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Abstract
In this lecture, we discuss the strategy of employing penalty functions to solve constrained opti-

misation problems. We also discuss the concept of penalised functions and demonstrate their asymp-
totical convergence properties. We consider a specific penalty method that has ties with Lagrangian
duality, the augmented Lagrangian method of multipliers (ALMM). Moreover, we present a variant
of ALMM, the alternating direction method of multipliers (ADMM), that allows for parallelisation
of problems with suitable structure.
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1 Penalty functions
The employment of penalty functions is a paradigm for solving constrained optimisation problems.

The central idea of this paradigm is to convert the constrained optimisation problem into an uncon-
strained optimisation problem that is augmented with a penalty function, which penalises violations of
the original constraints. The role of the penalty function is to allow steering the search towards feasible
solutions in the search for optimal solutions.

Consider the problem (P ) : min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}. A penalised version of P is
given by:

(Pµ) : min. {f(x) + µα(x) : x ∈ X},

where µ > 0 is a penalty term and α(x) : Rn 7→ R is a penalty function of the form:

α(x) =
m∑

i=1
ϕ(gi(x)) +

l∑
i=1

ψ(hi(x)). (1)

For α(x) to be a suitable penalty function, one must observe that ϕ : Rn 7→ R and ψ : Rn 7→ R are
continuous and satisfy:

ϕ(y) = 0 if y ≤ 0 and ϕ(y) > 0 if y > 0
ψ(y) = 0 if y = 0 and ψ(y) > 0 if y ̸= 0.

Typical options are ϕ(y) = ([y]+)p with p ∈ Z+ and ψ(y) = |y|p with p = 1 or p = 2.

Figure 1 illustrates the solution of (P ) : min. {x2
1 + x2

2 : x1 + x2 = 1, x ∈ R2} using a penalty-
based approach. Using α(x1, x2) = (x1 + x2 − 1)2, the penalised auxiliary problem Pµ becomes (Pµ) :
min. {x2

1 + x2
2 +µ(x1 + x2 − 1)2 : x ∈ R2}. Since fµ is convex and differentiable, necessary and sufficient

optimality conditions ∇fµ(x) = 0 imply:

x1 + µ(x1 + x2 − 1) = 0
x2 + µ(x1 + x2 − 1) = 0,

which gives x1 = x2 = µ
2µ+1 .

One can notice that, as µ increases, the solution of the unconstrained penalised problem, represented
by the level curves, becomes closer to the optimal of the original constrained problem P , represented by
the dot on the hyperplane defined by x1 + x2 = 1.

2



G z = f(x)

h(x) = ϵ

v(ϵ)

ϵµ
ϵµ2

ϵµ1

f + µ2h2 f + µ1h2

Figure 2: Geometric representation of penalised problems in the mapping G = [h(x), f(x)]
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Figure 1: Solving the constrained problem P (top left) by gradually increasing the penalty term µ (0.5,
1, and 5, in clockwise order)

1.1 Geometric interpretation
A similar geometrical analysis to that performed with the Lagrangian duals can be employed for

understanding how penalised problems can obtain optimal solutions. For that, let us the problem from
the previous example (P ) : min. {x2

1 + x2
2 : x1 + x2 = 1, x ∈ R2}. Let G : R2 → R2 be a mapping

{[h(x), f(x)] : x ∈ R2}, and let v(ϵ) = min. {x2
1 + x2

2 : x1 + x2 − 1 = ϵ, x ∈ R2}. The optimal solution is
x1 = x2 = 1+ϵ

2 with v(ϵ) = (1+ϵ)2

2 .
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Minimising f(x) + µ(h(x)2) consists of moving the curve downwards until a single contact point ϵµ
remains. One can notice that, as µ → ∞, f + µh becomes sharper (µ2 > µ1), and ϵµ converges to the
optimum ϵµ. Figure 2 illustrates this behaviour.

The shape of the penalised problem curve is due to the following. First, notice that:

min.
x

{f(x) + µ

l∑
i=1

(hi(x))2}

= min.
x,ϵ

{f(x) + µ||ϵ||2 : hi(x) = ϵ, i = 1, . . . , l}

= min.
ϵ

{µ||ϵ||2 + min.
x

{f(x) : hi(x) = ϵ, i = 1, . . . , l}}

= min.
ϵ

{µ||ϵ||2 + v(ϵ)}.

