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Last Week

▶ Convexity:

– Differentiability;
– Quasiconvexity: Hessian

Matrix.
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Preliminary definitions
Let f : Rn → R. Consider the problem (P ) : min. {f(x) : x ∈ S}.
Some important terminology:

▶ feasible solution: x ∈ S;

▶ local optimal solution: x ∈ S has a neighbourhood
Nϵ(x) = {x : ||x− x|| ≤ ϵ} for some ϵ > 0 such that
f(x) ≤ f(x) for each x ∈ S ∩Nϵ(x).

▶ global optimal solution: x ∈ S with f(x) ≤ f(x) for all x ∈ S.
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Preliminary definitions

f(x)

xx1 x2 x3 x4
An unconstrained optimisation problem
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Preliminary definitions

f(x)

xx1 x2 x3 x4x5

S

A constrained optimisation problem

Fernando Dias Recognising optimality 5/17



The importance of convexity
The following is the most fundamental result in optimisation:

Theorem 1 (global optimality of convex problems)

Let S ⊆ Rn be a nonempty convex set and f : S → R convex on S.
Consider the problem (P ) : min. {f(x) : x ∈ S}. Suppose x is a local
optimal solution to P . Then x is a global optimal solution.

Proof.
Since x is a local optimal solution, there exists Nϵ(x) such that, for each
x ∈ S ∩Nϵ(x), f(x) ≤ f(x). By contradiction, suppose x is not a global
optimal solution. Then, there exists a solution x̂ ∈S so that f(x̂) < f(x).
Now, for any λ ∈ [0, 1], the convexity of f implies:

f(λx̂+ (1− λ)x) ≤ λf(x̂) + (1− λ)f(x) < λf(x) + (1− λ)f(x) = f(x)

However, for λ > 0 sufficiently small, λx̂+ (1− λ)x ∈ S ∩Nϵ(x), which
contradicts the local optimality of x. Thus, x is a global optimum.
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Optimality conditions
Theorem 2 gives a certificate for global optimal solutions for convex
optimisation problems.

Theorem 2 (optimality condition)

Let S ⊆ Rn be a nonempty convex set and f : Rn → R convex on
S. Consider the problem (P ) : min. {f(x) : x ∈ S}. Then, x ∈ S is
an optimal solution to P if and only if f has a subgradient ξ at x
such that ξ⊤(x− x) ≥ 0 for all x ∈ S.

Proof.
Suppose that ξ⊤(x− x) ≥ 0 for all x ∈ S, where ξ is a subgradient
of f at x. By convexity of f , we have, for all x ∈ S

f(x) ≥ f(x) + ξ⊤(x− x) ≥ f(x)

and hence x is optimal.
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Optimality conditions
Proof (cont.)
Conversely, suppose that x is optimal for P . Construct the sets:

Λ1 = {(x− x, y) : x ∈ Rn, y > f(x)− f(x)}
Λ2 = {(x− x, y) : x ∈ S, y ≤ 0}

Note that Λ1 and Λ2 are convex. By optimality of x, Λ1 ∩ Λ2 = ∅.
Using the separation theorem, there exists a hyperplane defined by
(ξ0, µ) ̸= 0 and α that separates Λ1 and Λ2:

ξ⊤0 (x− x) + µy ≤ α, ∀x ∈ Rn, y > f(x)− f(x) (1)

ξ⊤0 (x− x) + µy ≥ α, ∀x ∈ S, y ≤ 0. (2)

Letting x = x and y = 0 in (2), we get α ≤ 0. Next, letting x = x
and y = ϵ > 0 in (1), we obtain α ≥ µϵ. As this holds for any ϵ > 0,
we must have µ ≤ 0 and α ≥ 0, the latter implying α = 0.Fernando Dias Recognising optimality 8/17



Optimality conditions

Proof (cont.)

If µ = 0, we get from (1) that ξ⊤0 (x− x) ≤ 0 for all x ∈ Rn. Now,
by letting x = x+ ξ0, it follows that ξ

⊤
0 (x− x) = ||ξ0||2 ≤ 0, and

thus ξ0 = 0. Since (ξ0, µ) ̸= 0, we must have µ < 0.

Dividing (1) and (2) by −µ and denoting ξ = −ξ0
µ , we obtain:

ξ⊤(x− x) ≤ y, ∀x ∈ Rn, y > f(x)− f(x) (3)

ξ⊤(x− x) ≥ y, ∀x ∈ S, y ≤ 0 (4)

Letting y = 0 in (4), we get ξ⊤(x− x) ≥ 0 for all x ∈ S. From (3),
we can see that y > f(x)− f(x) and y ≥ ξ⊤(x− x). Thus,
f(x)− f(x) ≥ ξ⊤(x− x), which is the subgradient inequality.

