
MSE2122 - Nonlinear Optimization
Lecture Notes V

Fernando Dias (based on previous version by
Fabricio Oliveira)

September 28, 2023

Abstract
In this lecture, we present methods for solving unconstrained optimisation problems. We start

by defining a general optimisation algorithm that will serve as a reference for deriving variants of
optimisation methods. We concentrate first on how to generate step sizes using variants of unidi-
mensional optimisation methods, the so called line searches. We also present the Armijo rule as
an inexact line search method, widely used in state-of-the-art implementations of optimisation al-
gorithms. Next, we focus on three variants of multidimensional methods, namely the coordinate
descent (derivative free), the gradient descent method that relies in first order approximations, and
the Newton’s method, which relies on second-order information. We also discuss the effects of having
exact and inexact line searches in each of these methods.

Contents
1 A prototype of an optimisation method 2

2 Line search methods 2
2.1 Exact line searches . 3

2.1.1 Uniform search . 3
2.1.2 Dichotomous search . 3
2.1.3 Golden section search* . 5
2.1.4 Bisection search . 6

2.2 Inexact line search . 6
2.2.1 Armijo rule . 6

3 Unconstrained optimisation methods 7
3.1 Coordinate descent . 7
3.2 Gradient (descent) method . 8
3.3 Newton’s method . 9

1

1 A prototype of an optimisation method
Most, if not all, optimisation methods are based on the conceptual notion of successively obtaining

directions of potential improvement and suitable step sizes in this direction, until a convergence or ter-
mination criterion (collectively called stopping criteria) is satisfied.

Considering what we have seen so far, we have now the concepts required for describing several uncon-
strained optimisation methods. We start by posing a conceptual optimisation algorithm in a pseudocode
structure. This will be helpful in identifying the elements that differentiate the methods we will discuss.

Algorithm 1 Conceptual optimisation algorithm
1: initialise. iteration count k = 0, starting point x0
2: while stopping criteria are not met do
3: compute direction dk

4: compute step size λk

5: xk+1 = xk + λkdk

6: k = k + 1
7: end while
8: return xk.

Algorithm 1 has two main elements, namely the computation of the direction dk and the step size
λk at each iteration k. In what follows, we present some univariate optimisation methods that can be
employed to calculate step sizes λk. These methods are commonly referred to as line search methods.

2 Line search methods
Finding an optimal step size λk is in itself an optimisation problem. The name line search refers to

the fact that it consists of a unidimensional search as λk ∈ R.

Suppose that f : Rn 7→ R is differentiable. We define the unidimensional function θ : R 7→ R as:

θ(λ) = f(x + λd).

Assuming differentiability, we can use the first-order necessary condition θ′(λ) = 0 to obtain optimal
values for the step size λ. This means solving the system:

θ′(λ) = d⊤∇f(x + λd) = 0

which might pose challenges. First, d⊤∇f(x + λd) is often nonlinear in λ, with optimal solutions not
trivially resting at boundary points for an explicit domain of λ. Moreover, recall that θ′(λ) = 0 is not a
sufficient condition for optimality in general, unless properties such as convexity can be inferred.

In what follows, we assume that strict quasiconvexity holds and therefore θ′(λ) = 0 becomes necessary
and sufficient for optimality. In some contexts, unidimensional strictly quasiconvex functions are called
unimodal.

Theorem 2.1 establishes the mechanism underpinning line search methods. In that, we use the as-
sumption that the function has a unique minimum (a consequence of being strictly quasiconvex) to
successively reduce the search space until the optimal is contained in a sufficiently small interval l within
an acceptable tolerance.

Theorem 2.1. Line search reduction
Let θ : R→ R be strictly quasiconvex over the interval [a, b], and let λ, µ ∈ [a, b] such that λ < µ. If
θ(λ) > θ(µ), then θ(z) ≥ θ(µ) for all z ∈ [a, λ]. If θ(λ) ≤ θ(µ), then θ(z) ≥ θ(λ) for all z ∈ [µ, b].

Figure 1 provides an illustration of Theorem 2.1. The line below the x-axis illustrates how the search

2

θ θ

θ(λ)
θ(µ)

a bλ µ

a b

θ(λ)
θ(µ)

λ µa b

a b

Figure 1: Applying Theorem 2.1 allows to iteratively reduce the search space.

space can be reduced between two successive iterations. In fact, most line search methods will iteratively
reduce the search interval (represented by [a, b]) until the interval is sufficiently small to be considered
“a point” (i.e., is smaller than a set threshold l).

