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Last Week ...

▶ Convex sets;

▶ Weierstrass theorem;

▶ Farka’s theorem;
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Convexity of functions

Convexity is a key feature in optimisation.

In convex optimisation problems,
local optimality always implies global optimality.

Definition 1 (Convexity of a function)

Let f : S → R where S ⊆ Rn is a nonempty convex set. The
function f is said to be convex on S if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for each x1, x2 ∈ S and for each λ ∈ [0, 1].

Remarks:

▶ f is concave if −f is convex;
▶ if strict inequality holds, f is strictly convex.

Fernando Dias Convex functions 3/27



Convexity of functions

Convexity is a key feature in optimisation.

In convex optimisation problems,
local optimality always implies global optimality.

Definition 1 (Convexity of a function)

Let f : S → R where S ⊆ Rn is a nonempty convex set. The
function f is said to be convex on S if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for each x1, x2 ∈ S and for each λ ∈ [0, 1].

Remarks:

▶ f is concave if −f is convex;
▶ if strict inequality holds, f is strictly convex.

Fernando Dias Convex functions 3/27



Convexity of functions
Examples of convex functions:

▶ f(x) = a⊤x+ b;

▶ f(x) = ex;
▶ f(x) = xp on R+ for p ≤ 0 or p ≥ 1; concave for 0 ≤ p ≤ 1;
▶ f(x) = ||x||p (p-norm);
▶ f(x) = log x and negative entropy f(x) = −x log x are

concave;
▶ f(x) = max {x1, . . . , xn}.
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Convexity of functions

Convexity preserving operations:

▶ let f1, . . . , fk : Rn → R be convex. Then these are convex:

– f(x) =
∑k

j=1 αjfj(x) where αj > 0 for j = 1, . . . , k;
– f(x) = max {f1(x), . . . , fk(x)};

▶ f(x) = 1
g(x) on S, where g : Rn → R is concave and

S = {x : g(x) > 0};
▶ f(x) = g(h(x)), where g : R → R is a nondecreasing convex

function and h : Rn → R is convex.

▶ f(x) = g(h(x)), where g : Rm →R is convex and h : Rn → Rm

is affine: h(x) = Ax+ b with A ∈ Rm×n and b ∈ Rm.
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Lower level sets

Definition 2 (Lower level set)

Let S ⊆ Rn be a nonempty set. The lower level set of f : Rn 7→ R
for α ∈ R is given by Sα = {x ∈ S : f(x) ≤ α} .

f(x) f(x)

x x

α α

The lower level sets Sα (in blue) of two functions, given a value of α. Notice the
nonconvexity of the level set of the nonconvex function (on the right)
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Convex functions and lower level sets
Convex level sets are necessary for one to be able to state global
optimality conditions.

Convex functions always present convex lower level sets. The
converse is not necessarily true.

Lemma 3
Let S ⊆ Rn be a nonempty convex set and f : S → R a convex
function. Then, any level set Sα with α ∈ R is convex.

Proof.
Let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S with f(x1) ≤ α and f(x2) ≤ α.
Let λ ∈ (0, 1) and x = λx1 + (1− λ)x2. Since S is convex, we have
x ∈ S. Now, by the convexity of f , we have

f(x) ≤ λf(x1) + (1− λ)f(x2) ≤ λα+ (1− λ)α = α

and thus x ∈ Sα.
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Epigraphs and convex functions
Convex functions can be characterised by examining supporting
hyperplanes of their epigraphs.

Definition 4 (Ephigraph)

Let S ⊆ Rn be a nonempty set and f : S → R. The epigraph of f is

epi(f) = {(x, y) : x ∈ S, y ∈ R, y ≥ f(x)} ⊆ Rn+1

Remark: the hypograph of f is {(x, y) : x∈ S, y ∈R, y ≤ f(x)}.

f(x) f(x)

x x

epi(f)
epi(f)

The epigraph epi()f of a convex function is a convex set (in grey on the left).
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Epigraphs and convex functions
Epigraphs can be used to infer the convexity of functions.

Theorem 5
Let S ⊆ Rn be a nonempty convex set and f : S → R. Then f is
convex if and only if epi(f) is a convex set.

Proof.
First, suppose f is convex and let (x1, y1), (x2, y2) ∈ epi(f). Then, for
λ ∈ (0, 1) we have

λy1 + (1− λ)y2 ≥ λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).

As λx1 + (1− λ)x2 ∈ S, (λx1 + (1− λ)x2, λy1 + (1− λ)y2) ∈ epi(f).

Conversely, suppose epi(f) is convex. For x1, x2 ∈ S. Then
(x1, f(x1)) ∈ epi(f), (x2, f(x2)) ∈ epi(f) and thus
(λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)) ∈ epi(f) for λ ∈ (0, 1).
These imply that λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2).
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Epigraphs and convex functions

As epigraphs are convex sets, they have supporting hyperplanes at
their boundary points, which leads to the notion of subgradients.

Definition 6 (Subgradients)

Let S ⊆ Rn be a nonempty convex set and f : S → R a convex
function. Then ξ ∈ Rn is a subgradient of f at x ∈ S if

f(x) ≥ f(x) + ξ⊤(x− x).

