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Line search methods
This pseudocode represents the general concept of optimization
methods:

Algorithm Conceptual optimisation algorithm

1: initialise. iteration count k = 0, starting point x0

2: while stopping criteria are not met do
3: compute direction dk
4: compute step size λk

5: xk+1 = xk + λkdk
6: k = k + 1
7: end while
8: return xk

where
▶ k is an iteration counter;

▶ λk is a suitable step size;

▶ dk is a direction vector;
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Line search methods

Finding an optimal step size λk is in itself an optimisation problem
called line search due to its unidimensional nature.

Line searches are the backbone of most optimisation methods.

Let θ(λ) = f(x+ λd). If f is differentiable, a straightforward
approach is to find an optimal setup size λ is

θ′(λ) = d⊤∇f(x+ λd) = 0

However, one must bear in mind that:

▶ d⊤f(x+ λd) is often nonlinear in λ;

▶ λ = argminλ d
⊤∇f(x+ λd) = 0 is not necessarily optimal.
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Line search methods
Theorem 1 (Line search reduction)

Let θ : R → R be strictly quasiconvex over the interval [a, b], and let
λ, µ ∈ [a, b] such that λ < µ. If θ(λ) > θ(µ), then θ(z) ≥ θ(µ) for
all z ∈ [a, λ]. If θ(λ) ≤ θ(µ), then θ(z) ≥ θ(λ) for all z ∈ [µ, b].

θ θ

θ(λ)

θ(µ)

a bλ µ

a b

θ(λ)

θ(µ)

λ µa b

a b
Applying Theorem 1 allows to iteratively reduce the search space.
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Line search methods - uniform search
Break [a, b] into n uniform intervals of size δ, which leads to n+ 1
grid points ak = a0 + kδ, with a = a0, b = an, and k = 0, . . . , n.

θ

a = a0 a1 a2 . . . an = b

λ̂− δ λ̂+ δλ̂

θ(a2)

Grid search with 5 points; Note that
θ(a2) = mini=0,...,n θ(ai).

Let λ̂ = argmini=0,...,n θ(ai).
We know that the optimal
λ ∈ [λ̂− δ, λ̂+ δ].

Remarks:

▶ The search can be repeated
making a = λ̂− δ and
b = λ̂+ δ.

▶ The number of grid points
can increase dynamically,
saving function evaluations.
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Line search methods - sequential searches
More efficient methods can be devised by using information of the
previous evaluation of θ. These are known as sequential searches.

1. Dichotomous search: we place two points, λ and µ, around the
midpoint of [a, b] at a small distance ϵ.

θ1

θ2
θ1(µ)

θ1(λ)

θ2(µ)
θ2(λ)

λ µa

a

a

b

b

b

θ2

θ1

θ1(µ)

θ1(λ)
θ2(µ)

θ2(λ)

λ µ
(a+b)

2a

a

a

b

b

b
Using the midpoint (a+ b)/2 and Theorem 1 to reduce the search space.
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Line search methods - sequential searches
Algorithm Dichotomous search

1: initialise. distance ϵ > 0, tolerance l > 0, [a0, b0] = [a, b], k = 0
2: while bk − ak > l do
3: λk = ak+bk

2
− ϵ, µk = ak+bk

2
+ ϵ

4: if θ(λk) < θ(µk) then
5: ak+1 = ak, bk+1 = µk

6: else
7: ak+1 = λk, bk+1 = bk
8: end if
9: k = k + 1
10: end while
11: return λ = ak+bk

2

Remark: The number of steps (and evaluations of θ) can be
predicted beforehand:

bk+1 − ak+1 =
1

2k
(b0 − a0) + 2ϵ

(
1− 1

2k

)
.
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Bisection method

More than just function evaluations, it also uses derivative
information. We assume θ(λ) to be differentiable and convex.

2. Bisection method: The main idea is

1. if θ′(λk) = 0, then λk is a minimiser.

2. if θ′(λk) > 0, then, for λ > λk, we have θ′(λk)(λ− λk) ≥ 0,
which implies θ(λ) ≥ θ(λk) since θ is convex. Therefore, the
new search interval becomes [ak+1, bk+1] = [ak, λk].