Line searches are exact when optimal step sizes λ∗
k are calculated at each iteration k, and inexact

when arbitrarily good approximations for λ∗
k are used instead. As we will see, there is a trade-off between

the number iterations required for convergence and the time taken per iteration that must be taken into
account when choosing between exact and inexact line searches.

2.1 Exact line searches
Exact methods are designed to return the optimal step value λ∗ within a pre-specified tolerance l. In

practice, it means that these methods return an interval [ak, bk] such that bk − ak ≤ l.

2.1.1 Uniform search
The uniform search consists of breaking the search domain [a, b] into N slices of uniform size δ = |b−a|

N .
This leads to a one-dimensional grid with grid points an = a0 +nδ, n = 0 . . . N where a0 = a and aN = b.
We can then set λ̂ to be:

λ̂ = arg min
i=0,...,n

f(ai)

From Theorem 2.1, we know that the optimal step size λ∗ ∈ [λ̂− δ, λ̂ + δ]. The process can then be
repeated, by making a = λ̂ − δ and b = λ̂ + δ (see Figure 2). until |a − b| is less than a prespecified
tolerance l. Without enough repetition of the search, the uniform search becomes an inexact search.

This type of search is particularly useful when setting values for hyperparameters in algorithms (that
is, user defined parameters that influence the behaviour of the algorithm) of performing any sort of search
in a grid structure. One concept related to this type of search is what is known as the coarse-to-fine
approach. Coarse-to-fine approaches use sequences of increasingly fine approximations (i.e., gradually
increasing n) to obtain computational savings in terms of function evaluations. In fact, the number of
function evaluations a line search method executes is one of the indicators of its efficiency.

2.1.2 Dichotomous search
The dichotomous search is an example of a sequential line search method, in which evaluations of

the function θ at a current iteration k are reused in the next iteration k + 1 to minimise the number of
function evaluations and thus improve performance.

The word dichotomous refer to the mutually exclusive parts that the search interval [a, b] is divided
at each iteration. We start by defining a distance margin ϵ and defining two reference points λ = a+b

2 − ϵ

and µ = a+b
2 + ϵ. Using the function values θ(λ) and θ(µ), we proceed as follows.

1. If θ(λ) < θ(µ), then move to the left by making ak+1 = ak and bk+1 = µk;
2. Otherwise, if θ(λ) > θ(µ), then move to the right by making ak+1 = λk and bk+1 = bk.

3

θ

a = a0 a1 a2 . . . an = b

λ̂− δ λ̂ + δλ̂

θ(a2)

Figure 2: Grid search with 5 points; Note that θ(a2) = mini=0,...,n θ(ai).

Notice that, the assumption of strict quasiconvexity implies that θ(λ) = θ(µ) cannot occur, but in a
more general setting one must make sure a criterion for resolving the tie. Once the new search interval
[ak+1, bk+1] is updated, new reference points λk+1 and µk+1 are calculated and the process is repeated
until |a− b| ≤ l. The method is summarised in Algorithm 2. Notice that, at any given iteration k, one
can calculate what will be the size |ak+1 − bk+1|, given by:

bk+1 − ak+1 = 1
2k

(b0 − a0) + 2ϵ

(
1− 1

2k

)
.

This is useful in that it allows predicting the number of iterations Algorithm 2 will require before
convergence. Figure 3 illustrates the process for two distinct functions. Notice that the employment of
the central point a+b

2 as the reference to define the points λ and µ turns the method robust in terms of
interval reduction at each iteration.

Algorithm 2 Dichotomous search
1: initialise. distance margin ϵ > 0, tolerance l > 0, [a0, b0] = [a, b], k = 0
2: while bk − ak > l do
3: λk = ak+bk

2 − ϵ, µk = ak+bk

2 + ϵ
4: if θ(λk) < θ(µk) then
5: ak+1 = ak, bk+1 = µk

6: else
7: ak+1 = λk, bk+1 = bk

8: end if
9: k = k + 1

10: end while
11: return λ = ak+bk

2

θ1

θ2
θ1(µ)
θ1(λ)

θ2(µ)
θ2(λ)

λ µa

a

a

b

b

b

θ2

θ1

θ1(µ)

θ1(λ)
θ2(µ)

θ2(λ)

λ µ
(a+b)

2a

a

a

b

b

b

Figure 3: Using the midpoint (a + b)/2 and Theorem 2.1 to reduce the search space.

