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Abstract
In this lecture, we discuss concepts related to sets, which will later in the course serve as a

framework for dealing with constraints in optimisation problems. We will also see that the convexity
of sets can be used to infer the convexity of functions, a topic we will discuss in detail in the next
class. We describe how to identify convexity in sets and discuss set-related concepts practically when
discussing optimality conditions later. We also discuss the concepts of separation and support, which
are central to several results in optimisation theory, such as the Farkas theorem.
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1 Convexity and optimisation
Convexity is perhaps the most important property that the elements forming an optimization

problem can present. Paraphrasing Tyrrell Rockafellar:

... in fact, the great watershed in optimization is not between linearity and nonlinearity but
convexity and nonconvexity.

In a nutshell, convexity allows us to infer the global properties of a solution (i.e., that holds for
all of its domain) by considering exclusively local information (such as gradients, for example). Such
property is critical in optimization since most methods we know to perform well in practice are de-
signed to find solutions that satisfy local optimality conditions. Once convexity is attested, one can then
guarantee that these local solutions are, in fact, globally optimal without exhaustively exploring the
solution space.

For a problem of the form:

(P ) : min. f(x)
subject to: x ∈ X

to be convex, we need to verify whether f is a convex function and X is a convex set. If both
statements hold, we can conclude that P is a convex problem. We start looking into how to identify
convex sets since we can use the convexity of sets to infer the convexity of functions.

2 Identifying convexity of sets
Before formally defining convex sets, let us look at the idea of combinations. For that, let S ⊆ Rn

be a set and xj ∈ S for j = 1, . . . , k be a collection of vectors (i.e., n-dimensional “points”) belonging to
S. Then, we have that:

• A linear combination of xj for j = 1, . . . , k is the set

{x ∈ Rn :
k∑

j=1
λjxj , λj ∈ R for j = 1, . . . , k}. (1)

• An affine combination is a linear combination, with the additional constraint that
∑k

j=1 λj = 1.
That is,

{x ∈ Rn :
k∑

j=1
λjxj ,

k∑
j=1

λj = 1, λj ∈ R for j = 1, . . . , k}. (2)

• A conic combination is a linear combination with the additional condition that λj ≥ 0 for
j = 1, . . . , k.

{x ∈ Rn :
k∑

j=1
λjxj , λj ≥ 0 for j = 1, . . . , k}. (3)

• And finally, a convex combination is the intersection between an affine and a conic combination,
implying that λj ∈ [0, 1].

{x ∈ Rn :
k∑

j=1
λjxj ,

k∑
j=1

λj = 1, λj ≥ 0 for j = 1, . . . , k}. (4)

We say a set is convex if it contains all points formed by the convex combination of any pair of points
in this set, which is equivalent to saying that the set contains the line segment between any two points
belonging to the set.

Definition 2.1. Convex sets

A set S ⊆ Rn is said to be convex if x =
∑k

j=1 λjxj belongs to S, where
∑k

j=1 λj = 1, λj ≥ 0 and
xj ∈ S for j = 1, . . . , k.
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Figure 1: Minkowski sum of two convex sets.
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Figure 2: Intersection of two convex sets.

Definition 2.1 is useful as it shows that some set operations preserve convexity.

2.1 Convexity-preserving set operations
Lemma 2.2. Convexity-preserving operations Let S1 and S2 be convex sets in Rn. Then, the sets
resulting from the following operations are also convex.

1. Intersection: S = S1 ∩ S2;
2. Minkowski addition: S = S1 + S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2};
3. Minkowski difference: S = S1 − S2 = {x1 − x2 : x1 ∈ S1, x2 ∈ S2};
4. Affine transformation: S = {Ax + b : x ∈ S1}.

Figures 1 and 2 illustrate the concept behind some of these set operations. Showing that the sets
resulting from the operations in Lemma 2.2 are convex typically shows that convex combinations of
elements in the resulting set S also belong to S1 and S2.

2.2 Examples of convex sets
There are several familiar sets that are known to be convex. Knowing that these sets are convex is

useful as a building block for determining the convexity of more complicated sets.

