MS-E2122 - Nonlinear Optimization Lecture IV

Fernando Dias

Department of Mathematics and Systems Analysis

Aalto University School of Science

September 26, 2023

Outline of this lecture

[Recognising optimality](#page-3-0)

[Minima and maxima in optimisation](#page-4-0)

[Optimality conditions](#page-10-0)

[First- and second-order conditions](#page-17-0)

Last Week

▶ Convexity:

- Differentiability;
- Quasiconvexity: Hessian Matrix.

Last week...

F ernando Dias $1/17$

Outline of this lecture

[Recognising optimality](#page-3-0)

[Minima and maxima in optimisation](#page-4-0)

[Optimality conditions](#page-10-0)

[First- and second-order conditions](#page-17-0)

Preliminary definitions

Let $f : \mathbb{R}^n \to \mathbb{R}$. Consider the problem (P) : min. $\{f(x) : x \in S\}$. Some important terminology:

▶ feasible solution: $\overline{x} \in S$;

Preliminary definitions

Let $f : \mathbb{R}^n \to \mathbb{R}$. Consider the problem (P) : min. $\{f(x) : x \in S\}$. Some important terminology:

▶ feasible solution: $\overline{x} \in S$;

▶ local optimal solution: $\overline{x} \in S$ has a neighbourhood $N_{\epsilon}(\overline{x}) = \{x : ||x - \overline{x}|| \leq \epsilon\}$ for some $\epsilon > 0$ such that $f(\overline{x}) \leq f(x)$ for each $x \in S \cap N_{\epsilon}(\overline{x})$.

Preliminary definitions

Let $f : \mathbb{R}^n \to \mathbb{R}$. Consider the problem (P) : min. $\{f(x) : x \in S\}$. Some important terminology:

▶ feasible solution: $\overline{x} \in S$:

▶ local optimal solution: $\overline{x} \in S$ has a neighbourhood $N_{\epsilon}(\overline{x}) = \{x : ||x - \overline{x}|| < \epsilon\}$ for some $\epsilon > 0$ such that $f(\overline{x}) \leq f(x)$ for each $x \in S \cap N_{\epsilon}(\overline{x})$.

▶ global optimal solution: $\overline{x} \in S$ with $f(\overline{x}) \leq f(x)$ for all $x \in S$.

The importance of convexity

The following is the most fundamental result in optimisation:

Theorem 1 (global optimality of convex problems)

Let $S \subseteq \mathbb{R}^n$ be a nonempty convex set and $f : S \to \mathbb{R}$ convex on S. Consider the problem (P) : min. $\{f(x): x \in S\}$. Suppose \overline{x} is a local optimal solution to P. Then \overline{x} is a global optimal solution.

Proof.

Since \bar{x} is a local optimal solution, there exists $N_{\epsilon}(\bar{x})$ such that, for each $x \in S \cap N_{\epsilon}(\overline{x})$, $f(\overline{x}) \le f(x)$. By contradiction, suppose \overline{x} is not a global optimal solution. Then, there exists a solution $\hat{x} \in S$ so that $f(\hat{x}) < f(\overline{x})$. Now, for any $\lambda \in [0, 1]$, the convexity of f implies:

$$
f(\lambda \hat{x} + (1-\lambda)\overline{x}) \leq \lambda f(\hat{x}) + (1-\lambda)f(\overline{x}) < \lambda f(\overline{x}) + (1-\lambda)f(\overline{x}) = f(\overline{x})
$$

However, for $\lambda > 0$ sufficiently small, $\lambda \hat{x} + (1 - \lambda)\overline{x} \in S \cap N_{\epsilon}(\overline{x})$, which contradicts the local optimality of \overline{x} . Thus, \overline{x} is a global optimum. П

Fernando Dias [Recognising optimality](#page-3-0) 6/17

Optimality conditions

Theorem [2](#page-10-1) gives a certificate for global optimal solutions for convex optimisation problems.

Theorem 2 (optimality condition)

Let $S \subseteq \mathbb{R}^n$ be a nonempty convex set and $f : \mathbb{R}^n \to \mathbb{R}$ convex on S. Consider the problem (P) : min. $\{f(x) : x \in S\}$. Then, $\overline{x} \in S$ is an optimal solution to P if and only if f has a subgradient ξ at \overline{x} such that $\xi^\top (x-\overline{x})\geq 0$ for all $x\in S.$

Proof

Suppose that $\xi^\top (x-\overline{x})\geq 0$ for all $x\in S,$ where ξ is a subgradient of f at \overline{x} . By convexity of f, we have, for all $x \in S$

$$
f(x) \ge f(\overline{x}) + \xi^{\top}(x - \overline{x}) \ge f(\overline{x})
$$

and hence \bar{x} is optimal.