Consider l = 1, and let xµ = argminx{f(x) + µ
∑l

i=1(hi(x))2} with h(xµ) = ϵµ, implying that
ϵµ = argminϵ{µ||ϵ||2 + v(ϵ)}. Then, the following holds:

1. f(xµ) + µ(h(xµ))2 = µϵ2µ + v(ϵµ) ⇒ f(xµ) = v(ϵµ), since h(xµ) = ϵµ;
2. and v′(ϵµ) = ∂

∂ϵ (f(xµ) + µ(h(xµ))2 − µϵ2µ) = −2µϵµ.
Therefore, (h(xµ), f(xµ)) = (ϵµ, v(ϵµ)). Denoting f(xµ)+µh(xµ)2 = kµ, we see the parabolic function

f = kµ − µϵ2 matching v(ϵµ) for ϵ = ϵµ and has the slope −2µϵ, matching that of v(ϵ) at that point.

1.2 Penalty function methods
The convergent behaviour of the penalised problem as the penalty term µ increases inspires the de-

velopment of a simple yet powerful method for optimising constrained optimisation problems.

That is, consider the problem P defined as:

(P ) : min. f(x)
gi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . , l,
x ∈ X.

We seek to solve P by solving supµ{θ(µ)} for µ > 0, where:

θ(µ) = min. {f(x) + µα(x) : x ∈ X}
and α(x) is a penalty function as defined in (1). For that to be possible, we need first to state a conver-
gence result guaranteeing that:

min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup
µ≥0

θ(µ) = lim
µ→∞

θ(µ).

In practice, that would mean that µk can be increased at each iteration k until a suitable tolerance is
achieved. Theorem 1.1 states the convergence of penalty based methods.

Theorem 1.1. Convergence of penalty-based methods
Consider the problem P , where f , gi for i = 1, . . . ,m, and hi for i = 1, . . . , l are continuous, and
X ⊂ Rn a compact set. Suppose that, for each µ, there exists xµ = argmin{f(x) + α(x) : x ∈ X},
where α is a suitable penalty function and {xµ} is contained within X. Then:

min
x

{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup
µ≥0

{θ(µ)} = lim
µ→∞

θ(µ),

where θ(µ) = minx{f(x) + µα(x) : x ∈ X} = f(xµ) + µα(xµ). Also, the limit of any convergent
subsequence of {xµ} is optimal to the original problem and µα(xµ) → 0 as µ → ∞.

Proof. We first show that θ(µ) are nondecreasing function of µ. Let 0 < λ < µ. From the definition
of θ(µ), we have that:
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f(xµ) + λα(xµ) ≥ f(xλ) + λα(xλ) (2)
Adding and subtracting µα(xµ) in the left side of (2), we conclude that θ(µ) ≥ θ(λ). Now, for x ∈ X
with g(x) ≤ 0 and h(x) = 0, notice that α(x) = 0. This implies that:

f(x) = f(x) + µα(x) ≥ inf
x

{f(x) + µα(x) : x ∈ X} = θ(µ) (3)
and, therefore, θ(µ) is bounded above, and thus supµ≥0 θ(µ) = limµ→∞ θ(µ). For that to be the
case, we must have that µα(xµ) → 0 as µ → ∞. Moreover, we notice from (3) that:

min
x

{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} ≥ lim
µ→∞

θ(µ). (4)
On the other hand, take any convergent subsequence {xµk

} of {xµ}µ→∞ with limit x. Then:

sup
µ≥0

θ(µ) ≥ θ(µk) = f(xµk
) + µα(xµk

) ≥ f(xµk
).

Since xµk
→ x as µ → ∞ and f is continuous, this implies that supµ≥0 θ(µ) ≥ f(x). Combined with

(4), we have that f(x) = supµ≥0{θ(µ)} and thus the result follows.

The proof starts by demonstrating the nonincreasing behaviour of penalty functions and nondecreas-
ing behaviour of θ(µ) to allow for convergence. By noticing that:

f(xµ) + λα(xµ) + µα(xµ) − µα(xµ) = θ(µ) + (λ− µ)α(xµ) ≥ f(xλ) + λα(xλ) = θ(λ)
and that λ − µ < 0, we can infer that θ(µ) ≥ θ(λ). It is also interesting to notice how the objective
function f(x) and infeasibility α(x) behave as we increase the penalty coefficient µ. For that, notice that
using the same trick in the proof for two distinct values 0 < λ < µ, we have:

1. f(xµ) + λα(xµ) ≥ f(xλ) + λα(xλ)
2. f(xλ) + µα(xλ) ≥ f(xµ) + µα(xµ).
Notice that in 1, we use the fact that xλ = argminxθ(λ) = argminx{f(x) + λα(x)} and therefore,

must be less or equal then f(xµ) + λα(xµ) for an arbitrary xµ ∈ X. The same logic is employed in 2,
but reversed in λ and µ. Adding 1 and 2, we obtain (µ − λ)(α(xλ) − α(xµ)) ≥ 0 and conclude that
α(xµ) ≤ α(xλ) for µ > λ, i.e., that α(x) is nonincreasing in µ.

