
MS-E2122 - Nonlinear Optimization
Lecture I

Fernando Dias

Department of Mathematics and Systems Analysis

Aalto University
School of Science

Outline of this lecture

Context

Mathematical programming and optimisation

Types of mathematical optimisation models

Example of Applications

Resource allocation

The pooling problem: refinery operations planning

Robust optimisation

Combinatorial optimisation

Fernando Dias 1/26

Outline of this lecture

Context

Mathematical programming and optimisation

Types of mathematical optimisation models

Example of Applications

Resource allocation

The pooling problem: refinery operations planning

Robust optimisation

Combinatorial optimisation

Fernando Dias Context 1/26

Definition

NonLinear (or Non-Linear):

▶ adjective

▶ not arranged in a straight line.

▶ not sequential or straightforward.

Optimization (or Optimisation):

▶ noun

▶ the action of making the best or most effective use of a
situation or resource.

Fernando Dias Context 2/26

Definition
Field of applied mathematics. The goal is to search values for
variables in a given domain that maximise/minimise function values.

Can be achieved by:

▶ Analysing/Visualizing properties of functions / extreme points
or

▶ Applying numerical methods

Optimisation has important applications in fields such as

▶ operations research (OR);

▶ economics;

▶ statistics;

▶ bioinformatics;

▶ machine learning and artificial intelligence.

Fernando Dias Context 3/26

Definition
Field of applied mathematics. The goal is to search values for
variables in a given domain that maximise/minimise function values.

Can be achieved by:

▶ Analysing/Visualizing properties of functions / extreme points
or

▶ Applying numerical methods

Optimisation has important applications in fields such as

▶ operations research (OR);

▶ economics;

▶ statistics;

▶ bioinformatics;

▶ machine learning and artificial intelligence.

Fernando Dias Context 3/26

Definition
Field of applied mathematics. The goal is to search values for
variables in a given domain that maximise/minimise function values.

Can be achieved by:

▶ Analysing/Visualizing properties of functions / extreme points
or

▶ Applying numerical methods

Optimisation has important applications in fields such as

▶ operations research (OR);

▶ economics;

▶ statistics;

▶ bioinformatics;

▶ machine learning and artificial intelligence.

Fernando Dias Context 3/26

What is optimisation?
In this course, optimisation is viewed as the core element of
mathematical programming.

Math. programming is a central OR modelling paradigm:

▶ variables → decisions/point of interest: business decisions,
parameter definitions, settings, geometries, ...;

▶ domain → constraints/limitations: logic, design, engineering,
...;

▶ function → objective function/profit: measurement of
(decision) quality.

However, math. programming has many applications in fields other
than OR, which causes some confusion;

We will study math. programming in its most general form: both
constraints and objectives are nonlinear functions.

Fernando Dias Context 4/26

What is optimisation?
In this course, optimisation is viewed as the core element of
mathematical programming.

Math. programming is a central OR modelling paradigm:

▶ variables → decisions/point of interest: business decisions,
parameter definitions, settings, geometries, ...;

▶ domain → constraints/limitations: logic, design, engineering,
...;

▶ function → objective function/profit: measurement of
(decision) quality.

However, math. programming has many applications in fields other
than OR, which causes some confusion;

We will study math. programming in its most general form: both
constraints and objectives are nonlinear functions.

Fernando Dias Context 4/26

What is optimisation?
In this course, optimisation is viewed as the core element of
mathematical programming.

Math. programming is a central OR modelling paradigm:

▶ variables → decisions/point of interest: business decisions,
parameter definitions, settings, geometries, ...;

▶ domain → constraints/limitations: logic, design, engineering,
...;

▶ function → objective function/profit: measurement of
(decision) quality.

However, math. programming has many applications in fields other
than OR, which causes some confusion;

We will study math. programming in its most general form: both
constraints and objectives are nonlinear functions.

Fernando Dias Context 4/26

What is optimisation?
In this course, optimisation is viewed as the core element of
mathematical programming.

