MS-E2122 - Nonlinear Optimization Lecture IV

Fernando Dias

Department of Mathematics and Systems Analysis

Aalto University School of Science

September 26, 2023

Outline of this lecture

Recognising optimality

Minima and maxima in optimisation

Optimality conditions

First- and second-order conditions

Last Week

Convexity:

- Differentiability;
- Quasiconvexity: Hessian Matrix.

Last week

Outline of this lecture

Recognising optimality

Minima and maxima in optimisation

Optimality conditions

First- and second-order conditions

Preliminary definitions

Let $f : \mathbb{R}^n \to \mathbb{R}$. Consider the problem $(P) : \min \{f(x) : x \in S\}$. Some important terminology:

• feasible solution: $\overline{x} \in S$;

Preliminary definitions

Let $f : \mathbb{R}^n \to \mathbb{R}$. Consider the problem $(P) : \min \{f(x) : x \in S\}$. Some important terminology:

• feasible solution: $\overline{x} \in S$;

▶ local optimal solution: $\overline{x} \in S$ has a neighbourhood $N_{\epsilon}(\overline{x}) = \{x : ||x - \overline{x}|| \le \epsilon\}$ for some $\epsilon > 0$ such that $f(\overline{x}) \le f(x)$ for each $x \in S \cap N_{\epsilon}(\overline{x})$.

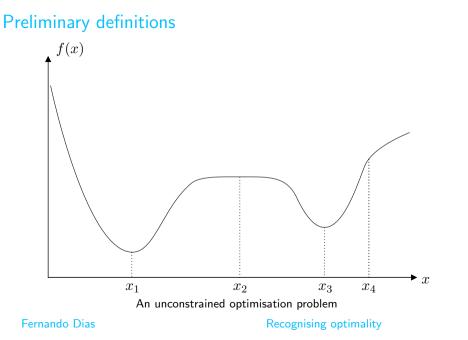
Preliminary definitions

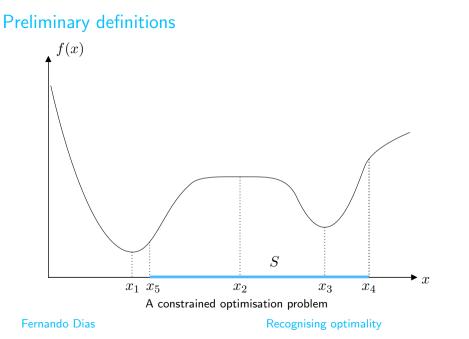
Let $f : \mathbb{R}^n \to \mathbb{R}$. Consider the problem $(P) : \min \{f(x) : x \in S\}$. Some important terminology:

• feasible solution: $\overline{x} \in S$;

▶ local optimal solution: $\overline{x} \in S$ has a neighbourhood $N_{\epsilon}(\overline{x}) = \{x : ||x - \overline{x}|| \leq \epsilon\}$ for some $\epsilon > 0$ such that $f(\overline{x}) \leq f(x)$ for each $x \in S \cap N_{\epsilon}(\overline{x})$.

b global optimal solution: $\overline{x} \in S$ with $f(\overline{x}) \leq f(x)$ for all $x \in S$.





The importance of convexity

The following is the most fundamental result in optimisation:

Theorem 1 (global optimality of convex problems)

Let $S \subseteq \mathbb{R}^n$ be a nonempty convex set and $f: S \to \mathbb{R}$ convex on S. Consider the problem $(P): \min$. $\{f(x): x \in S\}$. Suppose \overline{x} is a local optimal solution to P. Then \overline{x} is a global optimal solution.

Proof.

Since \overline{x} is a local optimal solution, there exists $N_{\epsilon}(\overline{x})$ such that, for each $x \in S \cap N_{\epsilon}(\overline{x})$, $f(\overline{x}) \leq f(x)$. By contradiction, suppose \overline{x} is not a global optimal solution. Then, there exists a solution $\hat{x} \in S$ so that $f(\hat{x}) < f(\overline{x})$. Now, for any $\lambda \in [0, 1]$, the convexity of f implies:

$$f(\lambda \hat{x} + (1-\lambda)\overline{x}) \leq \lambda f(\hat{x}) + (1-\lambda)f(\overline{x}) < \lambda f(\overline{x}) + (1-\lambda)f(\overline{x}) = f(\overline{x})$$

However, for $\lambda > 0$ sufficiently small, $\lambda \hat{x} + (1 - \lambda)\overline{x} \in S \cap N_{\epsilon}(\overline{x})$, which contradicts the local optimality of \overline{x} . Thus, \overline{x} is a global optimum.

Fernando Dias

Optimality conditions

Theorem 2 gives a certificate for global optimal solutions for convex optimisation problems.

Theorem 2 (optimality condition)

Let $S \subseteq \mathbb{R}^n$ be a nonempty convex set and $f : \mathbb{R}^n \to \mathbb{R}$ convex on S. Consider the problem $(P) : \min$. $\{f(x) : x \in S\}$. Then, $\overline{x} \in S$ is an optimal solution to P if and only if f has a subgradient ξ at \overline{x} such that $\xi^{\top}(x - \overline{x}) \ge 0$ for all $x \in S$.