Moreover, from the first inequality, we have that f(xµ) ≥ f(xλ). Notice how this goes in line with
what one would expect from the method: as we increase the penalty coefficient µ, the optimal infea-
sibility, measured by α(xµ) decreases, while the objective function value f(xµ) worsens at it is slowly
“forced” to be closer to the original feasible region.

Note that the assumption of compactness plays a central role in this proof, such that θ(µ) can be
evaluated for any µ as µ → ∞. Though this is a strong assumption, it tends to not be so restrictive in
practical cases, since variables typically lie within finite lower and upper bounds. Finally, notice that
α(x) = 0 implies that x is feasible for gi for i = 1, . . . ,m, and hi for i = 1, . . . , l, and thus optimal for P .
This is stated in the following corollary.

Corollary 1.2. If α(xµ) = 0 for some µ, then xµ is optimal for P .

Proof. If α(xµ) = 0, then xµ is feasible. Moreover, xµ is optimal, since
θ(µ) = f(xµ) + µα(xµ)

= f(xµ) ≤ inf{f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}.

A technical detail of the proof of Theorem 1.1 is that the convergence of such approach is asymptoti-
cally, i.e., by making µ arbitrarily large, xµ can be made arbitrarily close to the true optimal x and θ(µ)
can be made arbitrarily close to the optimal value f(x). In practice, this strategy tends to be prone to
computational instability.

The computational instability arises from the influence that the penalty term exerts in some of the
eigenvalues of the Hessian of the penalised problem. Let Hµ(xµ) be the Hessian of the penalised function
at xµ. Recall that conditioning is measured by κ = maxi=1,...,n λi

mini=1,...,n λi
, where {λi}i=1,...,n are the eigenvalues

of Hµ(xµ). Since the influence is only on some of the eigenvalues, this affects the conditioning of the
problem and might lead to numerical instabilities. An indication of that can be seen in Figure 1, where
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one can notice the elongated profile of the function as the penalty term µ increases.

Consider the following example. Let the penalised function fµ(x) = x2
1 + x2

2 + µ(x1 + x2 − 1)2.

The Hessian of fµ(x) is:

∇2fµ(x) =
[
2(1 + µ) 2µ

2µ 2(1 + µ)

]
.

Solving det(∇2fµ(x) − λI) = 0, we obtain λ1 = 2, λ2 = 2(1 + 2µ), with eigenvectors (1,−1) and (1, 1),
which gives κ = (1 + 2µ). This illustrates that the eigenvalues, and consequently the conditioning num-
ber, is proportional to the penalty term.

2 Augmented Lagrangian method of mul-
tipliers

For simplicity, consider the (primal) problem P as (P ) : min. {f(x) : hi(x) = 0, i = 1, . . . , l}. The
augmented Lagrangian method of multipliers arises from the idea of seeking for a penalty term that
would allow for exact convergence for a finite penalty.

Considering the geometrical interpretation in Figure 2, one might notice that a horizontal shift in
the penalty curve would allow for the extreme point of the curve to match the optimum on the z ordinate.

Therefore, we consider a modified penalised problem of the form:

fµ(x) = f(x) + µ

l∑
i=1

(hi(x) − θi)2

where θi is the shift term. One can notice that:

fµ(x) = f(x) + µ

l∑
i=1

(hi(x) − θi)2

= f(x) + µ

l∑
i=1

hi(x)2 −
l∑

i=1
2µθihi(x) + µ

l∑
i=1

θ2
i

= f(x) +
l∑

i=1
vihi(x) + µ

l∑
i=1

hi(x)2,

with vi = −2µθi. The last term is a constant and can be dropped.

The term augmented Lagrangian refers to the fact that fµ(x) is equivalent to the Lagrangian function
of problem P , augmented by the penalty term.

This allows for noticing important properties associated with the augmented Lagrangian fµ(x). For
example, assume that (x, v) is a KKT solution to P . Then the optimality condition:

∇xfµ(x) = ∇f(x) +
l∑

i=1
vi∇hi(x) + 2µ

l∑
i=1

hi(x)∇hi(x) = 0,

implies that the optimal solution x can be recovered using a finite penalty term µ, unlike with the previ-
ous penalty-based method. The existence of finite penalty terms µ > 0 that can recover optimality has
an interesting geometrical interpretation, in light of what was previously discussed. Consider the same
setting from Figure 2, but now we consider curves of the form f + vh + µh2 = k. This is illustrated in
Figure 3.