4

2.1.3 Golden section search*
The golden section search is named after the golden ratio φ = 1+

√
5

2 , of which the inverse is used as
the ratio of reduction for the search interval [a, b] at each iteration.

Consider that, once again, we rely on two reference points λk and µk. The method is a consequence
of imposing two requirements for the line search:

1. the reduction in the search interval should not depend on whether θ(λk) > θ(µk) or vice-versa.

2. at each iteration, we perform a single function evaluation, thus making λk+1 = µk if θ(λk) > θ(µk)
or vice-versa.

From requirement 1, we can infer that bk+1 − ak+1 = bk − λk = µk − ak is required. To find the in-
terval reduction rate α ∈ (0, 1) that would allow so, we define µk = ak + α(bk − ak) and, consequently,
λk = ak + (1− α)(bk − ak). Notice that this makes bk+1 − ak+1 = α(bk − ak).

Notice the following. Suppose that θ(λk) > θ(µk) at iteration k. We then make ak+1 = λk

and bk+1 = bk, a "movement to the right". From requirement 2, we also make λk+1 = µk so that
θ(λk+1) = θ(µk), avoiding a function evaluation.

From the above, we can calculate the ratio α that would allow the method to work. Notice that:

λk+1 = µk

ak+1 + (1− α)(bk+1 − ak+1) = µk

(1− α)[α(bk − ak)] = µk − λk

(α− α2)(bk − ak) = ak + α(bk − ak)− [ak + (1− α)(bk − αk)]
α2 + α− 1 = 0

to which α = 2
1+

√
5 = 0.618... = 1

φ is the positive solution. Clearly, the same result is obtained if one
consider θ(λk) < θ(µk). Algorithm 3 summarises the golden section search. Notice that at each iteration,
only a single additional function evaluation is required.

Algorithm 3 Golden section search
1: initialise. tolerance l > 0, [a0, b0] = [a, b], α = 0.618, k = 0
2: λk = ak + (1− α)(bk − ak), µk = ak + α(bk − ak)
3: while bk − ak > l do
4: if θ(λk) > θ(µk) then
5: ak+1 = λk, bk+1 = bk, λk+1 = µk, and
6: µk+1 = ak+1 + α(bk+1 − ak+1). Calculate θ(µk+1)
7: else
8: ak+1 = ak, bk+1 = µk, µk+1 = λk, and
9: λk+1 = ak+1 + (1− α)(bk+1 − ak+1). Calculate θ(λk+1)

10: end if
11: k ← k + 1
12: end while
13: return λ = ak+bk

2

Comparing the above method for a given accuracy l, the required number of function evaluations is:

min

n :
uniform: n ≥ b1−a1

l/2 − 1
dichotomous: (1/2)n/2 ≤ l

b1−a1

golden section: (0.618)n−1 ≤ l
b1−a1


For example: suppose we set [a, b] = [−10, 10] and l = 10−6. Then the number of iterations required for
convergence is

• uniform: n = 4× 106;

• dichotomous: n = 49;

5

• golden section: n = 36.

A variant of the golden section method uses Fibonacci numbers to define the ratio of interval reduction.
Despite being marginally more efficient in terms of function evaluations, the overhead of calculating
Fibonacci numbers has to be taken into account.

2.1.4 Bisection search
Differently form the previous methods, the bisection search relies on derivative information to infer

whether how the search interval should be reduced. For that, we assume that θ(λ) is differentiable and
convex.

We proceed as follows. If θ′(λk) = 0, then λk is a minimiser. Otherwise:

1. if θ′(λk) > 0, then, for λ > λk, we have θ′(λk)(λ − λk) > 0, which implies θ(λ) ≥ θ(λk) since θ is
convex. Therefore, the new search interval becomes [ak+1, bk+1] = [ak, λk].

2. if θ′(λk) < 0, we have θ′(λk)(λ−λk) > 0 (and thus θ(λ) ≥ θ(λk)) for λ < λk. Thus, the new search
interval becomes [ak+1, bk+1] = [λk, bk].