Some important examples of convex sets include:

• Them empty set ∅, any singleton {x} and the whole space Rn;

• halfspaces: S = {x : p⊤x ≤ α} ⊂ Rn;

• hyperplanes: H = {x : p⊤x = α} ⊂ Rn, where p ̸= 0n is a normal vector and α ∈ R is a scalar.
Notice that H can be equivalently represented as H = {x ∈ Rn : p⊤(x − x) = 0} for x ∈ H;

• polyhedral sets: P = {x : Ax ≤ b} ⊂ Rn, where A ∈ Rm×n and b ∈ Rn;

• norm-induced sets (balls): B = {x : ||x−x|| ≤ α} ⊆ Rn, where || · || is any norm and α a scalar;

• norm cones: C = {(x, α) ∈ Rn+1 : ||x|| ≤ α};

For example, considering the polyhedral set P = {x ∈ Rn : Ax ≤ b} ⊂ Rn with A being a m × n
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matrix. Notice that S is the intersection of a collection of half-spaces Hi = {x ∈ Rn : a⊤
i x ≤ bi},

where ai are vectors from the rows of the matrix A and bi are the components of the column vector
b. We know that Hi are convex sets. Thus, P = ∩m

i=1Hi is also convex, as the intersection of sets is a
convexity-preserving set operation.

2.2.1 Hyperplanes and halfspaces
Hyperplanes and half-spaces will play a central role in future topics. Therefore, let us discuss some

important aspects related to these convex sets. First, notice that, geometrically, a hyperplane H ⊂ Rn

can be interpreted as the set of points with a constant inner product to a given vector p ∈ Rn, while x
determines the offset of the hyperplane from the origin. That is:

H = {x : p⊤(x − x) = 0} ≡ x + p⊥,
where p⊥ is the orthogonal complement of p, i.e., the set of vectors orthogonal to p, which is given by
{x ∈ Rn : p⊤x = 0}.

H

p

x

H

Figure 3: A hyperplane H = {x ∈ Rn : p⊤(x − x) = 0} with normal vector p displaced to x.

Analogously, a half-spaces can be represented as S = {x ∈ Rn : p⊤(x − x) ≤ 0} where p⊤x = α is
the hyperplane that forms the boundary of the half-space. This definition suggests a simple geometrical
interpretation: the half-space S consists of x plus any vector with an obtuse or right angle (i.e., greater
or equal to 90◦) with the outward normal vector p.

H

p

x
x

S

Figure 4: A halfspace S = {x ∈ Rn : p⊤(x − x) ≤ 0} defined by the same hyperplane H. Notice how the
vectors p (or p − x, which is fundamentally the same vector but translated to x) and x − x form angles
greater or equal than 90◦.

P

a1

a2

a3

Figure 5: A polyhedron P formed by the intersection of three half-space. Each hyperplane Hi = {x ∈
Rn : a⊤

i x ≤ bi}, for i = 1, 2, 3, has a normal vector ai, and has an offset from the origin bi (which cannot
be seen once project on a 2-dimensional plane as in the picture).
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2.2.2 Norm balls and norm cones
An Euclidean ball (or simply ball) of radius ϵ in Rn has the form:

B(x, ϵ) = {x ∈ Rn : ||x − x||2 ≤ ϵ} ≡ {x ∈ Rn : (x − x)⊤(x − x) ≤ ϵ2}
As one might suspect, balls are convex, which can be proved by noting that:

||λx1 + (1 − λ)x2 − x||2 = ||λ(x1 − x) + (1 − λ)(x2 − x)||2
≤ λ||x1 − x||2 + (1 − λ)||x2 − x||2 ≤ ϵ.

Notice that between the first and the second line, we use the triangle inequality, which states that
||x + y|| ≤ ||x|| + ||y|| for any two vectors x and y and any norm (including the Euclidean norm).

Euclidean balls are a special case of norm balls, which are defined as B(x, ϵ) = {x ∈ Rn : ||x−x|| ≤ ϵ}
where || · || is any norm on Rn.

A related set is the norm cone, defined as C(x, α) = {(x, α) ∈ Rn+1 : ||x|| ≤ α}, where α is a scalar.
For example, the second-order cone (also known as the ice cream cone or Lorentz cone) is the norm cone
for the Euclidean norm.

Remark. Norm induced sets (balls or cones) are convex for any norm ||x||p = (
∑n

i=1 xp
i )

1
p for x ∈ Rn

and p ≥ 1.

3 Convex hulls
A convex hull of a set S, denoted conv(S), is the set formed by all convex combinations of all points

in S. As the name suggests, conv(S) is a convex set, regardless of S being or not convex.

Another interpretation for conv(S) is to consider it the tightest enveloping (convex) set containing
S. Notice that, if S is convex, then S = conv(S). Formally, convex hulls are defined as follows.

