency of the optimisation algorithms. The most common heuristics is the Armijo rule.

Algorithm 2 Armijo’s rule heuristic
1: initialise. λ = 1, α, β, k = 0
2: while θ(λ) > θ(0) + αλθ′(0) do
3: λ = λ ∗ β
4: k ← k + 1
5: end while
6: return λ

All methods follows the general concept of line search reduction:

Theorem 2.1. Line search reduction
Let θ : R→ R be strictly quasiconvex over the interval [a, b], and let λ, µ ∈ [a, b] such that λ < µ. If
θ(λ) > θ(µ), then θ(z) ≥ θ(µ) for all z ∈ [a, λ]. If θ(λ) ≤ θ(µ), then θ(z) ≥ θ(λ) for all z ∈ [µ, b].

More details in Lecture V.

2.3 Descent methods
For direction calculation, different strategies have been attempted. Based on the main method used

to determine the descent direction, new methods can be explored:

• Coordinate descent: a descent that is aligned to each variable/dimension present in the objective
function.

• Gradient: the descent is defined the gradient of the objective function, using the first-order infor-
mation:

8

θ θ

θ(λ)
θ(µ)

a bλ µ

a b

θ(λ)
θ(µ)

λ µa b

a b

Figure 3: Applying Theorem 2.1 allows to iteratively reduce the search space.

Algorithm 3 Coordinate descent direction
1: for j = 1, . . . n do
2: d = {di = 1, if i = j; di = 0, if i ̸= j}
3: end for

Algorithm 4 Gradient method direction
1: d = − ∇f(xk)

||∇f(x)||

• Newton: the descent is defined by the gradient of the objective function corrected by the Hessian
of the objective, which utilises the second-order information:

Algorithm 5 Newton’s method direction
1: d = −H−1(xk)∇f(xk)

In those methods, the main drawbacks are the simplicity and naivety of the coordinate direc-
tion, which only allows descent in a single direction at the time; the zigzagging effect on the gradient
method, which compromises the convergence rate and performance of the algorithm and the challenges
caused by inverse matrix in the Newton’s method. More details in Lecture V.

Alternatively, conjugate gradient and quasi-Newton’s are derived to circumnavigate those issues.
First, with conjugated gradient, it uses the concept of conjugacy to define vector which allows for a
better optimisation in each coordinate aided by the gradient value. More details in Lecture VI.

Algorithm 6 Conjugate gradient method direction
1: y0 = xk−1
2: d0 = −∇f(y0)
3: for j = 1, . . . , n do
4: λj = argminλ≥0f(yj−1 + λdj−1)
5: yj = yj−1 + λjdj−1

6: dj = −∇f(yj) + αjdj−1, where αj = ||∇f(yj)||2

||∇f(yj−1)||2 .
7: end for

In quasi-Newton methods, we consider the search direction dk = −Dk∇f(xk), where Dk acts as the
approximation for the inverse Hessian H−1(x). To compute Dk, we use local curvature information, in
the attempt to approximate second-order derivatives. For that, let us define the terms:

pk = λkdk = xk+1 − xk

qk = ∇f(xk+1)−∇f(xk) = H(xk+1 − xk) = Hpk.

Starting from an initial guess D0, quasi-Newton methods progress by successively updating Dk+1 =
Dk + Ck, with Ck being such that it only uses the information in pk and qk and that, after n updates,
Dn converges to H−1.

For that to be the case, we require that pj , j = 1, . . . , k are eigenvectors of Dk+1H with unit eigen-
value, that is:

9

Dk+1Hpj = pj , for j = 1, . . . , k. (2)

This condition guarantees that, at the last iteration, Dn = H−1. To see that, first, notice the following
from (2).

Dk+1Hpj = pj , j = 1, . . . , k

Dk+1qj = pj , j = 1, . . . , k

Dkqj + Ckqj = pj j = 1, . . . , k

pj = DkHpj + Ckqj = pj + Ckqj , j = 1, . . . , k − 1,

which implies that Ckqj = 0 for j = 1, . . . , k − 1.

Now, for j = k, we require that:

Dk+1qk = pk

Dkqk + Ckqk = pk

(Dk + Ck)qk = pk

This last condition allows, after n iterations, to recover:

Dn = [p0, . . . , pn−1][q0, . . . , qn−1]−1 = H(xn) (3)

Condition (3) is called the secant condition as a reference to the approximation to the second-order
derivative. Another way of understanding the role this condition has is by noticing the following.