Proof.

Suppose that $\xi^{\top}(x - \overline{x}) \ge 0$ for all $x \in S$, where ξ is a subgradient of f at \overline{x} . By convexity of f, we have, for all $x \in S$

$$f(x) \ge f(\overline{x}) + \xi^{\top}(x - \overline{x}) \ge f(\overline{x})$$

and hence \overline{x} is optimal.

Fernando Dias

Optimality conditions Proof (cont.)

Conversely, suppose that \overline{x} is optimal for *P*. Construct the sets:

$$\Lambda_1 = \{ (x - \overline{x}, y) : x \in \mathbb{R}^n, y > f(x) - f(\overline{x}) \}$$

$$\Lambda_2 = \{ (x - \overline{x}, y) : x \in S, y \le 0 \}$$

Note that Λ_1 and Λ_2 are convex. By optimality of \overline{x} , $\Lambda_1 \cap \Lambda_2 = \emptyset$. Using the separation theorem, there exists a hyperplane defined by $(\xi_0, \mu) \neq 0$ and α that separates Λ_1 and Λ_2 :

$$\xi_0^\top(x-\overline{x}) + \mu y \le \alpha, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x})$$
(1)

$$\xi_0^\top (x - \overline{x}) + \mu y \ge \alpha, \ \forall x \in S, \quad y \le 0.$$
(2)

Letting $x = \overline{x}$ and y = 0 in (2), we get $\alpha \leq 0$. Next, letting $x = \overline{x}$ and $y = \epsilon > 0$ in (1), we obtain $\alpha \geq \mu \epsilon$. As this holds for any $\epsilon > 0$, Fernando Dias We must have $\mu \leq 0$ and $\alpha \geq 0$, the latter implying $\alpha = 0$.

Optimality conditions

Proof (cont.)

If $\mu = 0$, we get from (1) that $\xi_0^\top(x - \overline{x}) \leq 0$ for all $x \in \mathbb{R}^n$. Now, by letting $x = \overline{x} + \xi_0$, it follows that $\xi_0^\top(x - \overline{x}) = ||\xi_0||^2 \leq 0$, and thus $\xi_0 = 0$. Since $(\xi_0, \mu) \neq 0$, we must have $\mu < 0$.

Dividing (1) and (2) by $-\mu$ and denoting $\xi = \frac{-\xi_0}{\mu}$, we obtain:

$$\xi^{\top}(x-\overline{x}) \le y, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x})$$
 (3)

$$\xi^{\top}(x-\overline{x}) \ge y, \ \forall x \in S, \quad y \le 0$$
(4)

Letting y = 0 in (4), we get $\xi^{\top}(x - \overline{x}) \ge 0$ for all $x \in S$. From (3), we can see that $y > f(x) - f(\overline{x})$ and $y \ge \xi^{\top}(x - \overline{x})$. Thus, $f(x) - f(\overline{x}) \ge \xi^{\top}(x - \overline{x})$, which is the subgradient inequality. Thus ξ is a subgradient at \overline{x} with $\xi^{\top}(x - \overline{x}) \ge 0$ for all $x \in S$. \Box

Fernando Dias

Optimality conditions

Theorem 2 leads to two important corollaries:

Corollary 3 (optimality in open sets)

Under the conditions of Theorem 2, if S is open, \overline{x} is an optimal solution to P if and only if $0 \in \partial f(\overline{x})$.

Proof.

From Theorem 2, \overline{x} is optimal if and only if ξ is a subgradient at \overline{x} with $\xi^{\top}(x-\overline{x}) \geq 0$ for all $x \in S$. Since S is open, $x = \overline{x} - \lambda \xi \in S$ for some $\lambda > 0$, and thus $-\lambda ||\xi||^2 \geq 0$, which implies $\xi = 0$.

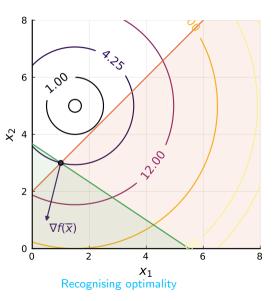
Corollary 4 (optimality for differentiable functions)

Suppose that $S \subseteq \mathbb{R}^n$ is a nonempty convex set and $f: S \to \mathbb{R}$ a differentiable convex function on S. Then $\overline{x} \in S$ is optimal if and only if $\nabla f(\overline{x})^\top (x - \overline{x}) \ge 0$ for all $x \in S$. Moreover, if S is open, then \overline{x} is optimal if and only if $\nabla f(\overline{x}) = 0$.

