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Definition

NonLinear (or Non-Linear):

▶ adjective

▶ not arranged in a straight line.

▶ not sequential or straightforward.

Optimization (or Optimisation):

▶ noun

▶ the action of making the best or most effective use of a
situation or resource.
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Definition
Field of applied mathematics. The goal is to search values for
variables in a given domain that maximise/minimise function values.

Can be achieved by:

▶ Analysing/Visualizing properties of functions / extreme points
or

▶ Applying numerical methods

Optimisation has important applications in fields such as

▶ operations research (OR);

▶ economics;

▶ statistics;

▶ bioinformatics;

▶ machine learning and artificial intelligence.
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What is optimisation?
In this course, optimisation is viewed as the core element of
mathematical programming.

Math. programming is a central OR modelling paradigm:

▶ variables → decisions/point of interest: business decisions,
parameter definitions, settings, geometries, ...;

▶ domain → constraints/limitations: logic, design, engineering,
...;

▶ function → objective function/profit: measurement of
(decision) quality.

However, math. programming has many applications in fields other
than OR, which causes some confusion;

We will study math. programming in its most general form: both
constraints and objectives are nonlinear functions.
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Types of programming

Rule of Thumb:
The simpler are the assumptions which define a type of
problems, the better are the methods to solve such prob-
lems.

Some useful notation:

▶ x ∈ Rn - vector of (decision) variables xj , j = 1, . . . , n;

▶ f : Rn → R ∪ {±∞} - objective function;

▶ X ⊆ Rn - ground set (physical constraints);

▶ gi, hi : Rn → R - constraint functions;

▶ gi(x) ≤ 0 for i = 1, . . . ,m - inequality constraints;

▶ hi(x) = 0 for i = 1, . . . , l - equality constraints.
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Types of programming
Our goal will be to solve variations of the general problem P :

(P ) : min. f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X.

▶ Linear programming (LP): linear f(x) = c⊤x with c ∈ Rn;
constraint functions gi(x) and hi(x) are affine (a⊤i x− bi, with
ai ∈ Rn, b ∈ R); X = {x ∈ Rn : xj ≥ 0, j = 1, . . . , n}.

▶ Nonlinear programming (NLP): some (or all) of the
functions f, gi or hi are nonlinear;

▶ (Mixed-)integer programming ((M)IP): LP where (some of
the) variables are binary (or integer). X ⊆ Rk × {0, 1}n−k

▶ Mixed-integer nonlinear programming (MINLP): MIP+NLP.
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Types of programming
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Resource allocation and portfolio optimisation

Problem statement. Plan production that maximises return. Let

▶ I = {1, . . . , i, . . . ,M} resources;
▶ J = {1, . . . , j, . . . , N} products;
▶ cj - return per unit of product j ∈ J ;

▶ aij - resource i ∈ I requirement for
making product j ∈ J ;

▶ bi - availability of resource i ∈ I;

▶ xj - production of j ∈ J .

max.
∑
j∈J

cjxj

subject to:
∑
j∈J

aijxj ≤ bi,∀i ∈ I

xj ≥ 0,∀j ∈ J

Remark:

▶ notice that max. f(x) = min. −f(x);
▶ the base of most practical optimisation problems; exploits

mature LP technology.
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Portfolio optimization

Problem statement. Plan portfolio of assets to minimise
exposition to risk. Let

▶ J = {1, . . . , j, . . . , N} assets;
▶ µj - expected relative return

of asset j ∈ J ;

▶ Σ - covariance matrix;

▶ ϵ - minimum expected return;

▶ xj - position of asset j ∈ J

min. x⊤Σx

subject to: µ⊤x ≥ ϵ

0 ≤ xj ≤ 1,∀j ∈ J

Remarks:

▶ The term x⊤Σx measures exposition to risk. It is credited to
Harry Markowitz (1952).

▶ Another important class: quadratic programming (nonlinear).
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Refinery Operations Planning Problem

Oil refinery operational planning

▶ Goal is to maximize profit;

▶ Several possible configurations;

▶ Product property specifications
must be met;

Model characteristics:

▶ Bilinear (nonconvex) and
mixed-integer;

▶ Large number of flows;

▶ Several nonlinear constraints.
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Refinery Operations Planning Problem
Objective: maximize profit
Variables:

▶ Stream Flows (crude, intermediate and final

products);

▶ Storage;

▶ Stream properties.