3. if θ′(λk) < 0, we have θ′(λk)(λ− λk) ≥ 0 for λ < λk. Thus,
the new search interval becomes [ak+1, bk+1] = [λk, bk].

4. As in the dichotomous search, to maximise overall interval
reduction, we set λk = 1

2(bk + ak).
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Bisection method

Algorithm Bisection method

1: initialise. tolerance l > 0, [a0, b0] = [a, b], k = 0
2: while bk − ak > l do
3: λk = (bk+ak)

2
and evaluate θ′(λk)

4: if θ′(λk) = 0 then return λk

5: else if θ′(λk) > 0 then
6: ak+1 = ak, bk+1 = λk

7: else
8: ak+1 = λk, bk+1 = bk
9: end if
10: k = k + 1.
11: end while
12: return λ = ak+bk

2
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Inexact line searches - Armijo rule
Often the use of non-optimal (i.e., inexact) step sizes λk is enough
to guarantee a good performance.

Armijo’s rule: find acceptable step sizes by balancing the trade-off
between convergence and numerical performance.

A step size λ is
considered acceptable if

f(x+ dλ)− f(x) ≤ αλ∇f(x)⊤d

which, at λ = 0, is the same as

θ(λ)− θ(0) ≤ αλθ′(0)

θ(λ) ≤ θ(0) + αλθ′(0) : Armijo’s rule (AR)

If λ does not satisfy AR, λ is reduced by a factor β ∈ (0, 1) and the
test is repeated until (AR) is satisfied.
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Inexact line searches - Armijo’s rule
Armijo’s rule has a nice graphical interpretation: λ is accepted if it
is in an interval where the function θ(λ) is below a deflected linear
extrapolation (from 0).

λ βλ

acceptable λk acceptable λk

θapp(λ)

θ(λ)
θapp(βλ)

θ(βλ)

θapp(λ) = θ(0) + αλ(θ′(0)) θapp(λ) = θ(0) + αλ(θ′(0))

θ(0) + λ(θ′(0)) θ(0) + λ(θ′(0))

At first λ0 = λ is not acceptable; after reducing the step size to λ1 = βλ, it
enters the acceptable range where θ(λk) ≤ θapp(λk) = θ(0) + αλk(θ

′(0)).
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Inexact line searches - Armijo’s rule

λ βλ

acceptable λk acceptable λk

θapp(λ)

θ(λ)
θapp(βλ)

θ(βλ)

θapp(λ) = θ(0) + αλ(θ′(0)) θapp(λ) = θ(0) + αλ(θ′(0))

θ(0) + λ(θ′(0)) θ(0) + λ(θ′(0))

Remarks:

1. Some variants also consider rules to guarantee that λ is not too
small, such as θ(δλ) ≤ θ(0) + αδλθ′(0), with δ > 1.

2. Also known in the literature as backtracking.

3. Typical values: α ∈ [0.1, 0.5] and β ∈ [0.6, 0.99]. Very small α,
e.g. 10−4 is often used as well.
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Coordinate descent

Next, we focus on optimizing functions f : Rn → R with more than
one dimension.

The main difference is that we need to specify search directions d at
each point x ∈ Rn.

1. Coordinate descent: the search direction is one coordinate axis
per iteration. That is, di = 1 for coordinate i and dj ̸=i = 0, for
i, j ∈ {1, . . . , n}.

Several variants:

1. Cyclic: coordinates are considered in order 1, . . . , n;

2. Double-sweep: swap the coordinate order at each iteration;

3. Gauss-Southwell: choose components with largest ∂f(x)
∂xi

;

4. Stochastic: coordinates are selected at random
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Coordinate descent

Algorithm Coordinate descent method (cyclic)

1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0
2: while ||xk+1 − xk|| > ϵ do
3: for j = 1, . . . n do
4: d = {di = 1, if i = j; di = 0, if i ̸= j}
5: λj = argminλ∈R

{
f(xk

j + λdj)
}

6: xk+1
j = xk

j + λjdj
7: end for
8: k = k + 1
9: end while
10: return xk

Remarks:

1. The one-dimensional minimisation is called Gauss-Seidel step;

2. Block-coordinate methods use subgroups (blocks) of
coordinates to define directions.
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Coordinate descent
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0
x 2

4.0
5.0

6.0

8.0

10.0

15.0

20.0

30.0

Coord. desc.