Fernando Dias **Recognising optimality Recognising optimality 1/17**

Optimality conditions Proof (cont.)

Conversely, suppose that \bar{x} is optimal for P. Construct the sets:

$$
\Lambda_1 = \{ (x - \overline{x}, y) : x \in \mathbb{R}^n, y > f(x) - f(\overline{x}) \}
$$

$$
\Lambda_2 = \{ (x - \overline{x}, y) : x \in S, y \le 0 \}
$$

Note that Λ_1 and Λ_2 are convex. By optimality of \overline{x} , $\Lambda_1 \cap \Lambda_2 = \emptyset$. Using the separation theorem, there exists a hyperplane defined by $(\xi_0, \mu) \neq 0$ and α that separates Λ_1 and Λ_2 :

$$
\xi_0^\top (x - \overline{x}) + \mu y \le \alpha, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x}) \tag{1}
$$

$$
\xi_0^\top (x - \overline{x}) + \mu y \ge \alpha, \ \forall x \in S, \quad y \le 0. \tag{2}
$$

Letting $x = \overline{x}$ and $y = 0$ in [\(2\)](#page-11-0), we get $\alpha \leq 0$. Next, letting $x = \overline{x}$ and $y = \epsilon > 0$ in [\(1\)](#page-11-1), we obtain $\alpha \geq \mu \epsilon$. As this holds for any $\epsilon > 0$, Fernando Dias
We must have $\mu \leq 0$ and $\alpha \geq 0$, the latter implying $\alpha = 0$.

Optimality conditions

Proof (cont.)

If $\mu=0$, we get from (1) that $\xi_0^\top (x-\overline{x})\leq 0$ for all $x\in\R^n.$ Now, by letting $x = \overline{x} + \xi_0$, it follows that $\xi_0^{\top}(x - \overline{x}) = ||\xi_0||^2 \leq 0$, and thus $\xi_0 = 0$. Since $(\xi_0, \mu) \neq 0$, we must have $\mu < 0$.

Dividing [\(1\)](#page-11-1) and [\(2\)](#page-11-0) by $-\mu$ and denoting $\xi = \frac{-\xi_0}{\mu}$ $\frac{-\xi_0}{\mu}$, we obtain:

$$
\xi^{\top}(x-\overline{x}) \le y, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x}) \tag{3}
$$

$$
\xi^{\top}(x-\overline{x}) \ge y, \ \forall x \in S, \quad y \le 0 \tag{4}
$$

Letting $y=0$ in [\(4\)](#page-12-0), we get $\xi^\top (x-\overline{x})\geq 0$ for all $x\in S.$ From [\(3\)](#page-12-1), we can see that $y > f(x) - f(\overline{x})$ and $y \geq \xi^\top (x - \overline{x}).$ Thus, $f(x) - f(\overline{x}) \geq \xi^\top(x - \overline{x})$, which is the subgradient inequality.

Thus ξ is a subgradient at \overline{x} with $\xi^\top (x-\overline{x}) \geq 0$ for all $x \in S.$ \Box

Fernando Dias **Recognising optimality** 8/17 and 19/17

Optimality conditions

Theorem [2](#page-10-1) leads to two important corollaries:

Corollary 3 (optimality in open sets)

Under the conditions of Theorem [2,](#page-10-1) if S is open, \overline{x} is an optimal solution to P if and only if $0 \in \partial f(\overline{x})$.

Proof

From Theorem [2,](#page-10-1) \bar{x} is optimal if and only if ξ is a subgradient at \bar{x} with $\xi^\top (x-\overline{x})\geq 0$ for all $x\in S.$ Since S is open, $x=\overline{x}-\lambda \xi \in S$ for some $\lambda > 0$, and thus $-\lambda ||\xi||^2 > 0$, which implies $\xi = 0$.

Corollary 4 (optimality for differentiable functions)

Suppose that $S \subseteq \mathbb{R}^n$ is a nonempty convex set and $f : S \to \mathbb{R}$ a differentiable convex function on S. Then $\overline{x} \in S$ is optimal if and only if $\nabla f(\overline{x})^\top (x-\overline{x})\geq 0$ for all $x\in S.$ Moreover, if S is open, then \bar{x} is optimal if and only if $\nabla f(\bar{x}) = 0$.

Fernando Dias **Recognising optimality** 10/17

Optimality conditions Example 1:

min. $\left(x_1 - \frac{3}{2}\right)$ 2 $\bigg)^2 + (x_2 - 5)^2$ subject to: $-x_1 + x_2 \leq 2$ $2x_1 + 3x_2 \leq 11$ $x_1 \geq 0$ $x_2 \geq 0$

Optimality conditions Example 2:

min. $(x_1 - 3)^2 + (x_2 - 2)^2$ subject to: $x_1 + x_2 \leq 3$ $x_1^2 + x_2^2 \leq 5$ $x_1 \geq 0$ $x_2 \geq 0$

We can derive necessary first- and second-order optimality conditions for unconstrained problems assuming differentiability.