Remark: ∂f(x) =
{
ξ : f(x) ≥ f(x) + ξ⊤(x− x)

}
is the

subdifferential of f at x, which is convex.
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Subgradients
f(x)

x

ξ

ξ

∂f(x1)

∂f(x3)

∂f(x2) = ∇f(x2)

x1 x2 x3
A representation of the subdifferential (in grey) for nondifferentiable (x1 and x3)
and differentiable (x2) points
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Subgradients and supporting hyperplanes

Every convex function has at least one subgradient in the interior of
its domain, which can also be used to show convexity of f .

Theorem 7
Let S ⊆ Rn be a nonempty convex set and f : S → R a convex
function. Then for all x ∈ int(S), there exists ξ ∈ Rn such that

H =
{
(x, y) : y = f(x) + ξ⊤(x− x)

}
supports epi(f) at (x, f(x)). In particular,

f(x) ≥ f(x) + ξ⊤(x− x),∀x ∈ S.

Proof sketch: use Theorem 5 and the support of convex sets to
show that the subgradient inequality holds.
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Differentiability and gradients
Let us first define differentiability.

Definition 8
Let S ⊆ Rn be a nonempty set. f : S → R is differentiable at
x ∈ int(S) if there exists a vector ∇f(x), called
a gradient vector, and a function α : Rn → R such that

f(x) = f(x) +∇f(x)⊤(x− x) + ||x− x||α(x;x− x)

where limx→x α(x;x− x) = 0

Remarks:

▶ This is called the first-order (Taylor series) expansion of f .
Without the α term, it is the first-order approximation.

▶ If this holds for all x ∈ int(S), then f is differentiable in S.

▶ ∇f(x) =
(
∂f(x)
∂x1

, . . . , ∂f(x)∂xn

)
is unique.

Fernando Dias Convex functions 13/27



Differentiability and gradients
Let us first define differentiability.

Definition 8
Let S ⊆ Rn be a nonempty set. f : S → R is differentiable at
x ∈ int(S) if there exists a vector ∇f(x), called
a gradient vector, and a function α : Rn → R such that

f(x) = f(x) +∇f(x)⊤(x− x) + ||x− x||α(x;x− x)

where limx→x α(x;x− x) = 0

Remarks:

▶ This is called the first-order (Taylor series) expansion of f .
Without the α term, it is the first-order approximation.

▶ If this holds for all x ∈ int(S), then f is differentiable in S.

▶ ∇f(x) =
(
∂f(x)
∂x1

, . . . , ∂f(x)∂xn

)
is unique.

Fernando Dias Convex functions 13/27



Differentiability and gradients
If f is convex and differentiable, ∂(x) is the singleton {∇f(x)}.

Lemma 9
Let S ⊆ Rn be a nonempty convex set and f : S → R a convex
function. Suppose that f is differentiable at x ∈ int(S). Then
∂f(x) = {∇f(x)} is a singleton.

Proof.
From Theorem 7, ∂f(x) ̸= ∅. Moreover, combining the existence of a
subgradient ξ and differentiability of f at x, we obtain:

f(x+ λd) ≥ f(x) + λξ⊤d (1)

f(x+ λd) = f(x) + λ∇f(x)⊤d+ λ||d||α(x;λd) (2)

Subtracting (2) from (1), we get 0 ≥ λ(ξ −∇f(x))⊤d− λ||d||α(x;λd).
Dividing by λ > 0 and letting λ → 0+, we obtain (ξ −∇f(x))⊤d ≤ 0.
Now, by setting d = ξ −∇f(x), it becomes clear that ξ = ∇f(x).
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Differentiability and gradients

Theorem 10 gives an important characterisation of convex
differentiable functions.

(Differentiable) functions are convex if and only if they are always
underestimated by affine (first-order) approximations at x.

Theorem 10
Let S ⊆ Rn be a nonempty convex open set, and let f : S → R be
differentiable on S. f is convex if and only if for any x ∈ S, we have

f(x) ≥ f(x) +∇f(x)⊤(x− x), ∀x ∈ S.

Proof sketch: combine Theorem 7 and Lemma 9.

Remark: this powerful tool, known as affine bounding, is a part of
many optimisation algorithms.
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Second-order differentiability

A function is twice differentiable if it has a second order expansion.

Definition 11 (second-order differentiability)
Let S ⊆ Rn be a nonempty set, and let f : S → R. Then f is twice
differentiable at x ∈ int(S) if there exists, for each x ∈ S, a vector
∇f(x) ∈ Rn, an n× n symmetric matrix H(x) (the Hessian), and a
function α : Rn → R such that

f(x) = f(x)+∇f(x)⊤(x−x)+
1

2
(x−x)⊤H(x)(x−x)+||x−x||2α(x;x−x)

where limx→x α(x;x− x) = 0.
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Second-order differentiability

Remarks:

1. Let fij(x) =
∂2f(x)
∂xi∂xj

. The Hessian H(x) at x is given by

H(x) =

f11(x) . . . f1n(x)
...