Math. programming is a central OR modelling paradigm:

▶ variables → decisions/point of interest: business decisions,
parameter definitions, settings, geometries, ...;

▶ domain → constraints/limitations: logic, design, engineering,
...;

▶ function → objective function/profit: measurement of
(decision) quality.

However, math. programming has many applications in fields other
than OR, which causes some confusion;

We will study math. programming in its most general form: both
constraints and objectives are nonlinear functions.

Fernando Dias Context 4/26

Types of programming

Rule of Thumb:
The simpler are the assumptions which define a type of
problems, the better are the methods to solve such prob-
lems.

Some useful notation:

▶ x ∈ Rn - vector of (decision) variables xj , j = 1, . . . , n;

▶ f : Rn → R ∪ {±∞} - objective function;

▶ X ⊆ Rn - ground set (physical constraints);

▶ gi, hi : Rn → R - constraint functions;

▶ gi(x) ≤ 0 for i = 1, . . . ,m - inequality constraints;

▶ hi(x) = 0 for i = 1, . . . , l - equality constraints.

Fernando Dias Context 5/26

Types of programming

Rule of Thumb:
The simpler are the assumptions which define a type of
problems, the better are the methods to solve such prob-
lems.

Some useful notation:

▶ x ∈ Rn - vector of (decision) variables xj , j = 1, . . . , n;

▶ f : Rn → R ∪ {±∞} - objective function;

▶ X ⊆ Rn - ground set (physical constraints);

▶ gi, hi : Rn → R - constraint functions;

▶ gi(x) ≤ 0 for i = 1, . . . ,m - inequality constraints;

▶ hi(x) = 0 for i = 1, . . . , l - equality constraints.

Fernando Dias Context 5/26

Types of programming

Rule of Thumb:
The simpler are the assumptions which define a type of
problems, the better are the methods to solve such prob-
lems.

Some useful notation:

▶ x ∈ Rn - vector of (decision) variables xj , j = 1, . . . , n;

▶ f : Rn → R ∪ {±∞} - objective function;

▶ X ⊆ Rn - ground set (physical constraints);

▶ gi, hi : Rn → R - constraint functions;

▶ gi(x) ≤ 0 for i = 1, . . . ,m - inequality constraints;

▶ hi(x) = 0 for i = 1, . . . , l - equality constraints.

Fernando Dias Context 5/26

Types of programming

Rule of Thumb:
The simpler are the assumptions which define a type of
problems, the better are the methods to solve such prob-
lems.

Some useful notation:

▶ x ∈ Rn - vector of (decision) variables xj , j = 1, . . . , n;

▶ f : Rn → R ∪ {±∞} - objective function;

▶ X ⊆ Rn - ground set (physical constraints);

▶ gi, hi : Rn → R - constraint functions;

▶ gi(x) ≤ 0 for i = 1, . . . ,m - inequality constraints;

▶ hi(x) = 0 for i = 1, . . . , l - equality constraints.

Fernando Dias Context 5/26

Types of programming

Rule of Thumb:
The simpler are the assumptions which define a type of
problems, the better are the methods to solve such prob-
lems.

Some useful notation:

▶ x ∈ Rn - vector of (decision) variables xj , j = 1, . . . , n;

▶ f : Rn → R ∪ {±∞} - objective function;

▶ X ⊆ Rn - ground set (physical constraints);

▶ gi, hi : Rn → R - constraint functions;

▶ gi(x) ≤ 0 for i = 1, . . . ,m - inequality constraints;

▶ hi(x) = 0 for i = 1, . . . , l - equality constraints.

Fernando Dias Context 5/26

Types of programming

Rule of Thumb:
The simpler are the assumptions which define a type of
problems, the better are the methods to solve such prob-
lems.

Some useful notation:

▶ x ∈ Rn - vector of (decision) variables xj , j = 1, . . . , n;

▶ f : Rn → R ∪ {±∞} - objective function;

▶ X ⊆ Rn - ground set (physical constraints);

▶ gi, hi : Rn → R - constraint functions;

▶ gi(x) ≤ 0 for i = 1, . . . ,m - inequality constraints;

▶ hi(x) = 0 for i = 1, . . . , l - equality constraints.