Definition 3.1. Convex hull of a set
Let S ⊆ Rn be an arbitrary set. The convex hull of S, denoted by conv(S), is the collection of all
convex combinations of S. That is, for xj ∈ S, with j = 1, . . . , k, x ∈ conv(S) if and only if

x =
k∑

j=1
λjxj :

k∑
j=1

λj = 1, λj ≥ 0, for j = 1, . . . , k.

From Definition 3.1, one can show that the convex hull conv(S) can also be defined as the intersec-
tion of all convex sets containing S. Perhaps the easiest way to visualize this is to think of the infinitely
many half-spaces containing S and their intersection, which can only be S. Figures 6 illustrates the
convex hull conv(S) of a nonconvex set S.

The notion of convex hulls is a powerful tool in optimization. One important application is using

S

conv(S)

Figure 6: Example of an arbitrary set S (in solid blue) and its convex hull conv(S) (combined blue and
grey areas).

conv(S) to obtain approximations for a nonconvex S that can be exploited to solve an optimization
problem with a constraint set defined by S. This is the underpinning technique in many important
optimization methods, such as branch-and-bound-based methods for nonconvex problems and decom-
position methods (i.e., methods that solve large problems by breaking them into smaller parts that are
presumably easier to solve).

Let us consider the convex hull of a finite collection of discrete points. Some of these sets are so
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important in optimization that they have their own names.

Definition 3.2
Let S = {x1, . . . , xn+1} ⊂ Rn. Then conv(S) is called a polytope. If x1, . . . , xn+1 are affinely
independent (i.e., x2 − x1, . . . , xn+1 − x1 are linearly independent) then conv(S) is called a simplex
with vertices x1, . . . , xn+1.

4 Closure and interior of sets
Many of the set-related results we will see in this course depend on the characteristics of the set itself.

Often, assuming properties such as closedness or compactness considerably eases technical derivations.

4.1 Closure, interior and boundary of a set
Let us define some properties that will be useful in this course. For that, we will use an ϵ-neighbourhood

of x ∈ Rn (which is a norm ball of radius ϵ centred in x) defined as:

Nϵ(x) = {y : ||y − x|| < ϵ}.

Let S ⊆ Rn be an arbitrary set. We can use Nϵ to define the following elements related to S.

1. Closure of S: the set defined by the closure of S, denoted clo(S), is defined as
clo(S) = {x ∈ Rn : S ∩ Nϵ(x) ̸= ∅ for every ϵ > 0}.

Notice that the closure might contain points not belonging to S. We say that a set is closed if
S = clo(S); the set itself is its own closure.

2. Interior of S: the interior of S, denoted int(S), is the set
int S = {x ∈ S : Nϵ(x) ⊂ S for some ϵ > 0}.

If S is the same as its own interior, then we say that S is open. Some authors say that S is solid
if it has a nonempty interior (that is, int(S) ̸= ∅. Notice that the interior of S is a subset of S,
that is, int(S) ⊆ S.

3. Boundary of S: the boundary of S, denoted bou(S) is the collection of points defined by:
bou(S) = {x ∈ Rn : Nϵ(x) contains some xi ∈ S and some xj /∈ S for every ϵ > 0}.

We say that S is bounded if exists Nϵ(x), x ∈ Rn, for some ϵ > 0 such that S ⊂ Nϵ(x).
We say that a set is compact if it is both closed and bounded. Compact sets appear very fre-

quently in real-world optimization applications since, typically, one can assume the existence of bounds
for decision variables (such as nonnegativity or maximum physical bounds or, in an extreme case, small-
est/ largest computational constants). Another frequent example of a bounded set is the convex hull of a
collection of discrete points, which is called by some authors polytopes (effectively bounded polyhedral
sets).

Let us consider the following example. Let S = {(x1, x2) ∈ Rn : x2
1 + x2

2 ≤ 1}. Then, we have that:
1. clo(S) = {(x1, x2) ∈ Rn : x2

1 + x2
2 ≤ 1}. Since S = clo(S), S is closed.

2. int(S) = {(x1, x2) ∈ Rn : x2
1 + x2

2 < 1}.
3. bou(S) = {(x1, x2) ∈ Rn : x2

1 + x2
2 = 1}. Notice that it makes S bounded.

4. S is compact since it is closed and bounded.
Notice that, if S is closed, then bou(S) ⊂ S. That is, its boundary is part of the set itself. Moreover,

it can be shown that clo(S) = bou(S) ∪ S is the smallest closed set containing S.

