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Last Week

▶ Lagrange problems:

– Lagrange Dual Problems;
– Lagrange Functions;
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Penalty functions
We want to penalise constraint violations, turning the problem
unconstrained.

Let P = min. {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}. Then a
penalised version of P is:

Pµ = min. {f(x) + µα(x) : x ∈ X} ,

where µ > 0 is a penalty term and α(x) : Rn 7→ R is a penalty
function of the form

α(x) =

m∑
i=1

ϕ(gi(x)) +

l∑
i=1

ψ(hi(x))

and ϕ and ψ are continuous and satisfy:

ϕ(y) = 0 if y ≤ 0 and ϕ(y) > 0 if y > 0

ψ(y) = 0 if y = 0 and ψ(y) > 0 if y ̸= 0.

Fernando Dias Constrained methods: Penalty methods 3/23



Suitable penalty functions

Typical options are ϕ(y) = ([y]+)p with p ∈ Z+ and ψ(y) = |y|p.

Example: (P ) : min.
{
x21 + x22 : x1 + x2 = 1, x ∈ R2

}
. Notice that

the optimal solution is (1/2, 1/2) with objective 1/2.

Given a large enough µ > 0, the (penalised) auxiliary problem is:

(Pµ) : min.
{
fµ(x) = x21 + x22 + µ(x1 + x2 − 1)2 : x ∈ R2

}
Since fµ is convex and differentiable, necessary and sufficient
optimality conditions ∇fµ(x) = 0 imply:

x1 + 2µ(x1 + x2 − 1) = 0

x2 + 2µ(x1 + x2 − 1) = 0,

which gives x1 = x2 =
µ

2µ+1 .
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Suitable penalty functions
(P ) : min.

{
x21 + x22 : x1 + x2 = 1, x ∈ R2

}
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Suitable penalty functions

Solving (Pµ) : min.
{
x21 + x22 + µ(x1 + x2 − 1)2 : x ∈ R2

}
with

µ = 0.5, 1, and 5 (from left to right).
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The line represents the original constraint x1 + x2 = 1 and the
orange dot is the optimal (1/2, 1/2) to P .

As µ increases, the optimal of Pµ converges to the optimal of P .

Fernando Dias Constrained methods: Penalty methods 6/23



Geometric interpretation
Let G : R2 → R2 be a mapping

{
[h(x), f(x)] : x ∈ R2

}
, and let

v(ϵ) = min.
{
x21 + x22 : x1 + x2 − 1 = ϵ, x ∈ R2

}
. The optimal

solution is x1 = x2 =
1+ϵ
2 with v(ϵ) = (1+ϵ)2

2 .

G z = f(x)

h(x) = ϵ

v(ϵ)

ϵµ
ϵµ2

ϵµ1

f + µ2h2 f + µ1h2

Geometric representation of penalised
problems in the mapping G = [h(x), f(x)]

Minimising f(x) + µ(h(x)2)
consists of moving the curve
downwards until a single
contact point ϵµ remains.

As µ→ ∞, f + µh becomes
“sharper” (µ2 > µ1), and ϵµ
converges to the optimum
ϵµ.
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Geometric interpretation
The shape of the penalised problem curve is due to the following:

min.
x

{
f(x) + µ

l∑
i=1

(hi(x))
2

}
=min.

x,ϵ

{
f(x) + µ||ϵ||2 : hi(x) = ϵ, i = 1, . . . , l

}
=min.

ϵ

{
µ||ϵ||2 +min.

x
{f(x) : hi(x) = ϵ, i = 1, . . . , l}

}
=min.

ϵ

{
µ||ϵ||2 + v(ϵ)

}
.

Consider l = 1, and let xµ = argminϵ
{
µ||ϵ||2 + v(ϵ)

}
with h(xµ) = ϵµ.

1. f(xµ) + µ(h(xµ))
2 = µϵ2µ + v(ϵµ) ⇒ f(xµ) = v(ϵµ)

2. v′(ϵµ) =
∂
∂ϵ (f(xµ) + µ(h(xµ))

2 − µϵ2µ) = −2µϵµ

Therefore, (h(xµ), f(xµ)) = (ϵµ, v(ϵµ)). Letting f(xµ) + µh(xµ)
2 = kµ,

we see the parabolic function f = kµ − µϵ2 matching v(ϵµ) for ϵ = ϵµ.
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Penalty-based methods
Consider the problem:

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , l, x ∈ X}.