Fernando Dias Context 5/26

Types of programming

Rule of Thumb:
The simpler are the assumptions which define a type of
problems, the better are the methods to solve such prob-
lems.

Some useful notation:

▶ x ∈ Rn - vector of (decision) variables xj , j = 1, . . . , n;

▶ f : Rn → R ∪ {±∞} - objective function;

▶ X ⊆ Rn - ground set (physical constraints);

▶ gi, hi : Rn → R - constraint functions;

▶ gi(x) ≤ 0 for i = 1, . . . ,m - inequality constraints;

▶ hi(x) = 0 for i = 1, . . . , l - equality constraints.

Fernando Dias Context 5/26

Types of programming
Our goal will be to solve variations of the general problem P :

(P) : min. f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X.

▶ Linear programming (LP): linear f(x) = c⊤x with c ∈ Rn;
constraint functions gi(x) and hi(x) are affine (a⊤i x− bi, with
ai ∈ Rn, b ∈ R); X = {x ∈ Rn : xj ≥ 0, j = 1, . . . , n}.

▶ Nonlinear programming (NLP): some (or all) of the
functions f, gi or hi are nonlinear;

▶ (Mixed-)integer programming ((M)IP): LP where (some of
the) variables are binary (or integer). X ⊆ Rk × {0, 1}n−k

▶ Mixed-integer nonlinear programming (MINLP): MIP+NLP.

Fernando Dias Context 6/26

Types of programming
Our goal will be to solve variations of the general problem P :

(P) : min. f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X.

▶ Linear programming (LP): linear f(x) = c⊤x with c ∈ Rn;
constraint functions gi(x) and hi(x) are affine (a⊤i x− bi, with
ai ∈ Rn, b ∈ R); X = {x ∈ Rn : xj ≥ 0, j = 1, . . . , n}.

▶ Nonlinear programming (NLP): some (or all) of the
functions f, gi or hi are nonlinear;

▶ (Mixed-)integer programming ((M)IP): LP where (some of
the) variables are binary (or integer). X ⊆ Rk × {0, 1}n−k

▶ Mixed-integer nonlinear programming (MINLP): MIP+NLP.

Fernando Dias Context 6/26

Types of programming
Our goal will be to solve variations of the general problem P :

(P) : min. f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X.

▶ Linear programming (LP): linear f(x) = c⊤x with c ∈ Rn;
constraint functions gi(x) and hi(x) are affine (a⊤i x− bi, with
ai ∈ Rn, b ∈ R); X = {x ∈ Rn : xj ≥ 0, j = 1, . . . , n}.

▶ Nonlinear programming (NLP): some (or all) of the
functions f, gi or hi are nonlinear;

▶ (Mixed-)integer programming ((M)IP): LP where (some of
the) variables are binary (or integer). X ⊆ Rk × {0, 1}n−k

▶ Mixed-integer nonlinear programming (MINLP): MIP+NLP.

Fernando Dias Context 6/26

Types of programming
Our goal will be to solve variations of the general problem P :

(P) : min. f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X.

▶ Linear programming (LP): linear f(x) = c⊤x with c ∈ Rn;
constraint functions gi(x) and hi(x) are affine (a⊤i x− bi, with
ai ∈ Rn, b ∈ R); X = {x ∈ Rn : xj ≥ 0, j = 1, . . . , n}.

▶ Nonlinear programming (NLP): some (or all) of the
functions f, gi or hi are nonlinear;

▶ (Mixed-)integer programming ((M)IP): LP where (some of
the) variables are binary (or integer). X ⊆ Rk × {0, 1}n−k

▶ Mixed-integer nonlinear programming (MINLP): MIP+NLP.

Fernando Dias Context 6/26

Types of programming
Our goal will be to solve variations of the general problem P :

(P) : min. f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X.

▶ Linear programming (LP): linear f(x) = c⊤x with c ∈ Rn;
constraint functions gi(x) and hi(x) are affine (a⊤i x− bi, with
ai ∈ Rn, b ∈ R); X = {x ∈ Rn : xj ≥ 0, j = 1, . . . , n}.

