MS-E2122 - Nonlinear Optimization Lecture I

Fernando Dias

Department of Mathematics and Systems Analysis

Aalto University School of Science

Outline of this lecture

Context

Mathematical programming and optimisation

Types of mathematical optimisation models

Example of Applications

Resource allocation

The pooling problem: refinery operations planning

Robust optimisation

Combinatorial optimisation

Outline of this lecture

Context

Mathematical programming and optimisation Types of mathematical optimisation models

Example of Applications

- Resource allocation
- The pooling problem: refinery operations planning
- Robust optimisation
- Combinatorial optimisation

NonLinear (or Non-Linear):

adjective

not arranged in a straight line.

not sequential or straightforward.

Optimization (or Optimisation):

🕨 noun

the action of making the best or most effective use of a situation or resource.

Field of applied mathematics. The goal is to search values for variables in a given domain that maximise/minimise function values.

Can be achieved by:

 Analysing/Visualizing properties of functions / extreme points or

Field of applied mathematics. The goal is to search values for variables in a given domain that maximise/minimise function values.

Can be achieved by:

- Analysing/Visualizing properties of functions / extreme points or
- Applying numerical methods

Field of applied mathematics. The goal is to search values for variables in a given domain that maximise/minimise function values.

Can be achieved by:

- Analysing/Visualizing properties of functions / extreme points or
- Applying numerical methods

Optimisation has important applications in fields such as

- operations research (OR);
- economics;
- statistics;
- bioinformatics;
- machine learning and artificial intelligence.

In this course, optimisation is viewed as the core element of mathematical programming.

Math. programming is a central OR modelling paradigm:

variables → decisions/point of interest: business decisions, parameter definitions, settings, geometries, ...;

In this course, optimisation is viewed as the core element of mathematical programming.

Math. programming is a central OR modelling paradigm:

- variables → decisions/point of interest: business decisions, parameter definitions, settings, geometries, ...;
- ▶ domain → constraints/limitations: logic, design, engineering, ...;

In this course, optimisation is viewed as the core element of mathematical programming.

Math. programming is a central OR modelling paradigm:

- variables → decisions/point of interest: business decisions, parameter definitions, settings, geometries, ...;
- ▶ domain → constraints/limitations: logic, design, engineering, ...;
- Function → objective function/profit: measurement of (decision) quality.

In this course, optimisation is viewed as the core element of mathematical programming.

Math. programming is a central OR modelling paradigm:

- ▶ variables → decisions/point of interest: business decisions, parameter definitions, settings, geometries, ...;
- ▶ domain → constraints/limitations: logic, design, engineering, ...;
- Function → objective function/profit: measurement of (decision) quality.

However, math. programming has many applications in fields other than OR, which causes some confusion;

We will study math. programming in its most general form: both constraints and objectives are nonlinear functions.

Rule of Thumb:

The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.

Rule of Thumb: *The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.*

Some useful notation:

$$\triangleright$$
 $x \in \mathbb{R}^n$ - vector of (decision) variables x_j , $j = 1, \ldots, n$;

Rule of Thumb: *The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.*

Some useful notation:

•
$$x \in \mathbb{R}^n$$
 - vector of (decision) variables x_j , $j = 1, \ldots, n$;

•
$$f: \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$$
 - objective function;

Rule of Thumb: The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.

Some useful notation:

- $x \in \mathbb{R}^n$ vector of (decision) variables x_j , $j = 1, \ldots, n$;
- $f: \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ objective function;
- $X \subseteq \mathbb{R}^n$ ground set (physical constraints);

Rule of Thumb: The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.

Some useful notation:

- $x \in \mathbb{R}^n$ vector of (decision) variables x_j , $j = 1, \ldots, n$;
- $f: \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ objective function;
- $X \subseteq \mathbb{R}^n$ ground set (physical constraints);
- ▶ $g_i, h_i : \mathbb{R}^n \to \mathbb{R}$ constraint functions;

Rule of Thumb: *The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.*

Some useful notation:

▶
$$x \in \mathbb{R}^n$$
 - vector of (decision) variables x_j , $j = 1, \dots, n$;

•
$$f: \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$$
 - objective function;

>
$$X \subseteq \mathbb{R}^n$$
 - ground set (physical constraints);

▶ $g_i, h_i : \mathbb{R}^n \to \mathbb{R}$ - constraint functions;

▶
$$g_i(x) \leq 0$$
 for $i = 1, ..., m$ - inequality constraints;

Rule of Thumb: *The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.*

Some useful notation:

▶
$$x \in \mathbb{R}^n$$
 - vector of (decision) variables x_j , $j = 1, ..., n$;

•
$$f: \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$$
 - objective function;

•
$$X \subseteq \mathbb{R}^n$$
 - ground set (physical constraints);

▶ $g_i, h_i : \mathbb{R}^n \to \mathbb{R}$ - constraint functions;

▶
$$g_i(x) \leq 0$$
 for $i = 1, ..., m$ - inequality constraints;

• $h_i(x) = 0$ for i = 1, ..., l - equality constraints.