. . .
...

fn1(x) . . . fnn(x)


2. The Hessian is positive semi-definite at x if x⊤H(x)x ≥ 0 for

x ∈ Rn.

Example: f(x1, x2) = 2x1 + 6x2 − 2x21 − 3x22 + 4x1x2.

∇f(x) =

[
2− 4x1 + 4x2
6− 6x2 + 4x1

]
and H(x) =

[
−4 −6
−4 −6

]
.
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Second-order differentiability

Positive semidefinite Hessians are used to infer convexity.

Theorem 12
Let S ⊆ Rn be a nonempty convex open set, and let f : S → R be
twice differentiable on S.Then f is convex if and only if the Hessian
matrix is positive semidefinite (PSD) at each point in S.

Remarks:

▶ Checking for PSD of Hessians can be done efficiently using
Gauss-Jordan eliminations;

▶ Positive definite Hessians (x⊤H(x)x > 0 for x ∈ Rn) imply
strict convexity.
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Quasiconvexity
Some of the results for convex functions can be generalised to
nonconvex functions that possess convex lower level sets.

Definition 13 (quasiconvex functions)

Let S ⊆ Rn be a nonempty convex set and f : S → R. Function f
is quasiconvex if, for each x1, x2 ∈ S and λ ∈ (0, 1), we have

f(λx1 + (1− λ)x2) ≤ max {f(x1), f(x2)} .

f(x) f(x)

x xx1 x2

f(x1)

f(x2)

α

Sα

Fernando Dias Convex functions 19/27



Quasiconvexity
Some of the results for convex functions can be generalised to
nonconvex functions that possess convex lower level sets.

Definition 13 (quasiconvex functions)

Let S ⊆ Rn be a nonempty convex set and f : S → R. Function f
is quasiconvex if, for each x1, x2 ∈ S and λ ∈ (0, 1), we have

f(λx1 + (1− λ)x2) ≤ max {f(x1), f(x2)} .

f(x) f(x)

x xx1 x2

f(x1)

f(x2)

α

Sα

Fernando Dias Convex functions 19/27



Quasiconvexity

Examples of quasi-convex functions:

▶ f(x) =
√
||x||1

▶ f(x) = log x is quasilinear for x > 0

▶ f(x) = inf {z ∈ Z : z ≥ x} is quasilinear

▶ f(x1, x2) = x1x2 is quasiconcave on
S =

{
(x1, x2) ∈ R2 : x1, x2 > 0

}
▶ f(x1, x2) = log(x21 + x22)

Remark: f is quasiconcave if −f is quasiconvex. Quasilinear
functions are both quasiconvex and quasiconcave.
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Quasiconvexity
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Quasiconvexity

Quasiconvex functions do not necessarily have convex epigraphs.
However, their lower level sets are convex.

Theorem 14
Let S ⊆ Rn be a nonempty convex set and f : S → R. Function f
is quasiconvex if and only if Sα = {x ∈ S : f(x) ≤ α} is convex for
all α ∈ R.

Proof.
Suppose f is quasiconvex and let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S and
max {f(x1), f(x2)} ≤ α. Let x = λx1 + (1− λ)x2 for λ ∈ (0, 1). As S is
convex, x ∈ S. By quasiconvexity of f ,

f(x) ≤ max {f(x1), f(x2)} ≤ α.

Hence, x ∈ Sα and Sα is convex.
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Quasiconvexity

Proof (cont.)
Conversely, assume that Sα is convex for α ∈ R. Let x1, x2 ∈ S, and let
x = λx1 + (1− λ)x2 for λ ∈ (0, 1). Thus, for α = max {f(x1), f(x2)}, we
have x1, x2 ∈ Sα. The convexity of Sα implies that x ∈ Sα, and thus
f(x) ≤ α = max {f(x1), f(x2)}, which implies that f is quasiconvex.

One important property of continuous quasiconvex functions is the
following first-order condition.

Theorem 15
Let S ⊆ Rn be a nonempty open convex set, and let f : S → R
be differentiable on S. Then f is quasiconvex if and only if, for
x1, x2 ∈ S and f(x1) ≤ f(x2), ∇f(x2)

⊤(x1 − x2) ≤ 0.

Remark: geometrically, this means that ∇f(x2) defines a
supporting hyperplane to the (convex) lower level set Sf(x2) at x2.
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Quasiconvexity and pseudoconvexity

For a quasiconvex function, local optimality does not generalise to
the entire domain, unless the function is strictly quasiconvex.

Definition 16 (strict quasiconvexity)

Let S ⊆ Rn be a nonempty convex set and f : S → R. Function f
is strictly quasiconvex if, for each x1, x2 ∈ S with f(x1) ̸= f(x2)
and λ ∈ (0, 1), we have

f(λx1 + (1− λ)x2) < max {f(x1), f(x2)} .

Remark:

1. Notice that the definition precludes the existence of flat spots
anywhere else than at extreme points.

2. Pseudoconvex functions are those for which the first-order
conditions in Theorem 15 are sufficient for global optimality.
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