▶ Nonlinear programming (NLP): some (or all) of the
functions f, gi or hi are nonlinear;

▶ (Mixed-)integer programming ((M)IP): LP where (some of
the) variables are binary (or integer). X ⊆ Rk × {0, 1}n−k

▶ Mixed-integer nonlinear programming (MINLP): MIP+NLP.

Fernando Dias Context 6/26

Types of programming

Fernando Dias Context 7/26

Outline of this lecture

Context

Mathematical programming and optimisation

Types of mathematical optimisation models

Example of Applications

Resource allocation

The pooling problem: refinery operations planning

Robust optimisation

Combinatorial optimisation

Fernando Dias Example of Applications 8/26

Resource allocation and portfolio optimisation

Problem statement. Plan production that maximises return. Let

▶ I = {1, . . . , i, . . . ,M} resources;
▶ J = {1, . . . , j, . . . , N} products;
▶ cj - return per unit of product j ∈ J ;

▶ aij - resource i ∈ I requirement for
making product j ∈ J ;

▶ bi - availability of resource i ∈ I;

▶ xj - production of j ∈ J .

max.
∑
j∈J

cjxj

subject to:
∑
j∈J

aijxj ≤ bi,∀i ∈ I

xj ≥ 0,∀j ∈ J

Remark:

▶ notice that max. f(x) = min. −f(x);
▶ the base of most practical optimisation problems; exploits

mature LP technology.

Fernando Dias Example of Applications 9/26

Resource allocation and portfolio optimisation

Problem statement. Plan production that maximises return. Let

▶ I = {1, . . . , i, . . . ,M} resources;
▶ J = {1, . . . , j, . . . , N} products;
▶ cj - return per unit of product j ∈ J ;

▶ aij - resource i ∈ I requirement for
making product j ∈ J ;

▶ bi - availability of resource i ∈ I;

▶ xj - production of j ∈ J .

max.
∑
j∈J

cjxj

subject to:
∑
j∈J

aijxj ≤ bi, ∀i ∈ I

xj ≥ 0,∀j ∈ J

Remark:

▶ notice that max. f(x) = min. −f(x);
▶ the base of most practical optimisation problems; exploits

mature LP technology.

Fernando Dias Example of Applications 9/26

Resource allocation and portfolio optimisation

Problem statement. Plan production that maximises return. Let

▶ I = {1, . . . , i, . . . ,M} resources;
▶ J = {1, . . . , j, . . . , N} products;
▶ cj - return per unit of product j ∈ J ;

▶ aij - resource i ∈ I requirement for
making product j ∈ J ;

▶ bi - availability of resource i ∈ I;

▶ xj - production of j ∈ J .

max.
∑
j∈J

cjxj

subject to:
∑
j∈J

aijxj ≤ bi, ∀i ∈ I

xj ≥ 0,∀j ∈ J

Remark:

▶ notice that max. f(x) = min. −f(x);

▶ the base of most practical optimisation problems; exploits
mature LP technology.

Fernando Dias Example of Applications 9/26

Resource allocation and portfolio optimisation

Problem statement. Plan production that maximises return. Let

▶ I = {1, . . . , i, . . . ,M} resources;
▶ J = {1, . . . , j, . . . , N} products;
▶ cj - return per unit of product j ∈ J ;

▶ aij - resource i ∈ I requirement for
making product j ∈ J ;

▶ bi - availability of resource i ∈ I;

▶ xj - production of j ∈ J .

max.
∑
j∈J

cjxj

subject to:
∑
j∈J

aijxj ≤ bi, ∀i ∈ I

xj ≥ 0,∀j ∈ J

Remark:

▶ notice that max. f(x) = min. −f(x);
▶ the base of most practical optimisation problems; exploits

mature LP technology.

