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1 Most important concepts
1.1 Optimality for constrained problems

Let us first define two geometric elements that we will use to derive the optimality conditions for P .

Definition 1.1. Cone of feasible directions
et S ⊆ Rn be a nonempty set, and let x ∈ clo(S). The cone of feasible directions D at x ∈ S is given by:

D = {d : d ̸= 0, and x+ λd ∈ S for all λ ∈ (0, δ) for some δ > 0}.

Definition 1.2. Cone of descent directions
et S ⊆ Rn be a nonempty set, f : Rn → R, and x ∈ clo(S). The cone of improving (i.e., descent)
directions F at x ∈ S is:

F = {d : f(x+ λd) < f(x) for all λ ∈ (0, δ) for some δ > 0}.

Theorem 1.3 establishes that the condition F0 ∩ D = ∅ is necessary for optimality in constrained
optimisation problems.

Theorem 1.3. Geometric necessary condition
Let S ⊆ Rn be a nonempty set, and let f : S → R be differentiable at x ∈ S. If x is a local optimal
solution to

(P ) : min. {f(x) : x ∈ S},
then F0 ∩D = ∅, where F0 = {d : ∇f(x)⊤d < 0} and D is the cone of feasible directions.

The use of G0 is a convenient algebraic representation since it can be shown that G0 ⊆ D, which is
stated in Lemma 1.4. As F0 ∩D = ∅ must hold for a locally optimal solution x ∈ S, F0 ∩G0 = ∅ must
also hold.

Lemma 1.4 Let S = {x ∈ X : gi(x) ≤ 0 for all i = 1, . . . ,m}, where X ⊂ Rn is a nonempty open
set and gi : Rn → R a differentiable function for all i = 1, . . . ,m. For a feasible point x ∈ S, let
I = {i : gi(x) = 0} be the index set of the binding (or active) constraints. Let

G0 = {d : ∇gi(x)⊤d < 0, i ∈ I}
Then G0 ⊆ D, where D is the cone of feasible directions.

In settings in which gi is affine for some i ∈ I, it might be worth considering lG′
0 = {d ̸= 0 :

∇gi(x)⊤d ≤ 0, i ∈ I} so those orthogonal feasible directions can also be represented. Notice that in this
case, D ⊆ G′

0.

1.2 Fritz-John conditions
The Fritz-John conditions are the algebraic conditions that must be met for F0 ∩ G0 = ∅ to hold.

These algebraic conditions are convenient as they only involve the gradients of the binding constraints,
and they can be verified computationally.

Theorem 1.5. Fritz-John necessary conditions
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for all
i = 1, . . . ,m. Additionally, let x be feasible and I = {i : gi(x) = 0}. If x solves P locally, there exist
scalars ui, i ∈ {0} ∪ I, such that:
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u0∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m
ui ≥ 0, i = 0, . . . ,m
u = (u0, . . . , um) ̸= 0

1.3 Karush-Kuhn-Tucker conditions
The Karush-Kuhn-Tucker (KKT) conditions are the Frizt-John conditions with an extra regularity

requirement for x ∈ S. This regularity requirement is called constraint qualification and, in a general
sense, is meant to prevent the trivial case G0 = ∅, thus making the optimality conditions stronger (i.e.,
more stringent).

Theorem 1.6. Karush-Kuhn-Tucker necessary conditions
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for
all i = 1, . . . ,m. Additionally, for a feasible x, let I = {i : gi(x) = 0} and suppose that ∇gi(x) are
linearly independent for all i ∈ I. If x solves P locally, there exist scalars ui for i ∈ I such that:

∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m
ui ≥ 0, i = 1, . . . ,m

Proof. By Theorem 1.5, there exists nonzero (ûi) for i ∈ {0} ∪ I such that:

û0∇f(x) +
m∑

i=1
ûi∇gi(x) = 0

ûi ≥ 0, i = 0, . . . ,m

Note that û0 > 0, as the linear independence of ∇gi(x) for all i ∈ I implies that
∑m

i=1 ûi∇gi(x) ̸= 0.
Now, let ui = ûi/u0 for each i ∈ I and ui = 0 for all i ̸∈ I.

The general conditions, including inequality and equality constraints, are posed as follows. Notice
that the Lagrange multipliers vi associated with the equality constraints h(x) = 0 for i = 1, . . . , l are
not restricted in sign, and the complementary slackness condition is not explicitly stated since it holds
redundantly. These can be obtained by replacing equality constraints h(x) = 0 with two equivalent
inequalities h−(x) ≤ 0 and −h+(x) ≤ 0 and writing the conditions in Theorem 1.6. Also, notice that,
without constraints, the KKT conditions reduce to the unconstrained first-order condition ∇f(x) = 0.