Constraints

▶ Mass balance;

▶ Market features (supply and demand);

▶ Unit capacities;

▶ Stream property limits;

▶ Calculation of mix properties
(nonlinear).
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Refinery Operations Planning Problem
The challenging aspect is how to model the calculation of product
properties in a mix. Let:

▶ xp be the volume of product p ∈ P and
▶ qp the value of a given chemical property (sulphur content,

octane content, viscosity...).

In a given mix, mass and property balances are calculated as:

xA

xB

xC

xA = xB + xC

qA =
qBxB + qCxC

xA

Remarks:
▶ More complex mixes (such as nonlinear balances) might need

to be considered.
▶ These are bilinear programming problems (nonlinear).
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Robust optimisation

Is a subarea of mathematical programming concerned with
uncertainty in the input data.

It’s a risk-averse perspective that seeks protection against variability.

Consider the resource allocation problem under uncertainty:

max. c⊤x

subject to: ã⊤i x ≤ bi,∀i ∈ I

xj ≥ 0, ∀j ∈ J,

where ãi is a random variable.
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Robust optimisation

6 8 10 12 14
a1

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

a 2
Distribution of (a1, a2)

Observations
Nominal value
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Robust optimisation
Assume that, for any i ∈ I, ãi ∈ ϵi = {ai + Piu : ||u||2 ≤ Γi}, where
▶ ai is the nominal (average) value;

▶ Pi is the characteristic matrix of the ellipsoid ϵ;

▶ Γi is risk-aversion control parameter.

Then, the robust counterpart can be stated as

max. c⊤x

subject to: max.
ai∈ϵi

{
a⊤i x

}
≤ bi,∀i ∈ I

xj ≥ 0, ∀j ∈ J.

Notice that

max.
ai∈ϵi

{
a⊤i x

}
= a⊤i x+max.

u

{
u⊤Pix : ||u||2 ≤ Γi

}
= a⊤i x+Γi||Pix||2
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Robust optimisation

The robust counterpart can be equivalently stated as:

max. c⊤x

subject to: a⊤i x+ Γi||Pix||2 ≤ bi,∀i ∈ I

xj ≥ 0,∀j ∈ J.

Remarks:

▶ In case data is available, Pi can be obtained from the empirical
covariance matrix;

▶ Values of Γi can be drawn, for example, from a Chi-squared
distribution. Γi is sometimes called the budget of uncertainty.
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Robust optimisation

6 8 10 12 14
a1

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

a 2
Distribution of (a1, a2)

Observations
Nominal value

2 = 1.5
1 = 1
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Combinatorial optimisation

Is a subfield of mathematical programming regarding finding optimal
solutions from a inite set of possible solutions. The finite set is
discrete or can be reduced to a discrete set.

Can be also refered as discrete optimization, integer programming

Fernando Dias Example of Applications 19/26



Combinatorial optimisation

Is a subfield of mathematical programming regarding finding optimal
solutions from a inite set of possible solutions. The finite set is
discrete or can be reduced to a discrete set.

Can be also refered as discrete optimization, integer programming

Fernando Dias Example of Applications 19/26



Combinatorial optimisation
One of most classic problems is Travelling Salesman Problem (TSP)
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Combinatorial optimisation

Assume a number of cities labeled with numbers 1,· · · , n, and the
distance (or any cost) between two cities i and j is defined as cij .

The main variable is xij such that:

▶ 1: if there is a path between city i and city j;

▶ 0: otherwise

xij is binary variable ← integer programming
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Combinatorial optimisation

The goal can be stated as:
Find a path that goes through every city using the least
amount of resources.

The objective function is:

min
n∑

i=1

n∑
j ̸=i,j=1

cijxij (1)
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Combinatorial optimisation

The constraints can be written as:

n∑
i ̸=j,i=1

xij = 1 ∀j = 1, · · · , n (2)

n∑
j ̸=i,j=1

xij = 1 ∀j = 1, · · · , n (3)
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Combinatorial optimisation
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