Fernando Dias Example of Applications 9/26

Portfolio optimization

Problem statement. Plan portfolio of assets to minimise
exposition to risk. Let

▶ J = {1, . . . , j, . . . , N} assets;
▶ µj - expected relative return

of asset j ∈ J ;

▶ Σ - covariance matrix;

▶ ϵ - minimum expected return;

▶ xj - position of asset j ∈ J

min. x⊤Σx

subject to: µ⊤x ≥ ϵ

0 ≤ xj ≤ 1,∀j ∈ J

Remarks:

▶ The term x⊤Σx measures exposition to risk. It is credited to
Harry Markowitz (1952).

▶ Another important class: quadratic programming (nonlinear).

Fernando Dias Example of Applications 10/26

Portfolio optimization

Problem statement. Plan portfolio of assets to minimise
exposition to risk. Let

▶ J = {1, . . . , j, . . . , N} assets;
▶ µj - expected relative return

of asset j ∈ J ;

▶ Σ - covariance matrix;

▶ ϵ - minimum expected return;

▶ xj - position of asset j ∈ J

min. x⊤Σx

subject to: µ⊤x ≥ ϵ

0 ≤ xj ≤ 1, ∀j ∈ J

Remarks:

▶ The term x⊤Σx measures exposition to risk. It is credited to
Harry Markowitz (1952).

▶ Another important class: quadratic programming (nonlinear).

Fernando Dias Example of Applications 10/26

Portfolio optimization

Problem statement. Plan portfolio of assets to minimise
exposition to risk. Let

▶ J = {1, . . . , j, . . . , N} assets;
▶ µj - expected relative return

of asset j ∈ J ;

▶ Σ - covariance matrix;

▶ ϵ - minimum expected return;

▶ xj - position of asset j ∈ J

min. x⊤Σx

subject to: µ⊤x ≥ ϵ

0 ≤ xj ≤ 1, ∀j ∈ J

Remarks:

▶ The term x⊤Σx measures exposition to risk. It is credited to
Harry Markowitz (1952).

▶ Another important class: quadratic programming (nonlinear).

Fernando Dias Example of Applications 10/26

Refinery Operations Planning Problem

Oil refinery operational planning

▶ Goal is to maximize profit;

▶ Several possible configurations;

▶ Product property specifications
must be met;

Model characteristics:

▶ Bilinear (nonconvex) and
mixed-integer;

▶ Large number of flows;

▶ Several nonlinear constraints.

Fernando Dias Example of Applications 11/26

Refinery Operations Planning Problem

Oil refinery operational planning

▶ Goal is to maximize profit;

▶ Several possible configurations;

▶ Product property specifications
must be met;

Model characteristics:

▶ Bilinear (nonconvex) and
mixed-integer;

▶ Large number of flows;

▶ Several nonlinear constraints.

Fernando Dias Example of Applications 11/26

Refinery Operations Planning Problem
Objective: maximize profit
Variables:

▶ Stream Flows (crude, intermediate and final

products);

▶ Storage;

▶ Stream properties.

Constraints

▶ Mass balance;

▶ Market features (supply and demand);

▶ Unit capacities;

▶ Stream property limits;

▶ Calculation of mix properties
(nonlinear).

Fernando Dias Example of Applications 12/26

Refinery Operations Planning Problem
Objective: maximize profit
Variables:

▶ Stream Flows (crude, intermediate and final

products);

▶ Storage;

▶ Stream properties.

Constraints

▶ Mass balance;

▶ Market features (supply and demand);

▶ Unit capacities;

▶ Stream property limits;

▶ Calculation of mix properties
(nonlinear).

Fernando Dias Example of Applications 12/26

Refinery Operations Planning Problem
The challenging aspect is how to model the calculation of product
properties in a mix. Let:

▶ xp be the volume of product p ∈ P and
▶ qp the value of a given chemical property (sulphur content,

octane content, viscosity...).

In a given mix, mass and property balances are calculated as:

xA

xB

xC

xA = xB + xC

qA =
qBxB + qCxC

xA

Remarks:
▶ More complex mixes (such as nonlinear balances) might need

to be considered.
▶ These are bilinear programming problems (nonlinear).