Optimising the augmented Lagrangian function amounts to finding the curve f+vh+µh2 = k in which
v(ϵ) = k. The expression for k can be conveniently rewritten as f = −µ [h+ (v/2µ)]2 +

[
k + (v2/4µ)

]
,

exposing that f is a parabola shifted by h = −v/2µ.
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Figure 3: Geometric representation of augmented Lagrangians in the mapping G = [h(x), f(x)]

2.1 Augmented Lagrangian method of multipliers
We can employ an unconstrained optimisation method to solve the augmented Lagrangian function:

Lµ(x, v) = f(x) +
l∑

i=1
vihi(x) + µ

l∑
i=1

hi(x)2,

which amount to rely on strong duality and search for KKT points (or primal-dual pairs) (x, v) by iter-
atively operating in the primal (x) and dual (v) spaces. In particular, the strategy consists of:

1. Primal space: optimise Lµ(x, vk) using an unconstrained optimisation method;

2. Dual space: perform a dual variable update step retaining the optimality condition ∇xL(xk+1, vk) =
∇xL(xk+1, vk+1) = 0.

This strategy is akin to applying the subgradient method to solving the augmented Lagrangian dual.
The update step for the dual variable is given by:

vk+1 = vk + 2µh(xk+1).

The motivation for the dual step update stems from the following observation:

1. h(xk) is a subgradient of Lµ(x, v) at xk for any v.

2. The step size is devised such that the optimality condition of the Lagrangian function is retained,
i.e., ∇xL(xk, vk+1) = 0.

Part 2 refers to the following:

∇xL(xk, vk+1) = ∇f(xk) +
l∑

i=1
vk+1

i ∇hi(xk) = 0

= ∇f(xk) +
l∑

i=1
(vk

i + 2µhi(xk))∇hi(xk) = 0

= ∇f(xk) +
l∑

i=1
vk

i ∇hi(xk)+
l∑

i=1
2µhi(xk)∇hi(xk) = ∇xLµ(xk, vk) = 0.

That is, by employing vk+1 = vk + 2µh(xk+1) one can retain optimality in the dual variable space for
the Lagrangian function from the optimality conditions of the penalised functions, which is a condition
for x to be a KKT point.

Algorithm 1 summarises the augmented Lagrangian method of multipliers (ALMM).
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Algorithm 1 Augmented Lagrangian method of multipliers (ALMM)
1: initialise. tolerance ϵ > 0, initial dual solution v0, iteration count k = 0
2: while |h(xk)| > ϵ do
3: xk+1 = argminLµ(x, vk)
4: vk+1 = vk + 2µh(xk+1)
5: k = k + 1
6: end while
7: return xk.

The method can be specialised such that µ is individualised for each constraint and updated pro-
portionally to the observed infeasibility hi(x). Such a procedure is still guaranteed to converge, as the
requirement in Theorem 1.1 that µ → ∞ is still trivially satisfied.

One important point about the augmented Lagrangian method of multipliers is that linear convergence
is to be expected, due to the gradient-like step taken to find optimal dual variables. This is often the
case with traditional Lagrangian duality based approaches.

2.2 Alternating direction method of multipliers - ADMM
ADMM is a distributed version of the augmented Lagrangian method of multipliers, and is more

suited to large problems with a decomposable structure.
Consider the problem P to be of the following form:

(P ) : min. f(x) + g(y)
subject to: Ax+By = c.

We would like to be able to solve the problem separately for x and y, which could, in principle be
achieved using ALMM. However, the consideration of the penalty term prevents the problem from being
completely separable. To see that, let

ϕ(x, y, v) = f(x) + g(y) + v⊤(c−Ax−By) + µ(c−Ax−By)2

be the augmented Lagrangian function. One can notice that the penalty term µ(c−Ax−By)2 prevents
the separation of the problem in terms of the x and y variables. However, separability can be recovered
is one employs a coordinate descent approach in which three blocks are considered: x, y, and v. The
ADMM is summarised in Algorithm 2.

Algorithm 2 ADMM
1: initialise. tolerance ϵ > 0, initial dual and primal solutions v0 and y0, k = 0
2: while |c−Axk −Byk| and ||yk+1 − yk|| > ϵ do
3: xk+1 = argminϕµ(x, yk, vk)
4: yk+1 = argminϕµ(xk+1, y, vk)
5: vk+1 = vk + 2µ(c−Axk+1 −Byk+1)
6: k = k + 1
7: end while
8: return (xk, yk).

One important feature regarding ADMM is that the coordinate descent steps are taken in a cyclic
order, not requiring more than one (x, y) update step. Variants consider more than one of these steps,
but no clear benefit in practice has been observed. Moreover, µ can be updated according to the amount
of infeasibility observed at iteration k, but no generally good update rule is known.

ADMM is particularly relevant as a method for (un)constrained problems in which it might expose a
structure that can be exploited, such as having in some of the optimisation problems (in Lines 3 and 4
in Algorithm 2) that might have solutions in closed forms.
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