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Last Week...
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Convex sets and optimisation

“...in fact, the great watershed in
optimization isn’t between
linearity and nonlinearity, but
convexity and nonconvexity.”
R. Tyrrell Rockafellar, in SIAM
Review, 1993

(N. Maculan with T. Rockafellar at
EURO 2015)
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Convex sets

Convex set: a set that contains all elements of the line segment
connecting any two of its elements.

Let S ⊆ Rn and xj ∈ S for j = 1, . . . , k. Some key concepts:

▶ Linear combination:
∑k

j=1 λjxj , where λj ∈ R for
j = 1, . . . , k;

▶ Affine combination:
∑k

j=1 λjxj , where λj ∈ R for

j = 1, . . . , k and
∑k

j=1 λj = 1;

▶ Conic combination:
∑k

j=1 λjxj , where λj ≥ 0 for
j = 1, . . . , k;

▶ Convex combination:
∑k

j=1 λjxj , where λj ≥ 0 for

j = 1, . . . , k and
∑k

j=1 λj = 1.
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Convex sets

Definition 1 (Convex sets)

A set S ⊆ Rn is said to be convex if x =
∑k

j=1 λjxj belongs to S,

where
∑k

j=1 λj = 1, λj ≥ 0 and xj ∈ S for j = 1, . . . , k.

Convexity preserving operations as a consequence of Definition 1:

Lemma 2
Let S1 and S2 be convex sets in Rn. Then these are also convex:

1. Intersection: S1 ∩ S2;

2. Minkowski addition: S1 + S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2};
3. Minkowski difference:

S1 −S2 = {x1 − x2 : x1 ∈ S1, x2 ∈ S2};
4. Linear transformation: S = {Ax1 + b : x1 ∈ S1}.
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Convexity preserving operations

+ =
S1

S2

S2

S2 S2

S
S1

Minkowski sum of two convex sets.

S1
S2

S1 ∩ S2

Intersection of two convex sets.
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Convex sets

Some examples of convex sets:

▶ half-spaces: S =
{
x : p⊤x ≤ α

}
⊂ Rn;

▶ hyperplanes: S =
{
x : p⊤x = α

}
⊂ Rn, where p ̸= 0n is the

normal vector and α ∈ R is a scalar. S can be equivalently
represented as S =

{
x : p⊤(x− x) = 0

}
for x ∈ S;

▶ polyhedral sets: S = {x : Ax ≤ b} ⊂ Rn, where A ∈ Rm×n

and b ∈ Rn;

▶ norm-induced sets (balls): S = {x : ||x− x|| ≤ α}, where
|| · || is any norm and α a scalar;

▶ norm cones: S = {(x, α) : ||x|| ≤ α};

Remark: p-norm: ||x||p =
(∑n

j=1 |xj |p
) 1

p
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Hyperplanes and halfspaces

A hyperplane H =
{
x : p⊤x = α

}
, with normal p ∈ Rn and α ∈ R,

defines two closed half-spaces:

▶ H+ =
{
x : p⊤x ≥ α

}
▶ H− =

{
x : p⊤x ≤ α

}

Notice that H and its half-spaces can be defined in reference to any
point x ∈ H: p⊤x = α must hold and thus

p⊤(x− x) = p⊤x− p⊤x = α− α = 0

can also be used to describe H. Also, H+ =
{
x : p⊤(x− x) ≥ 0

}
and H− =

{
x : p⊤(x− x) ≤ 0

}
.
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Hyperplanes and halfspaces

H

p

x

H

H =
{
x ∈ Rn : p⊤(x− x) = 0

}
is a

hyperplane with normal vector p
displaced to x.

H

p

x
x

S

S =
{
x ∈ Rn : p⊤(x− x) ≤ 0

}
is a

halfspace defined by H.

P

a1

a2

a3

A polyhedron P formed by the intersection of three halfspaces.
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Convex hulls
Definition 3 (Convex hull of a set)

Let S ⊆ Rn be an arbitrary set. The convex hull of S, denoted by
conv(S), is the collection of all convex combinations of S. That
is, for xj ∈ S, j = 1, . . . , k, x ∈ conv(S) if and only if

x =

k∑
j=1

λjxj

k∑
j=1

λj = 1

λj ≥ 0, for j = 1, . . . , k.

S

conv(S)

Example of an arbitrary set S and its
convex hull conv(S) .

