
MSE2122 - Nonlinear Optimization
Lecture Notes VI

Fernando Dias (based on previous version by
Fabricio Oliveira)

September 26, 2023

Abstract
In this lecture, we present methods for solving unconstrained optimisation problems. We start

by defining a general optimisation algorithm that will serve as a reference for deriving variants of
optimisation methods. We concentrate first on how to generate step sizes using variants of unidi-
mensional optimisation methods, the so called line searches. We also present the Armijo rule as
an inexact line search method, widely used in state-of-the-art implementations of optimisation al-
gorithms. Next, we focus on three variants of multidimensional methods, namely the coordinate
descent (derivative free), the gradient descent method that relies in first order approximations, and
the Newton’s method, which relies on second-order information. We also discuss the effects of having
exact and inexact line searches in each of these methods.

Contents
1 Unconstrained optimisation methods 2

1.1 Conjugate gradient method . 2
1.1.1 The concept of conjugacy . 2
1.1.2 Generating conjugate directions . 3
1.1.3 Gradients and conjugate directions . 4
1.1.4 Conjugate gradient method . 4

1.2 Quasi Newton: BFGS method . 6

2 Complexity, convergence and conditioning 8
2.1 Complexity . 9
2.2 Convergence . 9
2.3 Conditioning . 10

1

1 Unconstrained optimisation methods
We will now discuss to variants of the gradient and Newton methods that try to exploit the computa-

tional simplicity of gradient methods while encoding of curvature information as the Newton’s method,
but without explicitly relying on second-order derivatives (i.e., Hessian matrices).

1.1 Conjugate gradient method
The conjugate gradient method use the notion of conjugacy to guide the search for optimal solutions.

The original motivation for the method comes from quadratic problems, in which one can use conjugacy
to separate the search for the optimum of f : Rn 7→ R into n exact steps.

1.1.1 The concept of conjugacy
Let us first define the concept of conjugacy.

Definition 1.1
Let H be an n × n symmetric matrix. The vectors d1, . . . , dn are called (H-)conjugate if they are
linearly independent and d⊤

i Hdj = 0, for all i, j = 1, . . . , n such that i ̸= j.

Notice that H-conjugacy (or simply conjugacy) is a generalisation of orthogonality under the linear
transformation imposed by the matrix H. Notice that orthogonal vectors are H-conjugate for H = I.
Figure 1 illustrate the notion of conjugacy between two vectors d1 and d2 that are H-conjugate, being H
the Hessian of the underlying quadratic function. Notice how it allows one to generate, from direction
d1, a direction d2 that, if used in combination with an exact line search, would take us to the centre of
the curve.

2 1 0 1 2
x1

1

0

1

2

3

x 2

f(x) = (x1 + 1)2 + (x2 2)2

d1

d2

2 1 0 1 2
x1

1

0

1

2

3

x 2

40.0

f(x) = 12x2 + 4x2
1 + 4x2

2 + 4x1x2

d1

d2

Figure 1: d1 and d2 are H-conjugates; on the left, H = I.

One can use H-conjugate directions to find optimal solutions for the quadratic function f(x) =
c⊤x + 1

2 x⊤Hx, where H is a symmetric matrix. Suppose we know directions d1, . . . , dn that are H-
conjugate. Then, given an initial point x0, any point x can be described as x = x0 +

∑n
j=1 λjdj .

We can then reformulate f(x) as a function of the step size λ, i.e.:

f(x) = F (λ) = c⊤(x0 +
n∑

j=1
λjdj) + 1

2(x0 +
n∑

j=1
λjdj)⊤H(x0 +

n∑
j=1

λjdj)

=
n∑

j=1

[
c⊤(x0 + λjdj) + 1

2(x0 + λjdj)⊤H(x0 + λjdj)
]
.

This reformulation exposes an important properties that having conjugate directions d1, . . . , dn allows
us to explore: separability. Notice that F (λ) =

∑n
j=1 Fj(λj), where Fj(λj) is given by:

2

3 2 1 0 1
x1

0

1

2

3

4
x 2

f(x) = 12x2 + 4x2
1 + 4x2

2 + 4x1x2

Conjugate method
Coord. desc.

3 2 1 0 1
x1

0

1

2

3

4

x 2

f(x) = (x1 + 1)2 + (x2 2)2

Conjugate method
Coord. desc.