Our goal will be to solve variations of the general problem P:

$$\begin{array}{ll} (P): & \mbox{min.} & f(x)\\ \mbox{subject to:} & g_i(x) \leq 0, i=1,\ldots,m\\ & & h_i(x)=0, i=1,\ldots,l\\ & & x\in X. \end{array}$$

Our goal will be to solve variations of the general problem P:

$$\begin{array}{ll} (P): & \mbox{min.} & f(x)\\ \mbox{subject to:} & g_i(x) \leq 0, i=1,\ldots,m\\ & & h_i(x)=0, i=1,\ldots,l\\ & & x\in X. \end{array}$$

▶ Linear programming (LP): linear $f(x) = c^{\top}x$ with $c \in \mathbb{R}^n$; constraint functions $g_i(x)$ and $h_i(x)$ are affine $(a_i^{\top}x - b_i)$, with $a_i \in \mathbb{R}^n$, $b \in \mathbb{R}$); $X = \{x \in \mathbb{R}^n : x_j \ge 0, j = 1, ..., n\}$.

Our goal will be to solve variations of the general problem P:

$$\begin{array}{ll} (P): & \min & f(x)\\ \text{subject to: } g_i(x) \leq 0, i=1,\ldots,m\\ & h_i(x)=0, i=1,\ldots,l\\ & x\in X. \end{array}$$

- Linear programming (LP): linear $f(x) = c^{\top}x$ with $c \in \mathbb{R}^n$; constraint functions $g_i(x)$ and $h_i(x)$ are affine $(a_i^{\top}x - b_i)$, with $a_i \in \mathbb{R}^n$, $b \in \mathbb{R}$); $X = \{x \in \mathbb{R}^n : x_j \ge 0, j = 1, ..., n\}$.
- Nonlinear programming (NLP): some (or all) of the functions f, g_i or h_i are nonlinear;

Our goal will be to solve variations of the general problem P:

$$\begin{array}{ll} (P): & \mbox{min.} & f(x)\\ \mbox{subject to:} & g_i(x) \leq 0, i=1,\ldots,m\\ & & h_i(x)=0, i=1,\ldots,l\\ & & x\in X. \end{array}$$

▶ Linear programming (LP): linear $f(x) = c^{\top}x$ with $c \in \mathbb{R}^n$; constraint functions $g_i(x)$ and $h_i(x)$ are affine $(a_i^{\top}x - b_i)$, with $a_i \in \mathbb{R}^n$, $b \in \mathbb{R}$); $X = \{x \in \mathbb{R}^n : x_j \ge 0, j = 1, ..., n\}$.

Nonlinear programming (NLP): some (or all) of the functions f, g_i or h_i are nonlinear;

(Mixed-)integer programming ((M)IP): LP where (some of the) variables are binary (or integer). X ⊆ ℝ^k × {0,1}^{n-k}

Our goal will be to solve variations of the general problem P:

$$\begin{array}{ll} (P): & \mbox{min.} & f(x)\\ \mbox{subject to:} & g_i(x) \leq 0, i=1,\ldots,m\\ & & h_i(x)=0, i=1,\ldots,l\\ & & x\in X. \end{array}$$

▶ Linear programming (LP): linear $f(x) = c^{\top}x$ with $c \in \mathbb{R}^n$; constraint functions $g_i(x)$ and $h_i(x)$ are affine $(a_i^{\top}x - b_i)$, with $a_i \in \mathbb{R}^n$, $b \in \mathbb{R}$); $X = \{x \in \mathbb{R}^n : x_j \ge 0, j = 1, ..., n\}$.

Nonlinear programming (NLP): some (or all) of the functions f, g_i or h_i are nonlinear;

(Mixed-)integer programming ((M)IP): LP where (some of the) variables are binary (or integer). X ⊆ ℝ^k × {0,1}^{n-k}

Mixed-integer nonlinear programming (MINLP): MIP+NLP.