∇f(x) +
m∑

i=1
ui∇gi(x) +

l∑
i=1

vi∇hi(x) = 0 (dual feasibility 1)

uigi(x) = 0, i = 1, . . . ,m (complementary slackness)
x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m (primal feasibility)
hi(x) = 0, i = 1, . . . , l
ui ≥ 0, i = 1, . . . ,m (dual feasibility 2)

1.4 Constraint qualification
Constraint qualification is a technical condition that needs to be assessed in the context of nonlinear

optimisation problems. As we rely on an algebraic description of the set of directions G0 that serves as
a proxy for D, it is important to be sure that the former is a reliable description of the latter.
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Theorem 1.7. Karush-Kuhn-Tucker necessary conditions II
Consider the problem

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, x ∈ X}.
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for all
i = 1, . . . ,m. Additionally, for a feasible x, let I = {i : gi(x) = 0} and suppose that Abadie CQ holds
at x. If x solves P locally, there exist scalars ui for i ∈ I such that:

∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m
ui ≥ 0, i = 1, . . . ,m.

Despite being a more general result, Theorem 1.7 is of little use, as Abadie’s constraint qualification
cannot be straightforwardly verified in practice. Alternatively, we can rely on verifiable constraint qual-
ification conditions that imply Abadie’s constraint qualification. Examples include:

1. Linear independence (LI)CQ: holds at x if ∇gi(x), for i ∈ I, as well as ∇hi(x), i = 1, . . . , l are
linearly independent.

2. Affine CQ: holds for all x ∈ S if gi, for all i = 1, . . . ,m, and hi, for all i = 1, . . . , l, are affine.
3. Slater’s CQ: holds for all x ∈ S if gi is a convex function for all i = 1, . . . ,m, hi is an affine

function for all i = 1, . . . , l, and there exists x ∈ S such that gi(x) < 0 for all i = 1, . . . ,m.

Slater’s constraint qualification is the most frequently used, particularly in convex optimisation prob-
lems. One important point to notice is the requirement of not having an empty relative interior, which
can be a source of error.

Corollary 1.8 summarises the setting in which one should expect the KKT conditions to be necessary
and sufficient conditions for global optimality, i.e., convex optimisation.

Corollary 1.8 (Necessary and sufficient KKT conditions). Suppose that Slater’s CQ holds. Then, if f
is convex, the conditions of Theorem 1.7 are necessary and sufficient for x to be a globally optimal
solution.

1.5 The concept of relaxation
The idea of using relaxations is central in several constrained optimisation methods. Generally,

it consists of techniques that remove constraints from the problem to allow for a version, i.e., a relax-
ation, that is simpler to solve and/or can provide information to be used for solving the original problem.

Definition 1.9. Relaxation
PR is a relaxation of P if and only if:

1. fR(x) ≤ f(x), for all x ∈ S;
2. S ⊆ SR.

Theorem 1.10. Relaxation theorem
Let us define:

(P ) : min. {f(x) : x ∈ S} and (PR) : min. {fR(x) : x ∈ SR}

If PR is a relaxation of P , then the following hold:

1. if PR is infeasible, so is P ;
2. if xR is an optimal solution to PR such that xR ∈ S and fR(xR) = f(xR), then xR is optimal

to P as well.
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1.6 Lagrangian dual problems
Lagrangian duality is the body of theory supporting the use of Lagrangian relaxations to solve con-

strained optimisation problems. In what follows, we refer to the relaxation obtained using Lagrangian
duality as the (Lagrangian) dual problem. Consequently, we refer to the original problem as the primal
problem.

Let f : Rn → R, g : Rn → Rm, h : Rn → Rl, and assume that X ⊆ Rn is an open set. Then, consider
P defined as:

(P ) : min. f(x)
subject to: g(x) ≤ 0

h(x) = 0
x ∈ X.

For a given set of dual variables (u, v) ∈ Rm+l with u ≥ 0, the Lagrangian relaxation (or Lagrangian dual
function) of P is:

(D) : θ(u, v) = inf
x∈X

ϕ(x, u, v)

where:

ϕ(x, u, v) := f(x) + u⊤g(x) + v⊤h(x)

is the Lagrangian function.