As in the dichotomous search, we set λk = 1
2 (bk + ak), which provides robust guarantees of search

interval reduction. Notice that the dichotomous search can be seen as a bisection search in which the
derivative information is estimated using the difference of function evaluation at two distinct points.
Algorithm 4 summarises the bisection method.

Algorithm 4 Bisection method
1: initialise. tolerance l > 0, [a0, b0] = [a, b], k = 0
2: while bk − ak > l do
3: λk = (bk+ak)

2 and evaluate θ′(λk)
4: if θ′(λk) = 0 then return λk

5: else if θ′(λk) > 0 then
6: ak+1 = ak, bk+1 = λk

7: else
8: ak+1 = λk, bk+1 = bk

9: end if
10: k ← k + 1
11: end while
12: return λ = ak+bk

2

2.2 Inexact line search
Often, it is worth sacrificing optimality of the step size λk for the overall efficiency of the solution

method in terms of solution time.

There are several heuristics that can be employed to define step sizes and their performance are
related to how the directions dk are defined in Algorithm 1. Next, we present the Armijo rule, arguably
the most used technique to obtain step sizes in efficient implementations of optimisation methods.

2.2.1 Armijo rule
The Armijo rule is a condition that is tested to decide whether a current step size λ is acceptable or

not. The step size λ is considered acceptable if:

f(x + dλ)− f(x) ≤ αλ∇f(x)⊤d.

One way of understanding the Armijo rule is to look at what it means in terms of the function
θ(λ) = f(x + λd). Notice that, at λ = 0, the Armijo rule becomes:

θ(λ)− θ(0) ≤ αλθ′(0)
θ(λ) ≤ θ(0) + αλθ′(0). (1)

(2)

6

That is, θ(λ) has to be less than the deflected linear extrapolation of θ at λ = 0. The deflection is given
by the pre-specified parameter α. In case λ does not satisfy the test in (1), λ is reduced by a factor
β ∈ (0, 1) until the test in (1) is satisfied.

λ βλ

acceptable λk acceptable λk

θapp(λ)

θ(λ)
θapp(βλ)

θ(βλ)

θapp(λ) = θ(0) + αλ(θ′(0)) θapp(λ) = θ(0) + αλ(θ′(0))

θ(0) + λ(θ′(0)) θ(0) + λ(θ′(0))

Figure 4: At first λ0 = λ is not acceptable; after reducing the step size to λ1 = βλ, it enters the
acceptable range where θ(λk) ≤ θapp(λk) = θ(0) + αλk(θ′(0)).

In Figure 4, we can see the acceptable region for the Armijo test. At first, λ does not satisfy the
condition (1), being then reduced to βλ, which, in turn, satisfies (1). In this case, λk would have been
set βλ. Suitable values for α are within (0, 0.5] and for β are within (0, 1), trading of precision (higher
values) and number of tests before acceptance (lower values).

The Armijo rule is called backtracking in some contexts, due to the successive reduction of the step
size caused by the factor β ∈ (0, 1). Some variants might also include rules that prevent the step size
from becoming too small, such as θ(δλ) ≥ θ(0) + αδλθ′(0), with δ > 1.

3 Unconstrained optimisation methods
We now focus on developing methods that can be employed to optimise f : Rn 7→ R. We start with

coordinate descent method, which is derivative free, to then discuss the gradient method and Newton’s
method. In essence, the main difference between the three methods is how the directions dk in Algorithm
1 are determined. Also, all of these methods rely on line searches to define optimal step sizes, which can
be any of the methods seen before or any other unidimensional optimisation method.

3.1 Coordinate descent
The cordinate descent method relies on a simple yet powerful idea. By focusing on one coordinate at

the time, the method trivially derives directions d having di = 1 for coordinate i and dj ̸=i = 0 otherwise.
As one would suspect, the order in which the coordinates are selected influences the performance of the
algorithm. Some known variants include:

1. Cyclic: coordinates are considered in order 1, . . . , n;

2. Double-sweep: swap the coordinate order at each iteration;

3. Gauss-Southwell: choose components with largest ∂f(x)
∂xi

;

4. Stochastic: coordinates are selected at random.

Algorithm 5 summarises the general structure of the coordinate descent method. Notice that the
for-loop starting in Line 3 uses the cyclic variant of the coordinate descent method.

Figure 5 shows the progress of the algorithm when applied to solve
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

using the golden section method as line search.