Outline of this lecture

Context

Mathematical programming and optimisation Types of mathematical optimisation models

Example of Applications

Resource allocation

The pooling problem: refinery operations planning

Robust optimisation

Combinatorial optimisation

Fernando Dias

Problem statement. Plan production that maximises return. Let

- $I = \{1, \ldots, i, \ldots, M\}$ resources;
- $J = \{1, \dots, j, \dots, N\}$ products;
- ▶ c_j return per unit of product $j \in J$;
- ▶ a_{ij} resource $i \in I$ requirement for making product $j \in J$;
- \blacktriangleright b_i availability of resource $i \in I$;
- \triangleright x_j production of $j \in J$.

Fernando Dias

Problem statement. Plan production that maximises return. Let

- $I = \{1, \ldots, i, \ldots, M\}$ resources;
- $J = \{1, \ldots, j, \ldots, N\}$ products;
- ▶ c_j return per unit of product $j \in J$;
- ▶ a_{ij} resource $i \in I$ requirement for making product $j \in J$;
- ▶ b_i availability of resource $i \in I$;
- ▶ x_j production of $j \in J$.

$$\begin{array}{ll} \max & \sum_{j\in J}c_jx_j\\ \text{subject to:} & \sum_{j\in J}a_{ij}x_j\leq b_i, \forall i\in I\\ & x_j\geq 0, \forall j\in J \end{array}$$

Fernando Dias

Problem statement. Plan production that maximises return. Let

- $I = \{1, \ldots, i, \ldots, M\}$ resources;
- $J = \{1, \dots, j, \dots, N\}$ products;
- ▶ c_j return per unit of product $j \in J$;
- ▶ a_{ij} resource $i \in I$ requirement for making product $j \in J$;
- ▶ b_i availability of resource $i \in I$;
- ▶ x_j production of $j \in J$.

Remark:

• notice that max.
$$f(x) = \min(-f(x))$$
;

$$\begin{array}{ll} \max & \sum_{j \in J} c_j x_j \\ \text{subject to:} & \sum_{j \in J} a_{ij} x_j \leq b_i, \forall i \in I \\ & x_j \geq 0, \forall j \in J \end{array}$$

Fernando Dias

Problem statement. Plan production that maximises return. Let

- $I = \{1, \ldots, i, \ldots, M\}$ resources;
- $J = \{1, \ldots, j, \ldots, N\}$ products;
- ▶ c_j return per unit of product $j \in J$;
- ▶ a_{ij} resource $i \in I$ requirement for making product $j \in J$;
- b_i availability of resource $i \in I$;
- ▶ x_j production of $j \in J$.

Remark:

- notice that max. $f(x) = \min (-f(x));$
- the base of most practical optimisation problems; exploits mature LP technology.

$$\begin{array}{ll} \max & \sum_{j \in J} c_j x_j \\ \text{subject to:} & \sum_{j \in J} a_{ij} x_j \leq b_i, \forall i \in I \\ & x_j \geq 0, \forall j \in J \end{array}$$

Fernando Dias

Portfolio optimization

Problem statement. Plan portfolio of assets to minimise exposition to risk. Let

- ▶ $J = \{1, \dots, j, \dots, N\}$ assets;
- µ_j expected relative return of asset j ∈ J;
- Σ covariance matrix;
- \blacktriangleright e minimum expected return;
- ▶ x_j position of asset $j \in J$

Portfolio optimization

Problem statement. Plan portfolio of assets to minimise exposition to risk. Let

- ▶ $J = \{1, \dots, j, \dots, N\}$ assets;
- µ_j expected relative return of asset j ∈ J;
- Σ covariance matrix;
- \blacktriangleright ϵ minimum expected return;
- ▶ x_j position of asset $j \in J$

$$\begin{array}{ll} \mathsf{min.} & x^\top \Sigma x\\ \mathsf{subject to:} & \mu^\top x \geq \epsilon\\ & 0 \leq x_j \leq 1, \forall j \in J \end{array}$$

Portfolio optimization

Problem statement. Plan portfolio of assets to minimise exposition to risk. Let

- ▶ $J = \{1, \dots, j, \dots, N\}$ assets;
- µ_j expected relative return of asset j ∈ J;
- Σ covariance matrix;
- \blacktriangleright e minimum expected return;
- ▶ x_j position of asset $j \in J$

Remarks:

- The term $x^{\top}\Sigma x$ measures exposition to risk. It is credited to Harry Markowitz (1952).
- Another important class: quadratic programming (nonlinear).