We seek to solve P by solving supµ {θ(µ)} for µ > 0, where

θ(µ) = inf {f(x) + µα(x) : x ∈ X}

and α(x) is a penalty function. We need a result guaranteeing that

inf {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup
µ≥0

θ(µ) = lim
µ→∞

θ(µ).

Remark: in practice, we will calculate θ(µk) repeatedly increasing
µk to approximate µ→ ∞.
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Penalty-based methods

Theorem 1 (Convergence of penalty-based methods)

Consider the (primal) problem

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , l, x ∈ X},

with continuous f , gi for i = 1, . . . ,m, and hi for i = 1, . . . , l, and
X ⊂ Rn a compact set. Suppose that, for each µ, there exists
xµ = argmin {f(x) + µα(x) : x ∈ X}, where α is a suitable penalty
function and {xµ} is contained within X. Then

inf {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup
µ≥0

{θ(µ)} = lim
µ→∞

θ(µ),

where θ(µ) = inf {f(x) + µα(x) : x ∈ X} = f(xµ) + µα(xµ).
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Penalty-based methods

Also, the limit of any convergent subsequence of {xµ} is optimal to
the original problem and µα(xµ) → 0 as µ→ ∞.
One important corollary from Theorem 1 is the following.

Corollary 2

If α(xµ) = 0 for some µ, then xµ is optimal for P .

Proof.
If α(xµ) = 0, then xµ is feasible. Moreover, xµ is optimal, since

θ(µ) = f(xµ) + µα(xµ)

= f(xµ) ≤ inf {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} .
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Penalty-based methods

Remarks:

▶ Notice that X needs to be compact (e.g. bounded variables),
or optimal primal and penalty function values may not match.

▶ Making µ arbitrarily large, xµ can be made arbitrarily close to
the feasible region and f(xµ) + µα(xµ) can be made arbitrary
close to the optimal value.
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Computational issues with penalty methods
One might wonder why not start with a very large µ to reduce the
number of iterations. The answer for this is ill-conditioning.

Some of the eigenvalues of the Hessians of penalty functions are
proportional to the penalty terms, thus affecting conditioning.

Recall that conditioning is measured by κ =
maxi=1,...,n λi

mini=1,...,n λi
, where

{λi}i=1,...,n are the eigenvalues of the Hessian.

Example: fµ(x) = x21 + x22 + µ(x1 + x2 − 1)2.

The Hessian of fµ(x) at x is:

∇2fµ(x) =

[
2(1 + µ) 2µ

2µ 2(1 + µ)

]
.

Solving det(∇2fµ(x)− λI) = 0, we get λ1 = 2, λ2 = 2(1 + 2µ),
with eigenvectors (1,−1) and (1, 1), which gives κ = (1 + 2µ).
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Augmented Lagrangian methods
We will develop a penalty method that works with finite penalties by
shifting the curve implied by the penalty term.

For simplicity, consider the (primal) problem P as

(P ) : min. {f(x) : hi(x) = 0, i = 1, . . . , l} .
The shifted penalty defines an augmented Lagrangian of P :

fµ(x) = f(x) + µ

l∑
i=1

(hi(x)− θi)
2

= f(x) + µ

l∑
i=1

hi(x)
2 −

l∑
i=1

2µθihi(x) + µ

l∑
i=1

θ2i

= f(x) +

l∑
i=1

vihi(x) + µ

l∑
i=1

hi(x)
2,

with vi = −2µθi. The last term is a constant and can be dropped.
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Augmented Lagrangian methods

The name refers to the fact that

fµ(x) = f(x) +

l∑
i=1

vihi(x) + µ

l∑
i=1

hi(x)
2

is equivalent to the Lagrangian function of problem P , augmented
with the penalty term.

Moreover, assuming that (x, v) is a KKT solution to P , we have

∇xfµ(x) = ∇f(x) +
l∑

i=1

vi∇hi(x) + 2µ

l∑
i=1

hi(x)∇hi(x) = 0,

which implies that the optimal solution x can be recovered using a
finite penalty, unlike with the previous penalty-based methods.
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Augmented Lagrangian - geometric interpretation
Let v(ϵ) = min. {f(x) : h(x) = ϵ} be the perturbation function.
We will minimise f(x) + vh(x) + µh(x)2 for a given µ > 0.