The coordinate descent method is the strategy employed in several other methods, such as the Gauss-

7

Algorithm 5 Coordinate descent method (cyclic)
1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0
2: while ||xk+1 − xk|| > ϵ do
3: for j = 1, . . . n do
4: d = {di = 1, if i = j; di = 0, if i ̸= j}
5: λj = argminλ∈R{f(xk

j + λdj)}
6: xk+1

j = xk
j + λjdj

7: end for
8: k = k + 1
9: end while

10: return xk

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0
5.0

6.0

8.0

10.0

15.0

20.0

30.0

Coord. desc.

Figure 5: Coordinate descent method applied to f . Convergence is observed in 4 steps for a tolerance
ϵ = 10−5

Seidel method for solving linear system of equations, which is why some references refer to each of these
iterations as Gauss-Seidel steps. Also, when a collection of coordinates is used to derive a direction,
the term block coordinate descent is used, though a method for deriving directions for each block is still
necessary, for example the gradient method presented next.

3.2 Gradient (descent) method
The gradient descent uses the function gradients as the search direction d. Before we present the

method, let us present a result that justifies the use of gradients to derive search directions.

Lemma 3.1. S ppose that f : Rn → R is differentiable at x ∈ Rn and ∇f(x) ̸= 0. Then d =
− ∇f(x)

||∇f(x)|| is the direction of steepest descent of f at x.

Proof. From differentiability of f , we have:

f ′(x; d) = lim
λ→0+

f(x + λd)− f(x)
λ

= ∇f(x)⊤d.

Thus, d = argmin||d||≤1{∇f(x)⊤d} = − ∇f(x)
||∇f(x)||

In the proof, we use the differentiability to define a directional derivative for f at direction d, that is,
the change in the value of f by a move of size λ > 0 in the direction d, which is given by ∇f(x)⊤d. If we
minimise this term in d for ||d||2 ≤ 1, we observe that d is a vector of length one that has the opposite
direction of ∇f(x), thus d = − ∇f(x)

||∇f(x)|| .

That provides us with the insight that we can use ∇f(x) to derive (potentially good) directions for
optimising f . Notice that the direction employed is the opposite direction of the gradient for minimisa-

8

tion problems, being the opposite in case of maximisation. That is the reason why the gradient method
is called the steepest descent method in some references, though gradient and steepest descent might
refer to different methods in specific contexts.

Using the gradient ∇f(x) is also a convenience as it allows for the definition of a straightforward
convergence condition. Notice that, if ∇f(x) = 0, then the algorithm stalls, as xk+1 = xk + λkdk = xk.
In other words, the algorithm converges to points x ∈ Rn that satisfy the first-order necessary conditions
∇f(x) = 0.

The gradient method has many known variants that try to mitigate issues associated with the poor
convergence caused by the natural ’zigzagging’ behaviour of the algorithm (see, for example the gradient
method with momentum and the Nesterov method).

There are also variants that only consider the partial derivatives of some (and not all) of the dimen-
sions i = 1, . . . , n forming blocks of coordinates at each iteration. If these blocks are randomly formed,
these methods are known as stochastic gradient methods.

In Algorithm 6 we provide a pseudocode for the gradient method. In Line 2, the stopping condition
for the while-loop is equivalent of testing ∇f(x) = 0 for a tolerance ϵ.

Algorithm 6 Gradient method
1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = − ∇f(xk)

||∇f(x)||
4: λ = argminλ∈R{f(xk + λd)}
5: xk+1 = xk + λdj

6: k = k + 1
7: end while
8: return xk.

Figure 6 presents the progress of the gradient method using exact (bisection) and inexact (Armijo rule
with α = 0.1 and β = 0.7) line searches. As can be expected, when an inexact line search is employed,
the method overshoots slightly some of the steps, taking a few more iterations to converge.

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0
5.0

6.0

8.0

10.0

15.0

20.0

30.0

Gradient (exact)
Gradient (Armijo)

Figure 6: Gradient method applied to f . Convergence is observed in 10 steps using exact line search and
19 using Armijo’s rule (for ϵ = 10−5)

3.3 Newton’s method
One can think of gradient methods as using first-order information to derive directions of improve-

ment, while Newton’s method consists of a step forward also incorporating second-order information.

9

This can be shown to produce better convergence properties, but at the expense of the extra computa-
tional burden incurred by calculating and manipulating Hessian matrices.

