MS-E2122 - Nonlinear Optimization Lecture IX

Fernando Dias

Department of Mathematics and Systems Analysis

Aalto University School of Science

November 8, 2023

Outline of this lecture

[Constrained methods: Penalty methods](#page-3-0)

[Penalty functions](#page-4-0)

[Exterior penalty function methods](#page-10-0)

[Augmented Lagrangian method of multipliers](#page-18-0)

[Alternating direction method of multipliers](#page-21-0)

Last Week

- ▶ Lagrange problems:
	- Lagrange Dual Problems;
	- Lagrange Functions;

Last week...

Fernando Dias 1/23

Outline of this lecture

[Constrained methods: Penalty methods](#page-3-0)

[Penalty functions](#page-4-0)

[Exterior penalty function methods](#page-10-0)

[Augmented Lagrangian method of multipliers](#page-18-0)

[Alternating direction method of multipliers](#page-21-0)

Penalty functions

We want to penalise constraint violations, turning the problem unconstrained.

Let $P = \min$. $\{f(x) : g(x) \leq 0, h(x) = 0, x \in X\}$. Then a penalised version of P is:

$$
P_{\mu} = \min. \{ f(x) + \mu \alpha(x) : x \in X \},
$$

where $\mu>0$ is a penalty term and $\alpha(x):\mathbb{R}^n\mapsto\mathbb{R}$ is a penalty function of the form

$$
\alpha(x) = \sum_{i=1}^{m} \phi(g_i(x)) + \sum_{i=1}^{l} \psi(h_i(x))
$$

and ϕ and ψ are continuous and satisfy:

$$
\begin{aligned}\n\phi(y) &= 0 \text{ if } y \le 0 \text{ and } \phi(y) > 0 \text{ if } y > 0 \\
\psi(y) &= 0 \text{ if } y = 0 \text{ and } \psi(y) > 0 \text{ if } y \ne 0.\n\end{aligned}
$$

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 3/23

Suitable penalty functions

Typical options are $\phi(y) = ([y]^+)^p$ with $p \in \mathbb{Z}_+$ and $\psi(y) = |y|^p$. **Example:** (P) : min. $\{x_1^2 + x_2^2 : x_1 + x_2 = 1, x \in \mathbb{R}^2\}$. Notice that the optimal solution is $(1/2, 1/2)$ with objective $1/2$.

Given a large enough $\mu > 0$, the (penalised) auxiliary problem is:

$$
(P_\mu):\min\text{~~} \left\{f_\mu(x)=x_1^2+x_2^2+\mu(x_1+x_2-1)^2: x\in\mathbb{R}^2\right\}
$$

Since f_{μ} is convex and differentiable, necessary and sufficient optimality conditions $\nabla f_u(x) = 0$ imply:

$$
x_1 + 2\mu(x_1 + x_2 - 1) = 0
$$

$$
x_2 + 2\mu(x_1 + x_2 - 1) = 0,
$$

which gives $x_1 = x_2 = \frac{\mu}{2\mu + 1}$.

Fernando Dias **Constrained methods:** Penalty methods 4/23

Suitable penalty functions

$$
(P): \min. \ \left\{x_1^2 + x_2^2 : x_1 + x_2 = 1, x \in \mathbb{R}^2\right\}
$$

Fernando Dias **External Server Constrained methods**: Penalty methods **5/23**

Suitable penalty functions

Solving (P_μ) : min. $\{x_1^2 + x_2^2 + \mu(x_1 + x_2 - 1)^2 : x \in \mathbb{R}^2\}$ with $\mu = 0.5, 1$, and 5 (from left to right).

The line represents the original constraint $x_1 + x_2 = 1$ and the orange dot is the optimal $(1/2, 1/2)$ to P.

As μ increases, the optimal of P_μ converges to the optimal of P.

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 6/23

Geometric interpretation

Let $G:\mathbb{R}^2\to\mathbb{R}^2$ be a mapping $\big\{[h(x),f(x)]:x\in\mathbb{R}^2\big\}$, and let $v(\epsilon) = \mathsf{min.}\;\left\{x_1^2 + x_2^2: x_1 + x_2 - 1 = \epsilon,\; x \in \mathbb{R}^2\right\}$. The optimal solution is $x_1=x_2=\frac{1+\epsilon}{2}$ $\frac{1+\epsilon}{2}$ with $v(\epsilon) = \frac{(1+\epsilon)^2}{2}$ $rac{\tau \epsilon_j}{2}$.

Geometric representation of penalised problems in the mapping $G = [h(x), f(x)]$

Minimising $f(x) + \mu(h(x)^2)$ consists of moving the curve downwards until a single contact point ϵ_{μ} remains.

As $\mu \to \infty$, $f + \mu h$ becomes "sharper" $(\mu_2 > \mu_1)$, and ϵ_{μ} converges to the optimum $\epsilon_{\overline{\mu}}$.