1.6.1 Weak and strong duality
Weak and robust duality are, to some extent, consequences of Theorem 1.10 and the fact that the

Lagrangian relaxation is indeed a relaxation of P . We start with the equivalent to Definition 1.9, referred
to as weak duality.

Theorem 1.11. Weak Lagrangian duality
Let x be a feasible solution to P , and let (u, v) be such that u ≥ 0, i.e., feasible for D. Then
θ(u, v) ≤ f(x).

Corollary 1.12 (Weak Lagrangian duality II).
sup
u,v
{θ(u, v) : u ≥ 0} ≤ inf

x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}.

Proof. We have θ(u, v) ≤ f(x) for any feasible x and (u, v), thus implying: supu,v{θ(u, v) : u ≥ 0} ≤
infx{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}

Corollary 1.13 (Strong Lagrangian duality). If f(x) = θ(u, v), u ≥ 0, and x ∈ {x ∈ X : g(x) ≤
0, h(x) = 0}, then x and (u, v) are optimal solutions to P and D, respectively.

Proof. Use part (2) of Theorem 1.10 with D being a Lagrangian relaxation.

Notice that Corollary 1.13 implies that if the optimal solution value of the primal and the dual
problems match, the respective primal and dual solutions are optimal. However, to use Lagrangian re-
laxations to solve constrained optimisation problems, we need the opposite clause also to hold, which is
called strong duality and, unfortunately, does not always hold.

1.6.2 Strong duality
From the previous graphical interpretation and related examples, it becomes clear that there is a

strong tie between strong duality and the convexity of P . This is formally described in Theorem 1.14.
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Theorem 1.14. Strong duality
Let X ⊆ Rn be a nonempty convex set. Moreover, let f : Rn → R and g : Rn → Rm be convex
functions, and let h : Rn → Rl be an affine function: h(x) = Ax− b. Suppose that Slater’s constraint
qualification holds. Then:

inf
x
{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup

u,v
{θ(u, v) : u ≥ 0},

where θ(u, v) = infx∈X{f(x) + u⊤g(x) + v⊤h(x)} is the Lagrangian function. Furthermore, if
infx{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} is finite and achieved at x, then lsupu,v{θ(u, v) : u ≥ 0} is
achieved at (u, v) with u ≥ 0 and u⊤g(x) = 0.

1.7 Penalty functions
The employment of penalty functions is a paradigm for solving constrained optimisation problems.

The central idea of this paradigm is to convert the constrained optimisation problem into an uncon-
strained optimisation problem that is augmented with a penalty function, which penalises violations of
the original constraints. The role of the penalty function is to allow steering the search towards feasible
solutions in the search for optimal solutions.

Consider the problem (P ) : min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}. A penalised version of P is
given by:

(Pµ) : min. {f(x) + µα(x) : x ∈ X},

where µ > 0 is a penalty term and α(x) : Rn 7→ R is a penalty function of the form:

α(x) =
m∑

i=1
ϕ(gi(x)) +

l∑
i=1

ψ(hi(x)). (1)

For α(x) to be a suitable penalty function, one must observe that ϕ : Rn 7→ R and ψ : Rn 7→ R are
continuous and satisfy:

ϕ(y) = 0 if y ≤ 0 and ϕ(y) > 0 if y > 0
ψ(y) = 0 if y = 0 and ψ(y) > 0 if y ̸= 0.

Typical options are ϕ(y) = ([y]+)p with p ∈ Z+ and ψ(y) = |y|p with p = 1 or p = 2.

1.8 The concept of feasible directions
Feasible direction methods are a class of methods that incorporate both improvement and feasibility

requirements when devising search directions. As feasibility is observed throughout the solution process,
they are referred to as primal methods. However, it depends on the geometry of the feasible region, and
it might be so that the method allows for some infeasibility in the algorithm, as we will see later.

An improving feasible direction can be defined as follows.

Definition 1.15. Improving Feasible Direction

Consider the problem min. {f(x) : x ∈ S} with f : Rn → R and ∅ ≠ S ⊆ Rn. A vector d is a feasible
direction at x ∈ S if exists δ > 0 such that x+ λd ∈ S for all λ ∈ (0, δ). Moreover, d is an improving
feasible direction at x ∈ S if there exists a δ > 0 such that f(x + λd) < f(x) and x + λd ∈ S for
λ ∈ (0, δ).