Coordinate descent method applied to f . Convergence is observed in 4 steps for
a tolerance ϵ = 10−4
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Gradient method

Recall that if d is a descent direction, there exists δ > 0 such that
f(x+ λd) < f(x) for all λ ∈ (0, δ). The following result provides
directions of steepest descent.

Lemma 2 (Steepest descent direction)

Suppose that f : Rn→ R is differentiable at x∈Rn and ∇f(x) ̸= 0.

Then d = − ∇f(x)
||∇f(x)|| is the direction of steepest descent of f at x.

Proof.
From differentiability of f , we have

f ′(x; d) = lim
λ→0+

f(x+ λd)− f(x)

λ
= ∇f(x)⊤d.

Thus, d = argmin||d||≤1

{
∇f(x)⊤d

}
= − ∇f(x)

||∇f(x)|| .
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Gradient method

Algorithm Gradient method

1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0.
2: while ||∇f(xk)|| > ϵ do

3: d = − ∇f(xk)
||∇f(x)||

4: λ = argminλ∈R {f(xk + λd)}
5: xk+1 = xk + λdj
6: k = k + 1
7: end while
8: return xk

Remarks:

1. Steepest descent and gradient methods are different. When
||d|| ≤ 1 uses 2-norm (in Lemma 2), they are equivalent;

2. Poor convergence and zigzagging can be observed due to
imprecise linear approximations (more on this later);
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Gradient method
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0
x 2

4.0
5.0

6.0

8.0

10.0

15.0

20.0

30.0

Gradient (exact)
Gradient (Armijo)

Figure: Gradient method applied to f . Convergence is observed in 9 steps using
exact line search and 15 using Armijo’s rule (ϵ = 10−4)
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Newton’s method
Same idea as in the univariate case. Can also be seen as deflected
steepest descent.

Deflection is achieved using the Hessian, which is equivalent to
relying on quadratic approximations (rather than linear).

Consider the 2nd-order approximation of f at xk:

q(x) = f(xk) +∇f(xk)
⊤(x− xk) +

1

2
(x− xk)

⊤H(xk)(x− xk),

where H(xk) is the Hessian at xk. We require that ∇q(xk+1) = 0,
which leads to

∇f(xk) +H(xk)(x− xk) = 0.

Assuming that H−1(xk) exists, we obtain the update rule

xk+1 = xk −H−1(xk)∇f(xk).
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Newton’s method
Algorithm Newton’s method

1: initialise. tolerance ϵ > 0, initial point x0, iteration count k = 0
2: while ||∇f(xk)|| > ϵ do
3: d = −H−1(xk)∇f(xk)
4: λ = argminλ∈R {f(xk + λd)}
5: xk+1 = xk + λd
6: k = k + 1
7: end while
8: return xk

Remarks:

1. Setting λ = 1 recovers the “pure” Newton’s method;
2. As ∇f(xk) gets close to 0, H−1(xk) becomes singular;
3. It might not converge if x0 is too far from optimal and fixed

step size is used;
4. Levenberg-Marquardt method and other trust-region method

variants also address convergence issues of Newton’s method.
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Newton’s method
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

5 0 5 10 15
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40.0

x0

x *  for quad. approx

The quadratic approximation at x0 (with level curves in blue) and the optimal
point x∗.
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x *  for quad. approx
Newton's method (pure) step 1

The new point x1 becomes x∗.
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Newton’s method
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)
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x *  for quad. approx

The new quadratic approximation at x1 and new optimal point x∗. Notice how
the approximation improved.
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Newton’s method
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)
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x *  for quad. approx
Newton's method (pure) step 2

The new point x2 becomes x∗.
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Newton’s method
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)
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Newton's method (pure)

The complete trajectory of the pure Newton’s method.
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Newton’s method
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)
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Newton's method (pure)
Newton's method - opt. step

When employing line searches, the direction xk − xk−1 from the pure method is
used, but the actual step is optimised.
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Newton’s method
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)
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Newton's method (Armijo)

Newton’s method applied to f . Convergence is observed in 4 steps using exact
line search and 27 using Armijo’s rule (ϵ = 10−4)
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