Figure 2: Optimising f with the conjugate method and coordinate descent (left). For H = I, both
methods coincide (right)

Fj(λj) = c⊤(x0 + λjdj) + 1
2(x0 + λjdj)⊤H(x0 + λjdj),

and is, ultimately, a consequence of the linear independence of the conjugate directions. Assuming that
H is positive definite, and thus that first-order conditions are necessary and sufficient for optimality, we
can then calculate optimal λj for j = 1, . . . , n as:

F ′
j(λj) = 0

c⊤dj + x⊤
0 Hdj + λjd⊤

j Hdj = 0

λj = −c⊤dj + x⊤
0 Hdj

d⊤
j Hdj

, for all j = 1, . . . , n.

This result can be used to devise an iterative method that can obtain optimal solution for quadratic
functions in exactly n iterations. From an initial point x0 and a collection of H-conjugate directions
d1, . . . , dn, the method consists of the successively executing the following step:

xk = xk−1 + λkdk, where λk = −
c⊤dk + x⊤

k−1Hdk

d⊤
k Hdk

Notice the resemblance this method hold with the coordinate descent method. In case H = I, then the
coordinate directions given by di = 1 and dj ̸=i = 0 are H-conjugate and thus, the coordinate descent
method converges in two iterations. Figure 2 illustrates this behaviour. Notice that, on the left, the
conjugate method converges in exactly two iterations, while coordinate descent takes several steps before
finding the minimum. On the right, both methods become equivalent, since, when H = I, the coordinate
directions become also conjugate to each other.

1.1.2 Generating conjugate directions
The missing part at this point is how one can generate H-conjugate directions. This can be done effi-

ciently using an adaptation of the Gram-Schmidt procedure, typically employed to generate orthonormal
bases.

We intend to build a collection of conjugate directions d0, . . . , dn−1, which can be achieved provided
that we have a collection of linearly independent vectors ξ0, . . . , ξn−1.

The method proceed as follows.

3

1. First, set d0 = ξ0 as a starting step.

2. At a given iteration k + 1, we need to set the coefficients αi
k+1 such that dk+1 is H-conjugate to

d0, . . . , dk and formed by adding ξk+1 to a linear combination of d0, . . . , dk, that is:

dk+1 = ξk+1 +
k∑

l=0
αl

k+1dl.

3. To obtain H-conjugacy one must observe that, for each i = 0, . . . , k,

dk+1
⊤Hdi = ξk+1

⊤Hdi +
(

k∑
l=0

αl
k+1dl

)⊤

Hdi = 0.

Due to the H-conjugacy, d⊤
l Hdk = 0 for all l ̸= k. Thus the value of αk+1 is:

αi
k+1 =

−ξ⊤
k+1Hdi

d⊤
i Hdi

, for i = 0, . . . , k. (1)

(2)

1.1.3 Gradients and conjugate directions
The next piece required for developing a method that could exploit conjugacy is the definition of what

collection of linearly independent vectors ξ0, . . . , ξn−1 could be used to generate conjugate directions. In
the setting of developing an unconstrained optimisation method, the gradients ∇f(xk) can play this
part, which is the key result in Theorem 1.2.

Theorem 1.2
Let f(x) = c⊤x + 1

2 x⊤Hx, where H is an n × n symmetric matrix. Let d1, . . . , dn be H-conjugate, and
let x0 be an arbitrary starting point. Let λj be the optimal solution to Fj(λj) = f(x0 + λjdj) for all
j = 1, . . . , n. Then, for k = 1, . . . , n we must have:

1. xk+1 is optimal to min. {f(x) : x − x0 ∈ L(d1, . . . , dk)} where lL(d1, . . . , dk) = {
∑k

j=1 µjdj :
µj ∈ R, j = 1, . . . , k};

2. ∇f(xk+1)⊤dj = 0, for all j = 1, . . . , k;
3. ∇f(x0)⊤dk = ∇f(xk)⊤dk.

The proof of this theorem is based on the idea that, for a given collection of conjugate directions
d0, . . . , dk, xk will be optimal in the space spanned by the conjugate directions d0, . . . , dk, meaning
that the partial derivatives of F (λ) for these directions is zero. This phenomena is sometimes called
the expanding manifold property, since at each iteration L(d0, . . . , dk) expands in one independent (con-
jugate) direction at the time. To verify the second point, notice that the optimality condition for
λj ∈ arg min{Fj(λj)} is d⊤

j ∇f(x0 + λdj) = 0.

1.1.4 Conjugate gradient method
We have now all parts required for describing the conjugate gradient method. The method uses the

gradients ∇f(xk) as linearly independent vectors to generate conjugate directions, which are then used
as search directions dk.