Remark: from Definition 3 we notice that conv(S) is the tightest
enveloping set that contains S. This can be shown by noticing that
conv(S) is the intersection of all convex sets containing S.
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Closure and interior of a set

Let Nϵ(x) = {y : ||y − x|| < ϵ} denote an ϵ-neighbourhood of
x ∈ Rn, and let S ⊆ Rn be an arbitrary set.

We can now define
the following key attributes of S:

1. Interior of S: x ∈ int(S) if Nϵ(x) ⊂ S for some ϵ > 0.
S is solid if int(S) ̸= ∅ and open if S = int(S).

2. Boundary of S: x ∈ bou(S) if Nϵ(x) contains at least one
point in S and one point not in S for every ϵ > 0. Moreover, S
is bounded if S ⊂ Nϵ(x) for some ϵ > 0, and S is compact if S
is both closed and bounded.

3. Closure of S: x ∈ clo(S) if S ∩Nϵ(x) ̸= ∅ for every ϵ > 0.
S is closed is S = clo(S).
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Closure and interior of a set
If S is a convex set, we can infer the convexity of int(S) and
clo(S).

Theorem 4
Let S ⊆ Rn be a convex set with int(S) ̸= ∅. Let x1 ∈ clo(S) and
x2 ∈ int(S). Then x = λx1 + (1− λ)x2 ∈ int(S) for all λ ∈ (0, 1).

Theorem 4 gives rise to the following corollaries:

Corollary 5

Let S be a convex set with int(S) ̸= ∅. Then
1. int(S) is convex;

2. clo(S) is convex;

3. clo(int(S)) = clo(S);

4. int(clo(S)) = int(S).
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Weierstrass theorem
This result is used to guarantee the existence of optimal solutions
(minimising/maximising) for optimisation problems. Let

(P ) : z = min. {f(x) : x ∈ S}

be our optimisation problem. If an optimal solution x∗ exists, then
f(x∗) ≤ f(x) for all x ∈ S and z = f(x∗) = min {f(x) : x ∈ S}.

If an optimal solution cannot be attained, it might still be possible
to obtain the infimum (or supremum for maximisation problems):

(P ) : z = inf {f(x) : x ∈ S}

which is the greatest lower bound of f in S. That is, z ≤ f(x) for
all x ∈ S and there is no z > z such that z ≤ f(x) for all x ∈ S.

Remark: notice that min stands for minimum while min. stands
for minimise.
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Weierstrass theorem
Weierstrass theorem describes when “inf” can be “safely” replaced
by “min”.

f(a)

f(b)

f(a)

inf f

f(a)

a b a b a
Examples of attainable minimum (left) and infimum (centre) and an example
where neither are attainable (right).

Theorem 6 (Weierstrass theorem)

Let S ̸= ∅ be a compact set, and let f : S → R be continuous on S.
Then there is a minimising solution to (P ) : min. {f(x) : x ∈ S} .
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Separation and support of sets

Supporting hyperplanes and the separation of disjoint convex sets
are key concepts for establishing optimality conditions and duality
relationships.

Given a convex set S and a point y /∈ S, we want to find x ∈ S
closest to y and a hyperplane that separates them.

Theorem 7 (Closest-point theorem)

Let S ̸= ∅ be a closed convex set in Rn and y /∈ S. Then, there
exists a unique point x ∈ S with minimum distance from y. In
addition, x is the minimising point if and only if

(y − x)⊤(x− x) ≤ 0, for all x ∈ S
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Separation and support of sets
y

y
x

x
x

x

S S

Closest-point theorem for a closed convex set (on the left). On the right, an
illustration on how the absence of convexity invalidates the result.

Some geometric facts:

▶ (y − x)⊤(x− x) ≤ 0 implies that the angle between (y − x)
and (x− x) is always greater than or equal to 90◦.

▶ S lies in the half-space p⊤(x− x) ≤ 0 relative to the
hyperplane p⊤(x− x) = 0, with normal p = (y − x).
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Separation of two sets and hyperplanes
Definition 8 (Separation of sets)

Let S1 and S2 be nonempty sets in Rn. H =
{
x : p⊤x = α

}
is said

to (properly) separate S1 and S2 if p⊤x ≥ α for each x ∈ S1 and
p⊤x ≤ α for each x ∈ S2 (and S1 ∪S2 ̸⊂ H). In addition, we have:

▶ Strict separation: p⊤x < α for each x ∈ S1 and p⊤x > α for
each x ∈ S2;

▶ Strong separation: p⊤x ≥ α+ ϵ for some ϵ > 0 and x ∈ S1,
and p⊤x ≤ α for each x ∈ S2.