Fernando Dias

min.
$$x^{\top} \Sigma x$$

subject to: $\mu^{\top} x \ge \epsilon$
 $0 \le x_j \le 1, \forall j \in J$

Oil refinery operational planning

- Goal is to maximize profit;
- Several possible configurations;
- Product property specifications must be met;

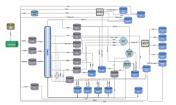
Fernando Dias

Oil refinery operational planning

- Goal is to maximize profit;
- Several possible configurations;
- Product property specifications must be met;

Model characteristics:

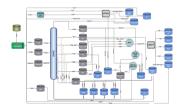
- Bilinear (nonconvex) and mixed-integer;
- Large number of flows;
- Several nonlinear constraints.



Fernando Dias

Objective: maximize profit **Variables:**

- Stream Flows (crude, intermediate and final products);
- Storage;
- Stream properties.



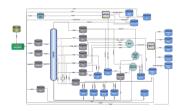
Fernando Dias

Objective: maximize profit **Variables:**

- Stream Flows (crude, intermediate and final products);
- Storage;
- Stream properties.

Constraints

- Mass balance;
- Market features (supply and demand);
- Unit capacities;
- Stream property limits;
- Calculation of mix properties (nonlinear).



Fernando Dias

Refinery Operations Planning Problem

The challenging aspect is how to model the calculation of product properties in a mix. Let:

▶ x_p be the volume of product $p \in P$ and

q_p the value of a given chemical property (sulphur content, octane content, viscosity...).

In a given mix, mass and property balances are calculated as:



Fernando Dias

Refinery Operations Planning Problem

The challenging aspect is how to model the calculation of product properties in a mix. Let:

- \blacktriangleright x_p be the volume of product $p \in P$ and
- q_p the value of a given chemical property (sulphur content, octane content, viscosity...).

In a given mix, mass and property balances are calculated as:

Remarks:

- More complex mixes (such as nonlinear balances) might need to be considered.
- These are bilinear programming problems (nonlinear).

Fernando Dias

Is a subarea of mathematical programming concerned with uncertainty in the input data.

It's a risk-averse perspective that seeks protection against variability.

Is a subarea of mathematical programming concerned with uncertainty in the input data.

It's a risk-averse perspective that seeks protection against variability.

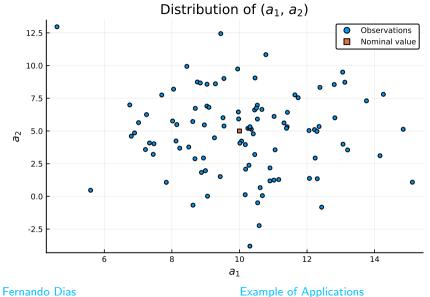
Consider the resource allocation problem under uncertainty:

max.
$$c^{\top}x$$

subject to: $\tilde{a}_i^{\top}x \leq b_i, \forall i \in I$
 $x_j \geq 0, \forall j \in J,$

where \tilde{a}_i is a random variable.

Fernando Dias



Assume that, for any $i \in I$, $\tilde{a}_i \in \epsilon_i = \{\overline{a}_i + P_i u : ||u||_2 \le \Gamma_i\}$, where

- $\triangleright \overline{a}_i$ is the nominal (average) value;
- > P_i is the characteristic matrix of the ellipsoid ϵ ;
- \triangleright Γ_i is risk-aversion control parameter.

Assume that, for any $i \in I$, $\tilde{a}_i \in \epsilon_i = \{\overline{a}_i + P_i u : ||u||_2 \le \Gamma_i\}$, where

- $\triangleright \overline{a}_i$ is the nominal (average) value;
- > P_i is the characteristic matrix of the ellipsoid ϵ ;
- \triangleright Γ_i is risk-aversion control parameter.

Then, the robust counterpart can be stated as

$$\begin{array}{ll} \max & c^{\top}x\\ \text{subject to:} & \max_{a_i \in \epsilon_i} \ \left\{a_i^{\top}x\right\} \leq b_i, \forall i \in I\\ & x_j \geq 0, \forall j \in J. \end{array}$$

Fernando Dias

Assume that, for any $i \in I$, $\tilde{a}_i \in \epsilon_i = \{\overline{a}_i + P_i u : ||u||_2 \le \Gamma_i\}$, where

- $\triangleright \overline{a}_i$ is the nominal (average) value;
- > P_i is the characteristic matrix of the ellipsoid ϵ ;
- \triangleright Γ_i is risk-aversion control parameter.