In case S is convex, one can infer the convexity of the interior int(S) and its closure clo(S). The
following theorem summarises this result.

Theorem 4.1
Let S ⊆ Rn be a convex set with int(S) ̸= ∅. Let x1 ∈ clo(S) and x2 ∈ int(S). Then x =
λx1 + (1 − λ)x2 ∈ int(S) for all λ ∈ (0, 1).
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Theorem 4.1 helps infer the convexity of the elements related to S. We summarise the key results in
the following corollary.

Corollary 4.2. Let S be a convex set with int(S) ̸= ∅. Then
1. int(S) is convex;
2. clo(S) is convex;
3. clo(int(S)) = clo(S);
4. int(clo(S)) = int(S).

4.2 The Weierstrass theorem
The Weierstrass theorem is a result that guarantees the existence of optimal solutions for opti-

mization problems. To make it more precise, let:

(P ) : z = min. {f(x) : x ∈ S}
be our optimization problem. If an optimal solution x∗ exists, then f(x∗) ≤ f(x) for all x ∈ S and
z = f(x∗) = min{f(x) : x ∈ S}.

Notice the difference between min. (an abbreviation for minimize) and the operator min. The first
is meant to represent the problem of minimizing the function f in the domain S, while min is shorthand
for minimum, in this case z, assuming it is attainable.

It might be that an optimal solution is not attainable, but a bound can be obtained for the optimal
solution value. The greatest lower bound for z is its infimum (or supremum for maximization prob-
lems), denoted by inf. That is, if z = inf{f(x) : x ∈ S} , then z ≤ f(x) for all x ∈ S and there is no
z > z such that z ≤ f(x) for all x ∈ S. We might sometimes use the notation:

(P ) : z = inf{f(x) : x ∈ S}
to represent optimization problems for which one cannot be sure whether an optimal solution is attain-
able. The Weierstrass theorem describes the situations in which those minimums (or maximums) are
guaranteed to be attained, which is the case whenever S is compact.

Theorem 4.3. Weierstrass theorem
Let S ̸= ∅ be a compact set, and let f : S → R be continuous on S. Then there exists a solution
x ∈ S to min. {f(x) : x ∈ S}.

Figures 7 illustrates three examples. In the first (on the left), the domain [a, b] is compact; thus, the
minimum of f is attained at b. In the other two, [a, b) is open; therefore, the Weierstrass theorem does
not hold. In the middle example, one can obtain inf f , which is not the case for the last example on the
right.

f(a)

f(b)

f(a)

inf f

f(a)

a b a b a

Figure 7: Examples of attainable minimum (left) and infimum (centre) and an example where neither
are attainable (right).
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5 Separation and support of sets
The concepts of separation and support of sets are vital for establishing optimality conditions later

in this course. We are interested in mechanisms that allow one to infer whether there exists hyperplanes
separating points from sets (or sets from sets). We will also be interested in means to, given a point
x /∈ S, find the closest point not belonging to S.

5.1 Hyperplanes and closest points
We start with how to identify the closest points to sets.

Theorem 5.1. Closest-point theorem
Let S ̸= ∅ be a closed convex set in Rn and y /∈ S. Then, there exists a unique point x ∈ S with
minimum distance from y. In addition, x is the minimising point if and only if

(y − x)⊤(x − x) ≤ 0, for all x ∈ S

Simply put, if S is a closed convex set, then x ∈ S will be the closest point to y /∈ S if the vector
y − x is such that if it forms an angle that is greater or equal than 90◦ with all other vectors x − x for
x ∈ S. Figures 8 illustrates this logic.

y

y

x x
x

x

S S

Figure 8: Closest-point theorem for a closed convex set (on the left). On the right is an illustration of
how the absence of convexity invalidates the result.

Notice that S lies in the half-space (y − x)⊤(x − x) ≤ 0 defined by the hyperplane p⊤(x − x) = 0 with
normal vector p = (y − x). We will next revise the concepts of half-spaces and hyperplanes since they
will play a central role in the derivations in this course.

5.2 Halfspaces and separation
We can use half-spaces to build the concept of separation. Let us start recalling that a hyperplane

H = {x : p⊤x = α} with normal vector p ∈ Rn and α ∈ R defines two half-spaces H+ = {x : p⊤x ≥ α}
and H− = {x : p⊤x ≤ α}. Figures 9 illustrates the concept. Notice how the vector p lies in the half-space
H+.