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 7/23

Geometric interpretation

The shape of the penalised problem curve is due to the following:

$$
\min_{x} \left\{ f(x) + \mu \sum_{i=1}^{l} (h_i(x))^2 \right\}
$$
\n
$$
= \min_{x, \epsilon} \left\{ f(x) + \mu ||\epsilon||^2 : h_i(x) = \epsilon, i = 1, ..., l \right\}
$$
\n
$$
= \min_{\epsilon} \left\{ \mu ||\epsilon||^2 + \min_{x} \left\{ f(x) : h_i(x) = \epsilon, i = 1, ..., l \right\} \right\}
$$
\n
$$
= \min_{\epsilon} \left\{ \mu ||\epsilon||^2 + v(\epsilon) \right\}.
$$

Consider
$$
l = 1
$$
, and let $x_{\mu} = \arg \min_{\epsilon} \{\mu ||\epsilon||^2 + v(\epsilon)\}$ with $h(x_{\mu}) = \epsilon_{\mu}$.
\n1. $f(x_{\mu}) + \mu(h(x_{\mu}))^2 = \mu \epsilon_{\mu}^2 + v(\epsilon_{\mu}) \Rightarrow f(x_{\mu}) = v(\epsilon_{\mu})$
\n2. $v'(\epsilon_{\mu}) = \frac{\partial}{\partial \epsilon} (f(x_{\mu}) + \mu(h(x_{\mu}))^2 - \mu \epsilon_{\mu}^2) = -2\mu \epsilon_{\mu}$

Therefore, $(h(x_\mu), f(x_\mu)) = (\epsilon_\mu, v(\epsilon_\mu))$. Letting $f(x_\mu) + \mu h(x_\mu)^2 = k_\mu$, we see the parabolic function $f = k_{\mu} - \mu \epsilon^2$ matching $v(\epsilon_{\mu})$ for $\epsilon = \epsilon_{\mu}$. Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 8/23

Consider the problem:

$$
(P) : \text{min. } \{f(x) : g_i(x) \le 0, \ i = 1, \dots, m, h_i(x) = 0, \ i = 1, \dots, l, \ x \in X\}.
$$

We seek to solve P by solving $\sup_{\mu} {\{\theta(\mu)\}}$ for $\mu > 0$, where

$$
\theta(\mu) = \inf \{ f(x) + \mu \alpha(x) : x \in X \}
$$

and $\alpha(x)$ is a penalty function. We need a result guaranteeing that

$$
\inf \{ f(x) : g(x) \le 0, h(x) = 0, x \in X \} = \sup_{\mu \ge 0} \theta(\mu) = \lim_{\mu \to \infty} \theta(\mu).
$$

Remark: in practice, we will calculate $\theta(\mu_k)$ repeatedly increasing μ_k to approximate $\mu \to \infty$.

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 9/23

Theorem 1 (Convergence of penalty-based methods) Consider the (primal) problem

$$
(P) : min. \ \{f(x) : g_i(x) \le 0, \ i = 1, ..., m, h_i(x) = 0, \ i = 1, ..., l, \ x \in X\},
$$

with continuous f, q_i for $i = 1, \ldots, m$, and h_i for $i = 1, \ldots, l$, and $X \subset \mathbb{R}^n$ a compact set. Suppose that, for each μ , there exists $x_{\mu} = \arg \min \{f(x) + \mu \alpha(x) : x \in X\}$, where α is a suitable penalty function and $\{x_u\}$ is contained within X. Then

$$
\inf \{ f(x) : g(x) \le 0, h(x) = 0, x \in X \} = \sup_{\mu \ge 0} \{ \theta(\mu) \} = \lim_{\mu \to \infty} \theta(\mu),
$$

where $\theta(\mu) = \inf \{f(x) + \mu \alpha(x) : x \in X\} = f(x_{\mu}) + \mu \alpha(x_{\mu}).$

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 10/23

Also, the limit of any convergent subsequence of $\{x_\mu\}$ is optimal to the original problem and $\mu \alpha(x_\mu) \to 0$ as $\mu \to \infty$. One important corollary from Theorem [1](#page-11-0) is the following.

Corollary 2 If $\alpha(x_\mu) = 0$ for some μ , then x_μ is optimal for P.

Proof.

If $\alpha(x_\mu) = 0$, then x_μ is feasible. Moreover, x_μ is optimal, since

$$
\theta(\mu) = f(x_{\mu}) + \mu \alpha(x_{\mu}) \n= f(x_{\mu}) \le \inf \{ f(x) : g(x) \le 0, h(x) = 0, x \in X \}.
$$

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 11/23

Remarks:

- \blacktriangleright Notice that X needs to be compact (e.g. bounded variables), or optimal primal and penalty function values may not match.
- \triangleright Making μ arbitrarily large, x_{μ} can be made arbitrarily close to the feasible region and $f(x_u) + \mu \alpha(x_u)$ can be made arbitrary close to the optimal value.