Thus ξ is a subgradient at x with ξ⊤(x− x) ≥ 0 for all x ∈ S.
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Optimality conditions
Theorem 2 leads to two important corollaries:

Corollary 3 (optimality in open sets)

Under the conditions of Theorem 2, if S is open, x is an optimal
solution to P if and only if 0 ∈ ∂f(x).

Proof.
From Theorem 2, x is optimal if and only if ξ is a subgradient at x
with ξ⊤(x− x) ≥ 0 for all x ∈ S. Since S is open, x = x− λξ ∈ S
for some λ > 0, and thus −λ||ξ||2 ≥ 0, which implies ξ = 0.

Corollary 4 (optimality for differentiable functions)

Suppose that S ⊆ Rn is a nonempty convex set and f : S → R a
differentiable convex function on S. Then x ∈ S is optimal if and
only if ∇f(x)⊤(x− x) ≥ 0 for all x ∈ S. Moreover, if S is open,
then x is optimal if and only if ∇f(x) = 0.
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Optimality conditions
Example 1:

min.

(
x1 −

3

2

)2

+ (x2 − 5)2

subject to: − x1 + x2 ≤ 2

2x1 + 3x2 ≤ 11
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x2 ≥ 0
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Optimality conditions
Example 2:

min. (x1 − 3)2 + (x2 − 2)2

subject to: x1 + x2 ≤ 3

x2
1 + x2

2 ≤ 5

x1 ≥ 0

x2 ≥ 0
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Optimality for unconstrained problems

We can derive necessary first- and second-order optimality
conditions for unconstrained problems assuming differentiability.

Theorem 5 (descent direction)

Suppose f : Rn → R is differentiable at x. If there is d such that
∇f(x)⊤d < 0, there exists δ > 0 such that f(x+ λd) < f(x) for
each λ ∈ (0, δ), so that d is a descent direction of f at x.

Proof.
By differentiability of f at x, we have that

f(x+ λd)− f(x)

λ
= ∇f(x)⊤d+ ||d||α(x;λd).

Since ∇f(x)⊤d < 0 and α(x;λd) → 0 when λ → 0 for some
λ ∈ (0, δ), we must have f(x+ λd)− f(x) < 0.
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Optimality for unconstrained problems

The first-order necessary condition follows from Theorem 5.

Corollary 6 (first-order necessary condition)

Suppose f : Rn → R is differentiable at x. If x is a local minimum,
then ∇f(x) = 0.

Proof.
By contradiction, suppose that x is a local minimum with
∇f(x) ̸= 0. Then, ∇f(x)⊤d = −||∇f(x)||2 < 0 for d = −∇f(x).
By Theorem 5, there exists a δ > 0 such that f(x+ λd) < f(x) for
all λ ∈ (0, δ), thus contradicting the optimality of x.

Remark: Theorem 5 and Corollary 6 can be combined to design a
rudimentary optimisation algorithm.
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Optimality for unconstrained problems

The second-order necessary condition is based on semi-definiteness
of the Hessian of f , H(x), at x.

Theorem 7 (second-order necessary condition)

Suppose f : Rn → R is twice differentiable at x. If x is a local
minimum, then H(x) is positive semidefinite.

Proof.
Take an arbitrary direction d. As f is twice differentiable, we have:

f(x+ λd) = f(x) + λ∇f(x)⊤d+
1

2
λ2d⊤H(x)d+ λ2||d||2α(x;λd)

since x is a local minimum, Corollary 6 implies that ∇f(x) = 0 and
f(x+ λd) ≥ f(x).

Fernando Dias Recognising optimality 15/17



Optimality for unconstrained problems

Proof (Cont.)

Rearranging terms and dividing by λ2 > 0 we obtain

f(x+ λd)− f(x)

λ2
=

1

2
d⊤H(x)d+ ||d||2α(x;λd).

Since α(x;λd) → 0 as λ → 0, we have that d⊤H(x)d ≥ 0.

These conditions are also sufficient in the following cases:

1. If H(x) is positive definite, the second-order condition becomes
sufficient for local optimality.

2. If f is convex, the first-order condition becomes necessary and
sufficient for global optimality.
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Optimality for unconstrained problems

The convexity of f implies that the first-order conditions are
necessary and sufficient for global optimality.

Theorem 8
Let f : Rn 7→ R be convex. Then x is a global minimum if and only
if ∇f(x) = 0.

Proof.
From Corollary 6, if x is a global minimum, then ∇f(x) = 0. Now,
since f is convex, we have that

f(x) ≥ f(x) +∇f(x)⊤(x− x)

Suppose that ∇f(x) = 0. This implies that ∇f(x)⊤(x− x) = 0 for
each x ∈ Rn, thus implying that f(x) ≤ f(x) for all x ∈ Rn.

Fernando Dias Recognising optimality 17/17


	Recognising optimality
	Minima and maxima in optimisation
	Optimality conditions
	First- and second-order conditions