Fernando Dias Example of Applications 13/26

Refinery Operations Planning Problem
The challenging aspect is how to model the calculation of product
properties in a mix. Let:

▶ xp be the volume of product p ∈ P and
▶ qp the value of a given chemical property (sulphur content,

octane content, viscosity...).

In a given mix, mass and property balances are calculated as:

xA

xB

xC

xA = xB + xC

qA =
qBxB + qCxC

xA

Remarks:
▶ More complex mixes (such as nonlinear balances) might need

to be considered.
▶ These are bilinear programming problems (nonlinear).

Fernando Dias Example of Applications 13/26

Robust optimisation

Is a subarea of mathematical programming concerned with
uncertainty in the input data.

It’s a risk-averse perspective that seeks protection against variability.

Consider the resource allocation problem under uncertainty:

max. c⊤x

subject to: ã⊤i x ≤ bi,∀i ∈ I

xj ≥ 0, ∀j ∈ J,

where ãi is a random variable.

Fernando Dias Example of Applications 14/26

Robust optimisation

Is a subarea of mathematical programming concerned with
uncertainty in the input data.

It’s a risk-averse perspective that seeks protection against variability.

Consider the resource allocation problem under uncertainty:

max. c⊤x

subject to: ã⊤i x ≤ bi,∀i ∈ I

xj ≥ 0, ∀j ∈ J,

where ãi is a random variable.

Fernando Dias Example of Applications 14/26

Robust optimisation

6 8 10 12 14
a1

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

a 2
Distribution of (a1, a2)

Observations
Nominal value

Fernando Dias Example of Applications 15/26

Robust optimisation
Assume that, for any i ∈ I, ãi ∈ ϵi = {ai + Piu : ||u||2 ≤ Γi}, where
▶ ai is the nominal (average) value;

▶ Pi is the characteristic matrix of the ellipsoid ϵ;

▶ Γi is risk-aversion control parameter.

Then, the robust counterpart can be stated as

max. c⊤x

subject to: max.
ai∈ϵi

{
a⊤i x

}
≤ bi,∀i ∈ I

xj ≥ 0, ∀j ∈ J.

Notice that

max.
ai∈ϵi

{
a⊤i x

}
= a⊤i x+max.

u

{
u⊤Pix : ||u||2 ≤ Γi

}
= a⊤i x+Γi||Pix||2

Fernando Dias Example of Applications 16/26

Robust optimisation
Assume that, for any i ∈ I, ãi ∈ ϵi = {ai + Piu : ||u||2 ≤ Γi}, where
▶ ai is the nominal (average) value;

▶ Pi is the characteristic matrix of the ellipsoid ϵ;

▶ Γi is risk-aversion control parameter.

Then, the robust counterpart can be stated as

max. c⊤x

subject to: max.
ai∈ϵi

{
a⊤i x

}
≤ bi,∀i ∈ I

xj ≥ 0, ∀j ∈ J.

Notice that

max.
ai∈ϵi

{
a⊤i x

}
= a⊤i x+max.

u

{
u⊤Pix : ||u||2 ≤ Γi

}
= a⊤i x+Γi||Pix||2

Fernando Dias Example of Applications 16/26

Robust optimisation
Assume that, for any i ∈ I, ãi ∈ ϵi = {ai + Piu : ||u||2 ≤ Γi}, where
▶ ai is the nominal (average) value;

▶ Pi is the characteristic matrix of the ellipsoid ϵ;

▶ Γi is risk-aversion control parameter.

Then, the robust counterpart can be stated as

max. c⊤x

subject to: max.
ai∈ϵi

{
a⊤i x

}
≤ bi,∀i ∈ I

xj ≥ 0, ∀j ∈ J.

Notice that

max.
ai∈ϵi

{
a⊤i x

}
= a⊤i x+max.

u

{
u⊤Pix : ||u||2 ≤ Γi

}
= a⊤i x+Γi||Pix||2

Fernando Dias Example of Applications 16/26

Robust optimisation

The robust counterpart can be equivalently stated as:

max. c⊤x

subject to: a⊤i x+ Γi||Pix||2 ≤ bi,∀i ∈ I

xj ≥ 0,∀j ∈ J.