Any hyperplane H can be defined in reference to a point x ∈ H by noticing that:

H

p

x

H+

H−

Figure 9: Normal vectors, hyperplane and halfspaces
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p⊤(x − x) = p⊤x − p⊤x = α − α = 0.

From that, the half-spaces defined by H can be equivalently stated as H+ = {x : p⊤(x − x) ≥ 0} and
H− = {x : p⊤(x − x) ≤ 0}.

We can now define the separation of convex sets.

Definition 5.2

Let S1 and S2 be nonempty sets in Rn. The hyperplane H = {x : p⊤x = α} is said to separate S1
and S2 if p⊤x ≥ α for each x ∈ S1 and p⊤x ≤ α for each x ∈ S2. In addition, the following apply:

1. Proper separation: S1 ∪ S2 ̸⊂ H;
2. Strict separation: p⊤x < α for each x ∈ S1 and p⊤x > α for each x ∈ S2;
3. Strong separation: p⊤x ≥ α + ϵ for some ϵ > 0 and x ∈ S1, and p⊤x ≤ α for each x ∈ S2.

Figures 10 illustrates the three types of separation in Definition 5.2. On the left, proper separation is
illustrated, obtained by any hyperplane that does not contain both S1 and S2 but might contain points
from either or both. In the middle, sets S1 and S2 belong to two distinct half-spaces in a strict sense. On
the right, strict separation holds with an additional margin ϵ > 0, which is defined as strong separation.
A powerful yet simple result that we will use later is that, for a closed convex set S, there always exists

S1

S2

S1

S2

S1

S2

H H H

Figure 10: Three types of separation between S1 and S2.

a hyperplane separating S and a point y that does not belong to S.

Theorem 5.3. Separation theorem
Let S ̸= ∅ be a closed convex set in Rn and y /∈ S. Then, there exists a nonzero vector p ∈ Rn and
α ∈ R such that p⊤x ≤ α for each x ∈ S and p⊤y > α.

Proof. Theorem 5.1 guarantees the existence of a unique minimising x ∈ S such that (y−x)⊤(x−x) ≤
0 for each x ∈ S. Let p = (y − x) ̸= 0 and α = x⊤(y − x) = p⊤x. Then we get p⊤x ≤ α for each
x ∈ S, while p⊤y − α = (y − x)⊤(y − x) = ||y − x||2 > 0.

This is the first proof we look at in these notes, and the reason for that is its importance in many of
the results we will discuss further. The proof first looks at the problem of finding a minimum distance
point as an optimization problem and uses the Weierstrass theorem (our Theorem 5.1 is a consequence
of the Weierstrass theorem stated in Theorem 4.3) to guarantee that such a x exists. Being a minimum
distance point, we know from Theorem 5.1 that (y − x)⊤(x − x) ≤ 0 holds. Now, by defining p and α as
in the proof, one might notice that:

(y − x)⊤(x − x) ≤ 0 ⇔ (y − x)⊤x ≤ (y − x)⊤x ⇔ p⊤x ≤ p⊤x = α.

The inequality p⊤y > α is demonstrated to hold in the final part by noticing that:

p⊤y − α = (y − x)⊤y − x⊤(y − x)
= y⊤(y − x) − x⊤(y − x)
= (y − x)⊤(y − x) = ||y − x||2 > 0.

Theorem 5.3 has interesting consequences. For example, one can apply it to every point in the bound-
ary bou(S) to show that S is formed by the intersection of all half-spaces containing S.

Another interesting result is the existence of strong separation. If y /∈ clo(conv(S)), then one can
show that a strong separation between y and S exists since there will surely be a distance ϵ > 0 between
y and S.
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5.3 Farkas’ theorem
Farkas’ theorem plays a central role in deriving optimality conditions. It can assume several alter-

native forms, typically referred to as Farkas’ lemmas. In essence, Farkas’ theorem demonstrates that a
given system of linear equations has a solution if and only if a related system can be shown to have no
solutions and vice-versa.

Theorem 5.4
Let A be an m × n matrix and c be an n vector. Then exactly one of the following two systems has
a solution:

(1) : Ax ≤ 0, c⊤x > 0, x ∈ Rn

(2) : A⊤y = c, y ≥ 0, y ∈ Rm.