Then, the robust counterpart can be stated as

$$\begin{array}{ll} \max & c^{\top}x\\ \text{subject to:} & \max_{a_i \in \epsilon_i} \ \left\{a_i^{\top}x\right\} \leq b_i, \forall i \in I\\ & x_j \geq 0, \forall j \in J. \end{array}$$

Notice that

$$\max_{a_i \in \epsilon_i} \left\{ a_i^\top x \right\} = \overline{a}_i^\top x + \max_u \left\{ u^\top P_i x : ||u||_2 \le \Gamma_i \right\} = \overline{a}_i^\top x + \Gamma_i ||P_i x||_2$$

Fernando Dias

The robust counterpart can be equivalently stated as:

$$\begin{array}{ll} \max & c^{\top}x\\ \text{subject to: } \overline{a}_i^{\top}x + \Gamma_i ||P_ix||_2 \leq b_i, \forall i \in I\\ & x_j \geq 0, \forall j \in J. \end{array}$$

Remarks:

In case data is available, P_i can be obtained from the empirical covariance matrix;

The robust counterpart can be equivalently stated as:

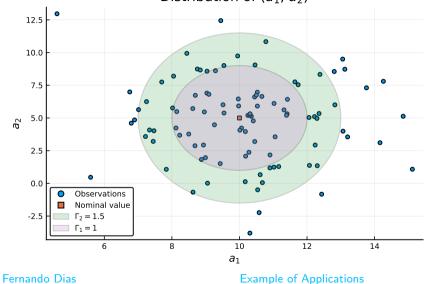
$$\begin{array}{ll} \max & c^{\top}x\\ \text{subject to: } \overline{a}_i^{\top}x + \Gamma_i ||P_ix||_2 \leq b_i, \forall i \in I\\ & x_j \geq 0, \forall j \in J. \end{array}$$

Remarks:

- In case data is available, P_i can be obtained from the empirical covariance matrix;
- Values of Γ_i can be drawn, for example, from a Chi-squared distribution. Γ_i is sometimes called the budget of uncertainty.

Fernando Dias

Distribution of (a_1, a_2)



18/26

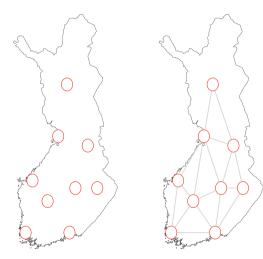
Is a subfield of mathematical programming regarding finding optimal solutions from a inite set of possible solutions. The finite set is discrete or can be reduced to a discrete set.

Can be also refered as discrete optimization, integer programming

Is a subfield of mathematical programming regarding finding optimal solutions from a inite set of possible solutions. The finite set is discrete or can be reduced to a discrete set.

Can be also refered as discrete optimization, integer programming

One of most classic problems is Travelling Salesman Problem (TSP)



Fernando Dias

Assume a number of cities labeled with numbers $1, \dots, n$, and the distance (or any cost) between two cities i and j is defined as c_{ij} .

The main variable is x_{ij} such that:

1: if there is a path between city i and city j;

0: otherwise

Assume a number of cities labeled with numbers $1, \dots, n$, and the distance (or any cost) between two cities i and j is defined as c_{ij} .

The main variable is x_{ij} such that:

1: if there is a path between city i and city j;

0: otherwise

 x_{ij} is binary variable \leftarrow integer programming

The goal can be stated as:

Find a path that goes through every city using the least amount of resources.

The goal can be stated as: Find a path that goes through every city using the least amount of resources.

The objective function is:

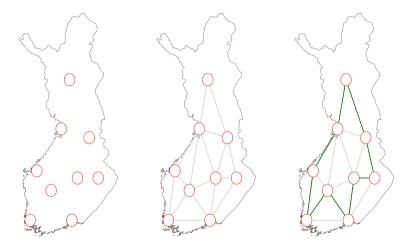
$$\min\sum_{i=1}^{n}\sum_{j\neq i,j=1}^{n}c_{ij}x_{ij}$$
(1)

Fernando Dias

The constraints can be written as:

$$\sum_{\substack{i \neq j, i=1 \\ j \neq i, j=1}}^{n} x_{ij} = 1 \qquad \forall j = 1, \cdots, n \qquad (2)$$
$$\sum_{\substack{j \neq i, j=1 \\ j \neq i, j=1}}^{n} x_{ij} = 1 \qquad \forall j = 1, \cdots, n \qquad (3)$$

Fernando Dias



Fernando Dias

Fernando Dias

Reference

Sahinidis, Nikolaos V. "Mixed-integer nonlinear programming 2018." Optimization and Engineering 20 (2019): 301-306.

Floudas, Christodoulos A. Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford University Press, 1995.

Tawarmalani, Mohit, and Nikolaos V. Sahinidis. Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications. Vol. 65. Springer Science & Business Media, 2013.