The idea of the Newton’s method is the following. Consider the second-order approximation of f at
xk, which is given by:

q(x) = f(xk) +∇f(xk)⊤(x− xk) + 1
2(x− xk)⊤H(xk)(x− xk)

The method uses as direction d that of the extremum of the quadratic approximation at xk, which
can be obtained from the first-order condition ∇q(x) = 0. This renders:

∇q(x) = ∇f(xk) + H(xk)(x− xk) = 0. (3)
(4)

Assuming that H−1(xk) exists, we can use (3) to obtain the following update rule, which is known as
the Newton step:

xk+1 = xk −H−1(xk)∇f(xk) (5)
(6)

Notice that the “pure” Newton’s method has embedded in the direction of the step, its length (i.e.,
the step size) as well. In practice, the method uses d = −H−1(xk)∇f(xk) as a direction combined with a
line search to obtain optimal step sizes and prevent divergence (that is, converge to −∞) in cases where
the second-order approximation might lead to divergence. Fixing λ = 1 renders the natural Newton’s
method, as derived in (5). The Newton’s method can also be seen as employing Newton-Raphson method
to solve the system of equations that describe the first order conditions of the quadratic approximation
at xk.

Figure 7 shows the calculation of direction d = −H−1(xk)∇f(xk) for the first iteration of the Newton’s
method. Notice that the direction is the same as the that of the minimum of the quadratic approximation
q(x) at xk. The employment of a line search allows for overshooting the exact minimum, making the
search more efficient.

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0

5.0

6.0

8.0

10.0

15.0

20.0

30.0

40.0

x0

x * for quad. approx

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0

5.0

6.0

8.0

10.0

15.0

20.0

30.0

40.0

x0

x * for quad. approx
Newton's method (pure) step 1

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0

5.0

6.0

8.0

10.0

15.0

20.0

30.0

40.0

x1

x * for quad. approx

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0

5.0

6.0

8.0

10.0

15.0

20.0

30.0

40.0

x1

x * for quad. approx
Newton's method (pure) step 2

Figure 7: The calculation of the direction d = x∗−x0 in the first two iterations of the Newton’s method
with step size λ fixed to 1 (the pure Newton’s method, in left to right, top to bottom order). Notice in
blue the level curves of the quadratic approximation of the function at the current point xk and how it
improves from one iteration to the next.

The Newton’s method might diverge if the initial point is too far from the optimal and fixed step sizes
(such as λ = 1) are used, since the quadratic approximation minimum and the actual function minimum
can become drastically and increasingly disparate. Levenberg-Marquardt method and other trust-region-

10

based variants address convergence issues of the Newton’s method. As a general rule, combining the
method with an exact line search of a criteria for step-size acceptance that require improvement (such
as employing the Armijo rule for defining the step sizes) if often sufficient for guaranteed convergence.
Figure 8 compares the convergence of the pure Newton’s method and the method employing an exact
line search.

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0

5.0

6.0

8.0

10.0

15.0

20.0

30.0

40.0

Newton's method (pure)
Newton's method - opt. step

Figure 8: A comparison of the trajectory of both Newton’s method variants. Notice that in the method
using the exact line search, wile the direction d = x∗ − x0 is utilised, the step size is larger in the first
iteration.

Algorithm 7 presents a pseudocode for the Newton’s method. Notice that in Line 3, an inversion
operation is required. One might be cautious about this operation, since as ∇f(xk) tends to zero, the
Hessian H(xk) tends to become singular, potentially causing numerical instabilities.

Algorithm 7 Newton’s method
1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do
3: d = −H−1(xk)∇f(xk)
4: λ = argminλ∈R{f(xk + λd)}
5: xk+1 = xk + λd
6: k = k + 1
7: end while
8: return xk

Figure 9 shows the progression of the Newton’s method for f with exact and inexact line searches.

11

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0
5.0

6.0

8.0

10.0

15.0

20.0

30.0

Newton's method (exact)
Newton's method (Armijo)

Figure 9: Newton’s method applied to f . Convergence is observed in 4 steps using exact line search and
27 using Armijo’s rule (ϵ = 10−5)

12

	A prototype of an optimisation method
	Line search methods
	Exact line searches
	Uniform search
	Dichotomous search
	Golden section search*
	Bisection search

	Inexact line search
	Armijo rule

	Unconstrained optimisation methods
	Coordinate descent
	Gradient (descent) method
	Newton's method