G z = f(x)

h(x) = ϵ

v(ϵ)

ϵµ

f + vh+ µ2h2

f + vh+ µ1h2

−v
2µ1

−v
2µ2

Geometric representation of augmented Lagrangians in the mapping
G = [h(x), f(x)]

The minimum is attained for f + vh+ µh2 = k, or equivalently
f = −µ [h+ (v/2µ)]2 +

[
k + (v2/4µ)

]
, with k touching v(ϵ).

Notice that f is a parabola shifted by h = −v/2µ.
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(Augmented Lagrangian) method of multipliers (MM)

Define the augmented Lagrangian function

Lµ(x, v) = f(x) +

l∑
i=1

vihi(x) + µ

l∑
i=1

hi(x)
2

The strategy is to search for KKT points (or primal-dual pairs) (x, v)
by iteratively operating in both primal (x) and dual (v) spaces.

1. Primal space: optimise Lµ(x, v
k) using an unconstrained

optimisation method

2. Dual space: perform a dual variable update step retaining
∇xLµ(x

k+1, vk) = ∇xLµ(x
k+1, vk+1) = 0
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(Augmented Lagrangian) method of multipliers (MM)
The dual variable update step is vk+1 = vk + 2µh(xk+1), which is
justified as follows:

1. h(xk) is a subgradient of Lµ(x, v) at x
k for any v.

2. The step size is devised such that the optimality condition of
the Lagrangian is retained, i.e., ∇xL(x

k, vk+1) = 0.

Part 2. refers to the following:

∇xL(x
k,vk+1) =∇f(xk)+

l∑
i=1

vk+1
i ∇hi(xk) = 0

=∇f(xk)+
l∑

i=1

(vki + 2µhi(x
k))∇hi(xk) = 0

=∇f(xk)+
l∑

i=1

vki∇hi(xk)+
l∑

i=1

2µhi(x
k)∇hi(xk) = 0.
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(Augmented Lagrangian) method of multipliers (ALMM)
Algorithm (Augmented Lagrangian) method of multipliers

1: initialise. tolerance ϵ > 0, initial dual solution v0, iteration count k = 0
2: while |h(xk)| > ϵ do
3: xk+1 = argminLµ(x, v

k)
4: vk+1 = vk + 2µh(xk+1)
5: k = k + 1
6: end while
7: return xk.

Remarks:

▶ µ can be individualised for each constraint:
∑l

i=1 µihi(x)
2.

▶ Increasing µi for most violated constraints maxi=1,...,l hi(x) is
often used. Provides convergence guarantees as µ→ ∞.

▶ Due to the gradient-like step in the dual space, we can expect
linear convergence from the ALMM.
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Alternating direction method of multipliers - ADMM

ADMM is a distributed version of the method of multipliers.

Best suited for large problems with decomposable structure, so
computations can be performed in a distributed manner.

Consider a problem P of the form:

(P ) : min. f(x) + g(y)

subject to: Ax+By = c

Problems of this form appear in several important applications in
stochastic programming and regularisation for example.

We aim to solve problems of this form in a distributed manner in
terms of x and y.
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Alternating direction method of multipliers - ADMM
We start by formulating the augmented Lagrangian function

ϕ(x, y, v) = f(x) + g(y) + v⊤(c−Ax−By) + µ(c−Ax−By)2

The penalty term µ(c−Ax−By)2 prevents separation, which is
recovered by optimising x and y in a coordinate descent fashion.

Algorithm ADMM

1: initialise. tolerance ϵ > 0, initial dual and primal solutions v0 and y0, k = 0
2: while |c−Axk −Byk| and ||yk+1 − yk|| > ϵ do
3: xk+1 = argminϕµ(x, y

k, vk)
4: yk+1 = argminϕµ(x

k+1, y, vk)
5: vk+1 = vk + 2µ(c−Axk+1 −Byk+1)
6: k = k + 1
7: end while
8: return (xk, yk).
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Alternating direction method of multipliers - ADMM

Remarks

1. The stopping criteria in Line 2 consider primal and dual
(indirectly) residuals that can take different values.

2. Optimising with respect to (x, y) requires additional steps in
Lines 3 and 4. However, this is not needed for convergence.

3. Variants consider more than one (x, y) step. No clear benefit
has been observed in practice.

4. For ADMM, no generally good update rule for µ is known.

5. Convergence of ADMM is worse compared to the method of
multipliers. The benefit of ADMM comes from the ability to
separate x and y.

6. Notice that, if we can further separate x (or y), Lines 3 (or 4)
can be calculated in a distributed fashion.
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