The key feature of feasible direction methods is deriving such directions and associated step sizes that
retain feasibility, even if approximately. Similarly to the other methods we have discussed in the past
lectures, these methods progress following two basic steps:

1. Obtain an improving feasible direction dk and a step size λk;

2. Make xk+1 = xk + λkdk.
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1.9 Barrier functions
In general terms, barrier methods also use proxies for the constraints in the objective function so

that an unconstrained optimisation problem can be solved instead. However, the concept of barrier
functions differs from penalty functions in that they are defined to prevent the solution search method
from leaving the feasible region, which is why some of these methods are also called interior point methods.

Consider the primal problem P being defined as:

(P ) : min. f(x)
subject to: g(x) ≤ 0

x ∈ X.

We define the barrier problem BP as:

(BP ) : inf
µ
θ(µ)

subject to: µ > 0

where θ(µ) = infx{f(x) + µB(x) : g(x) < 0, x ∈ X} and B(x) is a barrier function. The barrier
function is such that its value approaches +∞ as the boundary of the region {x : g(x) ≤ 0} is ap-
proached from its interior. In practice, the constraint g(x) < 0 can be dropped, as the barrier function
automatically enforces them.

The barrier function B : Rm → R is such that:

B(x) =
m∑

i=1
ϕ(gi(x)), where

{
ϕ(y) ≥ 0, if y < 0;
ϕ(y) = +∞, when y → 0−.

(2)

Perhaps the most important barrier function is the Frisch’s log barrier function, used in the highly
successful primal-dual interior point methods. We will describe its use later. The log barrier is defined as:

B(x) = −
m∑

i=1
ln(−gi(x)).

Theorem 1.16. Convergence of barrier methods
Let f : Rn → R and g : Rn → R be continuous functions and X ∈ Rn a nonempty closed set in
problem P . Suppose {x ∈ Rn : g(x) < 0, x ∈ X} is not empty. Let x be the optimal solution of
P such that, for any neighbourhood Nϵ(x) = x : ||x− x|| ≤ ϵ, there exists x ∈ X ∩ Nϵ for which
g(x) < 0. Then:

min{f(x) : g(x) ≤ 0, x ∈ X} = lim
µ→0+

θ(µ) = inf
µ>0

θ(µ).

Letting θ(µ) = f(xµ) + µB(xµ), where B(x) is a barrier function as described in (2), xµ ∈ X and
g(xµ) < 0, the limit of {xµ} is optimal to P and µB(xµ)→ 0 as µ→ 0+.

1.10 Interior point method for LP/QP problems
‘ Perhaps ironically, the most successful applications of barrier methods in terms of efficient imple-

mentations are devoted to solving linear and quadratic programming (LP/QP) problems. In the last
decade, the primal-dual interior point method has become the algorithm of choice for many applications
involving large-scale LP/QP problems.

In practice, the updates incorporate primal and dual infeasibility, which precludes the need for ad-
ditional mechanisms to guarantee primal and dual feasibility throughout the algorithm. This can be
achieved with a simple modification in the Newton system, rendering the direction update step:

7



 A 0⊤ 0
0 A⊤ I
Uk 0⊤ Xk

 dk+1
x

dk+1
v

dk+1
u

 = −

 Axk − b
A⊤vk + uk − c
XkUke− µk+1e

 , (3)
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2 Most import models
2.1 Subgradient method

The rudimentary algorithm to solve constrained problem is provided in Algorithm 1.

Algorithm 1 Subgradient method
1: initialise. tolerance ϵ > 0, initial point w0, iteration count k = 0.
2: while ||β(xk)||2 > ϵ do
3: xk ← argminx{θ(wk) = infx{f(x) + w⊤

k β(x)}}
4: LBk = max{LBk, θ(wk)}
5: update λk

6: wk+1 = wk + λkβ(xk).
7: k ← k + 1.
8: end while
9: return LBk = θ(wk).

2.2 Augmented Lagrangian method of multipliers
Algorithm 2 summarises the augmented Lagrangian method of multipliers (ALMM).

Algorithm 2 Augmented Lagrangian method of multipliers (ALMM)
1: initialise. tolerance ϵ > 0, initial dual solution v0, iteration count k = 0
2: while |h(xk)| > ϵ do
3: xk+1 = argminLµ(x, vk)
4: vk+1 = vk + 2µh(xk+1)
5: k = k + 1
6: end while
7: return xk.

2.3 Alternating direction method of multipliers - ADMM
ADMM is a distributed version of the augmented Lagrangian method of multipliers, and is more

suited to large problems with a decomposable structure and it is summarised in Algorithm 3.