S1

S2

S1

S2

S1

S2

H H H

Three types of separation between S1 and S2.
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Separation of a set and a point

The following separation theorem is a fundamental result from
which many other results will follow.

Theorem 9 (Separation theorem)

Let S ̸= ∅ be a closed convex set in Rn and y /∈ S. Then, there
exists a nonzero vector p ∈ Rn and α ∈ R such that p⊤x ≤ α for
each x ∈ S and p⊤y > α.

Proof.
Theorem 7 guarantees the existence of a unique minimising x ∈ S
such that (y − x)⊤(x− x) ≤ 0 for each x ∈ S. Let p = (y − x) ̸= 0
and α = x⊤(y − x) = p⊤x. Then we get p⊤x ≤ α for each x ∈ S,
while p⊤y − α = (y − x)⊤(y − x) = ||y − x||2 > 0.
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Separation of a set and a point

Remark: interesting consequences of Theorem 9:

▶ if S is closed and convex, then it is the intersection of all
half-spaces containing S.

▶ if y /∈ clo(conv(S)), then strong separation holds.

Theorem 9 plays a central role in the famous Farkas’ Theorem.

▶ states that a specific system of (in)equalities has a solution if a
related second system does not.

▶ Fundamental for deriving optimality conditions and infeasibility
certificates in LP problems.

▶ Several variants referred to as Farkas’ lemma can be found in
the optimisation literature.
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Farkas’ theorem
Theorem 10
Let A be an m× n matrix and c be an n-vector. Then exactly one
of the following two systems has a solution:

(1) : Ax ≤ 0, c⊤x > 0, x ∈ Rn

(2) : A⊤y = c, y ≥ 0, y ∈ Rm.

Proof.
Suppose (2) has a solution. Let x be such that Ax ≤ 0. Then
c⊤x = (A⊤y)⊤x = y⊤Ax ≤ 0. Hence, (1) has no solution.

Next, suppose (2) has no solution. Let S =
{
x : x = A⊤y, y ≥ 0

}
.Notice

that S is closed and convex and that c /∈ S. By Theorem 9, there exists
p ∈ Rn and α ∈ R such that p⊤c > α and p⊤x ≤ α for x ∈ S.

As 0 ∈ S, α ≥ 0 and p⊤c > 0. Also, α ≥ p⊤A⊤y = y⊤Ap for y ≥ 0. This
implies that Ap ≤ 0, and thus p satisfies (1).
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Geometry of the Farkas’ theorem
Consider the cone formed by the rows ai of A:
C = {c ∈ Rn : cj =

∑m
i=1 aijyi, j = 1, . . . , n, yi ≥ 0, i = 1, . . . ,m} .

Its polar cone is given by C0 = {x : Ax ≤ 0}.

If c ∈ C, then (2) has
a solution. Otherwise, (1) has a solution as

{
x : c⊤x > 0

}
∩C0 ̸= ∅.

C0 C0
C C

c

c
a1 a1

a2 a2

a3 a3

Geometrical illustration of the Farkas’ theorem. On the left, system (2) has a
solution, while on the right, system (1) has a solution
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Supporting of sets at boundary points

Definition 11 (Supporting hyperplane)

Let H =
{
x ∈ Rn : p⊤(x− x) = 0

}
, S ̸= ∅ be a set in Rn, and

x ∈ bou(S). H is a supporting hyperplane of S at x if either
S ⊆ H+ (i.e., p⊤(x− x) ≥ 0 for x ∈ S) or S ⊆ H−.

Note that H is a supporting hyperplane if p⊤x = inf
{
p⊤x : x ∈ S

}
(or p⊤x = sup

{
p⊤x : x ∈ S

}
).

S S Sx

x

p

p1
p2

p

px1

x2

Supporting hyperplanes for an arbitrary set.
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Supporting of sets at boundary points

An important characteristic of convex sets that we will use is that
they have supporting hyperplanes for all boundary points.

Theorem 12 (Support of convex sets)

Let S ̸= ∅ be a convex set in Rn, and
let x ∈ bou(S). Then there exists
p ̸= 0n such that p⊤(x− x) ≤ 0 for
each x ∈ clo(S).

The proof follows from Theorem 9,
without explicitly considering an y /∈ S
and by noticing that bou(S) ⊂ clo(S).

S

p

x

Supporting hyperplanes for
convex sets. Notice how every
boundary point has at least
one supporting hyperplane
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