Remarks:

▶ In case data is available, Pi can be obtained from the empirical
covariance matrix;

▶ Values of Γi can be drawn, for example, from a Chi-squared
distribution. Γi is sometimes called the budget of uncertainty.

Fernando Dias Example of Applications 17/26

Robust optimisation

The robust counterpart can be equivalently stated as:

max. c⊤x

subject to: a⊤i x+ Γi||Pix||2 ≤ bi,∀i ∈ I

xj ≥ 0,∀j ∈ J.

Remarks:

▶ In case data is available, Pi can be obtained from the empirical
covariance matrix;

▶ Values of Γi can be drawn, for example, from a Chi-squared
distribution. Γi is sometimes called the budget of uncertainty.

Fernando Dias Example of Applications 17/26

Robust optimisation

6 8 10 12 14
a1

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

a 2
Distribution of (a1, a2)

Observations
Nominal value

2 = 1.5
1 = 1

Fernando Dias Example of Applications 18/26

Combinatorial optimisation

Is a subfield of mathematical programming regarding finding optimal
solutions from a inite set of possible solutions. The finite set is
discrete or can be reduced to a discrete set.

Can be also refered as discrete optimization, integer programming

Fernando Dias Example of Applications 19/26

Combinatorial optimisation

Is a subfield of mathematical programming regarding finding optimal
solutions from a inite set of possible solutions. The finite set is
discrete or can be reduced to a discrete set.

Can be also refered as discrete optimization, integer programming

Fernando Dias Example of Applications 19/26

Combinatorial optimisation
One of most classic problems is Travelling Salesman Problem (TSP)

Fernando Dias Example of Applications 20/26

Combinatorial optimisation

Assume a number of cities labeled with numbers 1,· · · , n, and the
distance (or any cost) between two cities i and j is defined as cij .

The main variable is xij such that:

▶ 1: if there is a path between city i and city j;

▶ 0: otherwise

xij is binary variable ← integer programming

Fernando Dias Example of Applications 21/26

Combinatorial optimisation

Assume a number of cities labeled with numbers 1,· · · , n, and the
distance (or any cost) between two cities i and j is defined as cij .

The main variable is xij such that:

▶ 1: if there is a path between city i and city j;

▶ 0: otherwise

xij is binary variable ← integer programming

Fernando Dias Example of Applications 21/26

Combinatorial optimisation

The goal can be stated as:
Find a path that goes through every city using the least
amount of resources.

The objective function is:

min
n∑

i=1

n∑
j ̸=i,j=1

cijxij (1)

Fernando Dias Example of Applications 22/26

Combinatorial optimisation

The goal can be stated as:
Find a path that goes through every city using the least
amount of resources.

The objective function is:

min

n∑
i=1

n∑
j ̸=i,j=1

cijxij (1)

Fernando Dias Example of Applications 22/26

Combinatorial optimisation

The constraints can be written as:

n∑
i ̸=j,i=1

xij = 1 ∀j = 1, · · · , n (2)

n∑
j ̸=i,j=1

xij = 1 ∀j = 1, · · · , n (3)

Fernando Dias Example of Applications 23/26

Combinatorial optimisation

Fernando Dias Example of Applications 24/26

Fernando Dias Example of Applications 25/26

Reference

Sahinidis, Nikolaos V. ”Mixed-integer nonlinear programming 2018.”
Optimization and Engineering 20 (2019): 301-306.

Floudas, Christodoulos A. Nonlinear and mixed-integer optimization:
fundamentals and applications. Oxford University Press, 1995.

Tawarmalani, Mohit, and Nikolaos V. Sahinidis. Convexification and
global optimization in continuous and mixed-integer nonlinear
programming: theory, algorithms, software, and applications. Vol.
65. Springer Science & Business Media, 2013.

Fernando Dias Example of Applications 26/26

	Context
	Mathematical programming and optimisation
	Types of mathematical optimisation models

	Example of Applications
	Resource allocation
	The pooling problem: refinery operations planning
	Robust optimisation
	Combinatorial optimisation