Algorithm 3 ADMM
1: initialise. tolerance ϵ > 0, initial dual and primal solutions v0 and y0, k = 0
2: while |c−Axk −Byk| and ||yk+1 − yk|| > ϵ do
3: xk+1 = argminϕµ(x, yk, vk)
4: yk+1 = argminϕµ(xk+1, y, vk)
5: vk+1 = vk + 2µ(c−Axk+1 −Byk+1)
6: k = k + 1
7: end while
8: return (xk, yk).

2.4 Conditional gradient - the Frank-Wolfe method
The conditional gradient method is named as such due to the direction definition step, in which the

direction d is selected such that the angle between the gradient ∇f(x) and d is as close to 180◦ degrees
as the feasible region S allows.

Recall that, if ∇f(xk) is a descent direction, then:

∇f(xk)⊤(x− xk) < 0 for x ∈ S.
A straightforward way to obtain improving feasible directions d = (x − xk) is by solving the direction
search problem DS of the form:

(DS) : min. {∇f(xk)⊤(x− xk) : x ∈ S}.
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Problem DS consists of finding the furthest feasible point in the direction of the gradient, that is,
we move in the direction of the gradient, under the condition that we stop if the line search mandates
so or that the search reaches the boundary of the feasible region. This is precisely what gives the name
conditional gradient.

Algorithm 4 summarises the Frank-Wolfe method.

Algorithm 4 Franke-Wolfe method
1: initialise. ϵ > 0, x0 ∈ S, k = 0.
2: while ∇|f(x)⊤dk| > ϵ do
3: xk = argmin{∇f(xk)⊤d : x ∈ S}
4: dk = xk − xk

5: λk = argminλ{f(xk + λdk) : 0 ≤ λ ≤ λ}
6: xk+1 = xk + λkdk

7: k = k + 1
8: end while
9: return xk

2.5 Sequential quadratic programming
Sequential quadratic programming (SQP) is a method inspired by the idea that the KKT system of a

nonlinear problem can be solved using Newton’s method. It consists perhaps of the most general method
for considering both nonlinear constraints and objective functions.

To see how that works, let us first consider an equality constraint problem P as:
P = min. {f(x) : h(x) = 0, i = 1, . . . , l}.

The KKT conditions for P are given by the system W (x, v) where:

W (x, v) =
{
∇f(x) +

∑l
i=1 vi∇hi(x) = 0

hi(x) = 0, i = 1, . . . , l
This is fundamentally the underlying idea of SQP. However, the approach is taken under a more

specialised setting. Instead of relying on Newton steps, we resort to successively solving quadratic sub-
problems of the form:

QP (xk, vk) : min. f(xk) +∇f(xk)⊤d+ 1
2d

⊤∇2L(xk, vk)d (4)

subject to: hi(xk) +∇hi(xk)⊤d = 0, i = 1, . . . , l. (5)

A pseudocode for the standard SQP method is presented in Algorithm 5.

Algorithm 5 SQP method
1: initialise. ϵ > 0, x0 ∈ S, u0 ≥ 0, v0, k = 0.
2: while ||dk|| > ϵ do
3: dk = argminQP (xk, uk, vk)
4: obtain uk+1, vk+1 from QP (xk, uk, vk)
5: xk+1 = xk + dk, k = k + 1.
6: end while
7: return xk.

2.6 Barrier methods
The result in Theorem 1.16 allows the design of an optimisation method that, starting from a strictly

feasible (interior) solution, is based on successively reducing the barrier term until a solution with an
arbitrarily small barrier term is obtained. Algorithm 6 present a pseudo code for such a method.
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Algorithm 6 Barrier method
1: initialise. ϵ > 0, x0 ∈ X with g(xk) < 0, µk, β ∈ (0, 1), k = 0.
2: while µkB(xk) > ϵ do
3: xk+1 = argmin{f(x) + µkB(x) : x ∈ X}
4: µk+1 = βµk, k = k + 1
5: end while
6: return xk.

2.7 Interior point for LP/QP problem
The algorithm proceeds by iteratively solving the system (3) with µk+1 = βµk with β ∈ (0, 1) until

nµk is less than a specified tolerance. Algorithm 7 summarises a simplified form of the IPM.

Algorithm 7 Interior point method (IPM) for LP
1: initialise. primal-dual feasible wk, ϵ > 0, µk, β ∈ (0, 1), k = 0.
2: while nµ = c⊤xk − b⊤vk > ϵ do
3: compute dwk+1 = (dxk+1 , dvk+1 , duk+1) using (3) and wk.
4: wk+1 = wk + dwk+1

5: µk+1 = βµk, k = k + 1
6: end while
7: return wk.
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