Computational issues with penalty methods

One might wonder why not start with a very large μ to reduce the number of iterations. The answer for this is ill-conditioning.

Some of the eigenvalues of the Hessians of penalty functions are proportional to the penalty terms, thus affecting conditioning.

Recall that conditioning is measured by $\kappa = \frac{\max_{i=1,...,n} \lambda_i}{\min_{i=1,...,n} \lambda_i}$ $\frac{\min_{i=1,...,n} \lambda_i}{\min_{i=1,...,n} \lambda_i}$, where $\{\lambda_i\}_{i=1}$, are the eigenvalues of the Hessian.

Example:
$$
f_{\mu}(x) = x_1^2 + x_2^2 + \mu(x_1 + x_2 - 1)^2
$$
.
The Hessian of $f_{\mu}(x)$ at *x* is:

$$
\nabla^2 f_\mu(x) = \begin{bmatrix} 2(1+\mu) & 2\mu \\ 2\mu & 2(1+\mu) \end{bmatrix}.
$$

Solving $\det(\nabla^2 f_u(x) - \lambda I) = 0$, we get $\lambda_1 = 2$, $\lambda_2 = 2(1 + 2\mu)$, with eigenvectors $(1, -1)$ and $(1, 1)$, which gives $\kappa = (1 + 2\mu)$. Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 13/23

Augmented Lagrangian methods

We will develop a penalty method that works with finite penalties by shifting the curve implied by the penalty term.

For simplicity, consider the (primal) problem P as

$$
(P) : \min \{ f(x) : h_i(x) = 0, \ i = 1, \dots, l \}.
$$

The shifted penalty defines an augmented Lagrangian of P :

$$
f_{\mu}(x) = f(x) + \mu \sum_{i=1}^{l} (h_i(x) - \theta_i)^2
$$

= $f(x) + \mu \sum_{i=1}^{l} h_i(x)^2 - \sum_{i=1}^{l} 2\mu \theta_i h_i(x) + \mu \sum_{i=1}^{l} \theta_i^2$
= $f(x) + \sum_{i=1}^{l} v_i h_i(x) + \mu \sum_{i=1}^{l} h_i(x)^2$,

with $v_i = -2\mu\theta_i.$ The last term is a constant and can be dropped. Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 14/23

Augmented Lagrangian methods

The name refers to the fact that

$$
f_{\mu}(x) = f(x) + \sum_{i=1}^{l} v_i h_i(x) + \mu \sum_{i=1}^{l} h_i(x)^2
$$

is equivalent to the Lagrangian function of problem P , augmented with the penalty term.

Moreover, assuming that $(\overline{x}, \overline{v})$ is a KKT solution to P, we have

$$
\nabla_x f_\mu(x) = \nabla f(x) + \sum_{i=1}^l \overline{v}_i \nabla h_i(x) + 2\mu \sum_{i=1}^l h_i(x) \nabla h_i(x) = 0,
$$

which implies that the optimal solution \bar{x} can be recovered using a finite penalty, unlike with the previous penalty-based methods.

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 15/23

Augmented Lagrangian - geometric interpretation

Let $v(\epsilon) = \min$. $\{f(x) : h(x) = \epsilon\}$ be the perturbation function. We will minimise $f(x) + \overline{v} h(x) + \mu h(x)^2$ for a given $\mu > 0$.

Geometric representation of augmented Lagrangians in the mapping $G = [h(x), f(x)]$

The minimum is attained for $f + \overline{v}h + \mu h^2 = k$, or equivalently $f = -\mu [h + (\overline{v}/2\mu)]^2 + [k + (\overline{v}^2/4\mu)]$, with k touching $v(\epsilon)$. Notice that f is a parabola shifted by $h = -\overline{v}/2\mu$.
Fernando Dias Constrained methods: Constrained methods: Penalty methods 16/23 (Augmented Lagrangian) method of multipliers (MM)

Define the augmented Lagrangian function

$$
L_{\mu}(x,v) = f(x) + \sum_{i=1}^{l} v_i h_i(x) + \mu \sum_{i=1}^{l} h_i(x)^2
$$

The strategy is to search for KKT points (or primal-dual pairs) $(\overline{x}, \overline{v})$ by iteratively operating in both primal (x) and dual (v) spaces.