Dk+1qk = pk

Dk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk

∇f(xk+1) = ∇f(xk) + D−1
k+1(xk+1 − xk), (4)

where D−1
k+1 can be seen as an approximation to the Hessian H, just as Dk+1 is an approximation to

H−1. Now, consider the second-order approximation of f at xk:

q(x) = f(xk) +∇f(xk)⊤(x− xk) + 1
2(x− xk)⊤H(xk)(x− xk).

We can now notice the resemblance the condition (4) holds with:

∇q(x) = ∇f(xk) + H(xk)⊤(x− xk) = 0.

In other words, at each iteration, the updates are made such that the optimality conditions in terms of
the quadratic expansion remains valid.

There are two version of this approximation:

• The Davidon-Fletcher-Powell (DFP) is one classical quasi-Newton method available. It employs
updates of the form:

Dk+1 = Dk + CDF P = Dk + pkp⊤
k

p⊤
k qk
− Dkqkq⊤

k Dk

q⊤
k Dkqk

We can verify that CDF P satisfies the conditions below, called the (2) and (3). For that, notice that:

(1) CDF P qj = CDF P Hpj

10

= pkp⊤
k Hpj

p⊤
k

qk
− Dkqkp⊤

k HDkHpj

q⊤
k

Dkqk
= 0, for j = 1, . . . , k − 1;

(2) CDF P qk = pkp⊤
k qk

p⊤
k

qk
− Dkqkq⊤

k Dkqk

q⊤
k

Dkqk
= pk −Dkqk.

The main difference between available quasi-Newton methods is the nature of the matrix C em-
ployed in the updates. Over the years, several ideas emerged in terms of generating updates that
satisfied the above properties.

Algorithm 7 Quasi-Newton (DFP) method
1: initialise. tolerance ϵ > 0, initial point x0, D0 = I, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = −Dk∇f(xk)
4: λ = argminλ∈R{f(xk + λd)}
5: xk+1 = xk + λdj

6: pk = λd
7: qk = ∇f(xk+1)−∇f(xk)
8: Dk+1 = Dk + pkp⊤

k

p⊤
k

qk
− Dkqkq⊤

k Dk

q⊤
k

Dkqk

9: k = k + 1
10: end while
11: return xk.

• The most widely used quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS),
which has been widely shown to have remarkable practical performance. BFGS is part of the
Broyden family of updates, given by:

CB = CDF P + ϕ
τjvkv⊤

k

p⊤
k qk

,

where vk = pk −
(

1
τk

)
Dkqk, τk = q⊤

j Dkqk

p⊤
k

qk
, and ϕ ∈ (0, 1). The extra term in the Broyden family

of updates is designed to help with mitigating numerical difficulties from near-singular approxima-
tions.

It can be shown that all updates from the Broyden family also satisfy the quasi-Newton conditions
(2) and (3). The BFGS update is obtained for ϕ = 1, which renders:

CBF GS
k = pkp⊤

k

p⊤
k qk

(
1 + q⊤

k Dkqk

p⊤
k qk

)
− Dkqkp⊤

k + pkq⊤
k Dk

p⊤
k qk

.

The BFGS method is often presented explicitly approximating the Hessian H instead of its in-
verse, which is useful when using specialised linear algebra packages that rely on the "backslash”
operator to solve linear systems of equations. Let Bk be the current approximation of H. Then
Dk+1 = B−1

k+1 = (Bk + C
BF GS

k)−1, with:

C
BF GS

k = qkq⊤
k

q⊤
k pk

− Bkpkp⊤
k Bk

p⊤
k Bkpk

.

11

Algorithm 8 Quasi-Newton (BFGS) method
1: initialise. tolerance ϵ > 0, initial point x0, D0 = I, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = −Dk∇f(xk)
4: λ = argminλ∈R{f(xk + λd)}
5: xk+1 = xk + λdj

6: pk = λd
7: qk = ∇f(xk+1)−∇f(xk)
8: Dk+1 = Dk + pkp⊤

k

p⊤
k

qk

(
1 + q⊤

k Dkqk

p⊤
k

qk

)
− Dkqkp⊤

k +pkq⊤
k Dk

p⊤
k

qk

9: k = k + 1
10: end while
11: return xk.

12

	Most important concepts
	Introduction
	Convexity
	Weierstrass theorem
	Convexity in functions
	Differentiability
	Optimality Conditions
	First-order optimality conditions
	Second-order optimality conditions

	Most important models
	Basic algorithms
	Linear search methods
	Descent methods