Proof. Suppose (2) has a solution. Let x be such that Ax ≤ 0. Then c⊤x = (A⊤y)⊤x = y⊤Ax ≤ 0.
Hence, (1) has no solution.
Next, suppose (2) has no solution. Let S = {x ∈ Rn : x = A⊤y, y ≥ 0}. Notice that S is closed and
convex and that c /∈ S. By Theorem 5.3, there exists p ∈ Rn and α ∈ R such that p⊤c > α and
p⊤x ≤ α for x ∈ S.

As 0 ∈ S, α ≥ 0 and p⊤c > 0. Also, α ≥ p⊤A⊤y = y⊤Ap for y ≥ 0. This implies that Ap ≤ 0, and
thus p satisfies (1).

The first part of the proof shows that if we assume that system (2) has a solution, then c⊤x > 0
cannot hold for y ≥ 0. The second part uses the separation theorem (Theorem 5.3) to show that c can
be seen as a point not belonging to the closed convex set S for which there is a separation hyperplane
and that the existence of such plane implies that system (1) must hold. The set S is closed and convex
since it is a conic combination of rows ai, for i = 1, . . . , m. Using the 0 ∈ S, one can show that α ≥ 0.
The last part uses the identity p⊤A⊤ = (Ap)⊤ and the fact that (Ap)⊤y = y⊤Ap. Notice that, since y
can be arbitrarily large and α is a constant, y⊤Ap ≤ α can only hold if y⊤Ap ≤ 0, requiring that p ≤ 0
since y ≥ 0 from the definition of S.

Farkas’ theorem has an interesting geometrical interpretation from this proof, as illustrated in Figures
11. Consider the cone C formed by the rows of A:

C = {c ∈ Rn : cj =
m∑

i=1
aijyi, j = 1, . . . , n, yi ≥ 0, i = 1, . . . , m}

The polar cone of C, denoted C0, is formed by all vectors having angles of 90◦ or more with vectors in
C. That is:

C0 = {x : Ax ≤ 0}.

Notice that (1) has a solution if the intersection between the polar cone C0 and the positive (H+

as defined earlier) half-space H+ = {x ∈ Rn : c⊤x > 0} is not empty. If (2) has a solution, as at
the beginning of the proof, then c ∈ C and the intersection C0 ∩ H+ = ∅. Now, if (2) does not have a
solution, that is, c /∈ C, then one can see that C0 ∩H+ cannot be empty, meaning that (1) has a solution.

5.4 Supporting hyperplanes
There is an important connection between the existence of hyperplanes that support a whole set and

the optimality conditions of points. Let us first define supporting hyperplanes.

Definition 5.5. Supporting hyperplane

Let S ̸= ∅ be a set in Rn, and let x ∈ bou(S). H = {x ∈ Rn : p⊤(x − x) = 0} is a supporting
hyperplane of S at x if either S ⊆ H+ (i.e., p⊤(x − x) ≥ 0 for x ∈ S) or S ⊆ H−.

Figures 12 illustrates the concept of supporting hyperplanes. Notice that supporting hyperplanes
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Figure 11: Geometrical illustration of the Farkas’ theorem. On the left, system (2) has a solution, while
on the right, system (1) has a solution

might not be unique, with the geometry of the set S playing an important role.

Let us define the function f(x) = p⊤x with x ∈ S. One can see that the optimal solution x given by:

x = argmax
x∈S

f(x)

is a point x ∈ S for which p is a supporting hyperplane. A simple geometric analogy is to think that the
f increases value as one moves toward p. The constraint x ∈ S will eventually prevent the movement
further from S, and this last contact point is precisely x. This is a useful concept for optimizing problems
using gradients of functions, as we will discuss later in the course.

S S Sx

x

p

p1
p2

p

px1

x2

Figure 12: Supporting hyperplanes for an arbitrary set. Notice how a single point might have multiple
supporting planes (middle) or different points might have the same supporting hyperplane (right)

One characteristic that convex sets present that will be of great importance when establishing opti-
mality conditions is supporting hyperplanes at every boundary point.

Theorem 5.6
Let S ̸= ∅ be a convex set in Rn, and let x ∈ bou(S). Then there exists p ̸= 0 such that p⊤(x−x) ≤ 0
for each x ∈ clo(S).

The proof follows immediately from Theorem 5.3, without explicitly considering a point y /∈ S and
by noticing that bou(S) ⊂ clo(S). Figures 13 illustrates the theorem.
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S

p

x

Figure 13: Supporting hyperplanes for convex sets. Notice how every boundary point has at least one
supporting hyperplane
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