- 1. Primal space: optimise $L_{\mu}(x,v^k)$ using an unconstrained optimisation method
- 2. Dual space: perform a dual variable update step retaining $\nabla_x L_\mu(x^{k+1}, v^k) = \nabla_x L_\mu(x^{k+1}, v^{k+1}) = 0$

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 17/23

(Augmented Lagrangian) method of multipliers (MM)

The dual variable update step is $\overline{v}^{k+1} = \overline{v}^k + 2\mu h(\overline{x}^{k+1})$, which is justified as follows:

- $1.$ $h(\overline{x}^k)$ is a subgradient of $L_\mu(x,v)$ at \overline{x}^k for any $v.$
- 2. The step size is devised such that the optimality condition of the Lagrangian is retained, i.e., $\nabla_{x} L(\overline{x}^k, \overline{v}^{k+1}) = 0.$

Part 2. refers to the following:

$$
\nabla_x L(\overline{x}^k, \overline{v}^{k+1}) = \nabla f(\overline{x}^k) + \sum_{i=1}^{\infty} \overline{v}_i^{k+1} \nabla h_i(\overline{x}^k) = 0
$$

$$
= \nabla f(\overline{x}^k) + \sum_{i=1}^l (\overline{v}_i^k + 2\mu h_i(\overline{x}^k)) \nabla h_i(\overline{x}^k) = 0
$$

$$
= \nabla f(\overline{x}^k) + \sum_{i=1}^l \overline{v}_i^k \nabla h_i(\overline{x}^k) + \sum_{i=1}^l 2\mu h_i(\overline{x}^k) \nabla h_i(\overline{x}^k) = 0.
$$

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 18/23

(Augmented Lagrangian) method of multipliers (ALMM)

Algorithm (Augmented Lagrangian) method of multipliers

1: initialise. tolerance $\epsilon>0,$ initial dual solution $v^0,$ iteration count $k=0$ 2: while $|h(\overline{x}^k)| > \epsilon$ do 3: $\overline{x}^{k+1} = \arg \min L_{\mu}(x, \overline{v}^k)$ 4: $\overline{v}^{k+1} = \overline{v}^k + 2\mu h(\overline{x}^{k+1})$ 5: $k = k + 1$ 6: end while 7: return x^k .

Remarks:

- \blacktriangleright μ can be individualised for each constraint: $\sum_{i=1}^{l}\mu_{i}h_{i}(x)^{2}.$
- Increasing μ_i for most violated constraints $\max_{i=1,\dots,l} h_i(x)$ is often used. Provides convergence guarantees as $\mu \to \infty$.
- Due to the gradient-like step in the dual space, we can expect linear convergence from the ALMM.

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 19/23

Alternating direction method of multipliers - ADMM

ADMM is a distributed version of the method of multipliers.

Best suited for large problems with decomposable structure, so computations can be performed in a distributed manner.

Consider a problem P of the form:

 (P) : min. $f(x) + q(y)$ subject to: $Ax + By = c$

Problems of this form appear in several important applications in stochastic programming and regularisation for example.

We aim to solve problems of this form in a distributed manner in terms of x and y .

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 20/23

Alternating direction method of multipliers - ADMM

We start by formulating the augmented Lagrangian function

$$
\phi(x, y, v) = f(x) + g(y) + v^{\top}(c - Ax - By) + \mu(c - Ax - By)^{2}
$$

The penalty term $\mu (c-Ax-By)^2$ prevents separation, which is recovered by optimising x and y in a coordinate descent fashion.

Algorithm ADMM

1: initialise. tolerance $\epsilon > 0,$ initial dual and primal solutions v^0 and $y^0,\,k=0$ 2: while $|c-A\overline{x}^k-B\overline{y}^k|$ and $||y^{k+1}-y^k||>\epsilon$ do 3: $\overline{x}^{k+1} = \arg \min \phi_\mu(x, \overline{y}^k, \overline{v}^k)$ 4: $\overline{y}^{k+1} = \arg \min \phi_\mu(\overline{x}^{k+1}, y, \overline{v}^k)$ 5: $\overline{v}^{k+1} = \overline{v}^k + 2\mu(c - A\overline{x}^{k+1} - B\overline{y}^{k+1})$ 6: $k = k + 1$ 7: end while 8: return (x^k, y^k) .

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 21/23

Alternating direction method of multipliers - ADMM

Remarks

- 1. The stopping criteria in Line [2](#page-22-0) consider primal and dual (indirectly) residuals that can take different values.
- 2. Optimising with respect to (x, y) requires additional steps in Lines [3](#page-22-1) and [4.](#page-22-2) However, this is not needed for convergence.
- 3. Variants consider more than one (x, y) step. No clear benefit has been observed in practice.
- 4. For ADMM, no generally good update rule for μ is known.
- 5. Convergence of ADMM is worse compared to the method of multipliers. The benefit of ADMM comes from the ability to separate x and y .
- 6. Notice that, if we can further separate x (or y), Lines [3](#page-22-1) (or [4\)](#page-22-2) can be calculated in a distributed fashion.

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 22/23

Fernando Dias [Constrained methods: Penalty methods](#page-3-0) 23/23