Theorem 5 (descent direction)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \overline{x} . If there is d such that $\nabla f(\overline{x})^\top d < 0$, there exists $\delta > 0$ such that $f(\overline{x} + \lambda d) < f(\overline{x})$ for each $\lambda \in (0, \delta)$, so that d is a descent direction of f at \overline{x} .

Proof

By differentiability of f at \overline{x} , we have that

$$
\frac{f(\overline{x} + \lambda d) - f(\overline{x})}{\lambda} = \nabla f(\overline{x})^{\top} d + ||d|| \alpha(\overline{x}; \lambda d).
$$

Since $\nabla f(\overline{x})^\top d < 0$ and $\alpha(\overline{x}; \lambda d) \to 0$ when $\lambda \to 0$ for some $\lambda \in (0, \delta)$, we must have $f(\overline{x} + \lambda d) - f(\overline{x}) < 0$.

Fernando Dias **Recognising optimality** 13/17

The first-order necessary condition follows from Theorem [5.](#page-16-0)

Corollary 6 (first-order necessary condition)

Suppose $f:\mathbb{R}^n\to\mathbb{R}$ is differentiable at \overline{x} . If \overline{x} is a local minimum, then $\nabla f(\overline{x}) = 0$.

Proof

By contradiction, suppose that \overline{x} is a local minimum with $\nabla f(\overline{x}) \neq 0$. Then, $\nabla f(\overline{x})^{\top} d = -||\nabla f(\overline{x})||^2 < 0$ for $d = -\nabla f(\overline{x})$. By Theorem [5,](#page-16-0) there exists a $\delta > 0$ such that $f(\overline{x} + \lambda d) < f(\overline{x})$ for all $\lambda \in (0, \delta)$, thus contradicting the optimality of \overline{x} .

Remark: Theorem [5](#page-16-0) and Corollary [6](#page-17-1) can be combined to design a rudimentary optimisation algorithm.

The second-order necessary condition is based on semi-definiteness of the Hessian of f, $H(\overline{x})$, at \overline{x} .

Theorem 7 (second-order necessary condition)

Suppose $f:\mathbb{R}^n\to\mathbb{R}$ is twice differentiable at $\overline{x}.$ If \overline{x} is a local minimum, then $H(\overline{x})$ is positive semidefinite.

Proof.

Take an arbitrary direction d . As f is twice differentiable, we have:

$$
f(\overline{x} + \lambda d) = f(\overline{x}) + \lambda \nabla f(\overline{x})^\top d + \frac{1}{2} \lambda^2 d^\top H(\overline{x}) d + \lambda^2 ||d||^2 \alpha(\overline{x}; \lambda d)
$$

since \bar{x} is a local minimum, Corollary [6](#page-17-1) implies that $\nabla f(\bar{x}) = 0$ and $f(\overline{x} + \lambda d) \geq f(\overline{x}).$

Fernando Dias **Recognising optimality** 15/17

Proof (Cont.)

Rearranging terms and dividing by $\lambda^2>0$ we obtain

$$
\frac{f(\overline{x} + \lambda d) - f(\overline{x})}{\lambda^2} = \frac{1}{2}d^\top H(\overline{x})d + ||d||^2 \alpha(\overline{x}; \lambda d).
$$

Since $\alpha(\overline{x};\lambda d)\to 0$ as $\lambda\to 0$, we have that $d^\top H(\overline{x})d\geq 0.$ П

These conditions are also sufficient in the following cases:

- 1. If $H(\overline{x})$ is positive definite, the second-order condition becomes sufficient for local optimality.
- 2. If f is convex, the first-order condition becomes necessary and sufficient for global optimality.

The convexity of f implies that the first-order conditions are necessary and sufficient for global optimality.

Theorem 8

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ be convex. Then \overline{x} is a global minimum if and only if $\nabla f(\overline{x}) = 0$.

Proof.

From Corollary [6,](#page-17-1) if \bar{x} is a global minimum, then $\nabla f(\bar{x}) = 0$. Now, since f is convex, we have that

$$
f(x) \ge f(\overline{x}) + \nabla f(\overline{x})^{\top} (x - \overline{x})
$$

Suppose that $\nabla f(\overline{x})=0.$ This implies that $\nabla f(\overline{x})^\top (x-\overline{x})=0$ for each $x \in \mathbb{R}^n$, thus implying that $f(\overline{x}) \le f(x)$ for all $x \in \mathbb{R}^n$. \Box

Fernando Dias **Recognising optimality** 17/17