Fernando Dias

Optimality conditions Example 1:

min. $\left(x_1 - \frac{3}{2}\right)^2 + (x_2 - 5)^2$ subject to: $-x_1 + x_2 \le 2$ $2x_1 + 3x_2 \le 11$ $x_1 \ge 0$ $x_2 \ge 0$

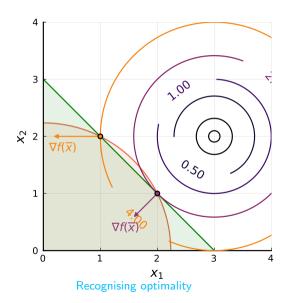


Fernando Dias

11/17

Optimality conditions Example 2:

min. $(x_1 - 3)^2 + (x_2 - 2)^2$ subject to: $x_1 + x_2 \le 3$ $x_1^2 + x_2^2 \le 5$ $x_1 \ge 0$ $x_2 \ge 0$



Fernando Dias

12/17

We can derive necessary first- and second-order optimality conditions for unconstrained problems assuming differentiability.

Theorem 5 (descent direction)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \overline{x} . If there is d such that $\nabla f(\overline{x})^\top d < 0$, there exists $\delta > 0$ such that $f(\overline{x} + \lambda d) < f(\overline{x})$ for each $\lambda \in (0, \delta)$, so that d is a descent direction of f at \overline{x} .

Proof.

By differentiability of f at \overline{x} , we have that

$$\frac{f(\overline{x} + \lambda d) - f(\overline{x})}{\lambda} = \nabla f(\overline{x})^{\top} d + ||d||\alpha(\overline{x};\lambda d).$$

Since $\nabla f(\overline{x})^{\top} d < 0$ and $\alpha(\overline{x}; \lambda d) \to 0$ when $\lambda \to 0$ for some $\lambda \in (0, \delta)$, we must have $f(\overline{x} + \lambda d) - f(\overline{x}) < 0$.

Fernando Dias

The first-order necessary condition follows from Theorem 5.

Corollary 6 (first-order necessary condition)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \overline{x} . If \overline{x} is a local minimum, then $\nabla f(\overline{x}) = 0$.

Proof.

By contradiction, suppose that \overline{x} is a local minimum with $\nabla f(\overline{x}) \neq 0$. Then, $\nabla f(\overline{x})^{\top} d = -||\nabla f(\overline{x})||^2 < 0$ for $d = -\nabla f(\overline{x})$. By Theorem 5, there exists a $\delta > 0$ such that $f(\overline{x} + \lambda d) < f(\overline{x})$ for all $\lambda \in (0, \delta)$, thus contradicting the optimality of \overline{x} .

Remark: Theorem 5 and Corollary 6 can be combined to design a rudimentary optimisation algorithm.

Fernando Dias

The second-order necessary condition is based on semi-definiteness of the Hessian of f, $H(\overline{x})$, at \overline{x} .

Theorem 7 (second-order necessary condition)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable at \overline{x} . If \overline{x} is a local minimum, then $H(\overline{x})$ is positive semidefinite.

Proof.

Take an arbitrary direction d. As f is twice differentiable, we have:

$$f(\overline{x} + \lambda d) = f(\overline{x}) + \lambda \nabla f(\overline{x})^{\top} d + \frac{1}{2} \lambda^2 d^{\top} H(\overline{x}) d + \lambda^2 ||d||^2 \alpha(\overline{x}; \lambda d)$$

since \overline{x} is a local minimum, Corollary 6 implies that $\nabla f(\overline{x}) = 0$ and $f(\overline{x} + \lambda d) \ge f(\overline{x})$.

Fernando Dias

Proof (Cont.)

Rearranging terms and dividing by $\lambda^2>0$ we obtain

$$\frac{f(\overline{x} + \lambda d) - f(\overline{x})}{\lambda^2} = \frac{1}{2} d^\top H(\overline{x}) d + ||d||^2 \alpha(\overline{x}; \lambda d).$$

Since $\alpha(\overline{x}; \lambda d) \to 0$ as $\lambda \to 0$, we have that $d^{\top}H(\overline{x})d \ge 0$.

These conditions are also sufficient in the following cases:

- 1. If $H(\overline{x})$ is positive definite, the second-order condition becomes sufficient for local optimality.
- 2. If f is convex, the first-order condition becomes necessary and sufficient for global optimality.

Fernando Dias

The convexity of f implies that the first-order conditions are necessary and sufficient for global optimality.

Theorem 8

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ be convex. Then \overline{x} is a global minimum if and only if $\nabla f(\overline{x}) = 0$.

Proof.

From Corollary 6, if \overline{x} is a global minimum, then $\nabla f(\overline{x}) = 0$. Now, since f is convex, we have that

$$f(x) \ge f(\overline{x}) + \nabla f(\overline{x})^{\top} (x - \overline{x})$$

Suppose that $\nabla f(\overline{x}) = 0$. This implies that $\nabla f(\overline{x})^{\top}(x - \overline{x}) = 0$ for each $x \in \mathbb{R}^n$, thus implying that $f(\overline{x}) \leq f(x)$ for all $x \in \mathbb{R}^n$.

Fernando Dias