In specific, the method operates generating a sequence of iterates:

xk+1 = xk + λkdk,

where d0 = −∇f(x0). Given a current iterate xk+1 with −∇f(xk+1) ̸= 0, we use Gram-Schmidth proce-
dure, in particular (2), to generate a conjugate direction dk+1 by making the linearly independent vector
ξk+1 = ∇f(xk+1). Thus, we obtain:

4

dk+1 = −∇f(xk+1) + αkdk, with αk = ∇f(xk+1)⊤Hdk

d⊤
k Hdk

. (3)

Notice that, since ∇f(xk+1) − ∇f(xk) = H(xk+1 − xk) = λkHdk and dk = −∇f(xk) + αk−1dk−1, αk

can be simplified to be:

αk = ∇f(xk+1)⊤Hdk

d⊤
k Hdk

= ∇f(xk+1)⊤(∇f(xk+1) − ∇f(xk))
(−∇f(xk) + αk−1dk−1)⊤(∇f(xk+1) − ∇f(xk))

= ||∇f(xk+1)||2
||∇f(xk)||2 ,

where the last relation follows from Theorem 1.2. Algorithm 1 summarises the conjugate gradient
method.

Algorithm 1 Conjugate gradient method
1: initialise. tolerance ϵ > 0, initial point x0, direction d0 = −∇f(x0), k = 1
2: while ||∇f(xk)|| > ϵ do
3: y0 = xk−1
4: d0 = −∇f(y0)
5: for j = 1, . . . , n do
6: λj = argminλ≥0f(yj−1 + λdj−1)
7: yj = yj−1 + λjdj−1

8: dj = −∇f(yj) + αjdj−1, where αj = ||∇f(yj)||2

||∇f(yj−1)||2 .
9: end for

10: xk = yn, k = k + 1
11: end while
12: return xk.

The conjugate gradient method using αk = ||∇f(xk+1)||2

||∇f(xk)||2 is due to Fletcher and Reeves 1.

An alternative version of the method uses:

αk = ∇f(xk+1)⊤(∇f(xk+1) − ∇f(xk))
||∇f(xk)|| ,

which is known for having better numerical properties for solving problems that are not quadratic.
Figure 3 illustrates the behaviour of the conjugate gradient method when applied to solve f(x) =

e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10) using both exact and inexact line searches.

If f : Rn 7→ R is a quadratic function, then the method is guaranteed to converge in exactly n itera-
tions. However, the method can be applied to any differentiable function f , in which setting the method
behaves as successively solving quadratic approximations of f , in a similar fashion to that of Newton’s
method, but without requiring second-order (Hessian) information, which is the most demanding aspect
associated with Newton’s method. When employed to non-quadratic functions, the process of obtaining
conjugate directions is restarted at the current point xk after n steps (represented in the loop staring in
Line 5 in Algorithm 1).

Equation (3) exposes an important property of the conjugate gradient method. In general, the em-
ployment of second-order terms is helpful for the optimisation method because it encodes curvature
information on the definition of the search direction. The conjugate gradient method is also capable of
encoding curvature information, not by using Hessians, but by weighting the current direction (given by
the gradient) −∇f(xk+1) and the previous direction αkdk, which naturally compensates for the curva-
ture encoded in the original matrix H (which is the Hessian of the quadratic approximation).

1(Fletcher, Reeves, and Colin M. Reeves. "Function minimization by conjugate gradients." The computer journal 7.2
(1964): 149-154.)

5

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0
5.0

6.0

8.0

10.0

15.0

20.0

30.0

Conj. grad. (exact)
Conj. grad. (Armijo)

Figure 3: Conjugate gradient method applied to f . Convergence is observed in 24 steps using exact line
search and 28 using Armijo’s rule (ϵ = 10−6)

1.2 Quasi Newton: BFGS method
Quasi-Newton methods is a term referring to methods that use approximations for the inverse of the

Hessian of f at x, H−1(x), that do not explicitly require second-order information (i.e., Hessians) neither
expensive inversion operations.

In quasi-Newton methods, we consider the search direction dk = −Dk∇f(xk), where Dk acts as the
approximation for the inverse Hessian H−1(x). To compute Dk, we use local curvature information, in
the attempt to approximate second-order derivatives. For that, let us define the terms:

pk = λkdk = xk+1 − xk

qk = ∇f(xk+1) − ∇f(xk) = H(xk+1 − xk) = Hpk.

Starting from an initial guess D0, quasi-Newton methods progress by successively updating Dk+1 =
Dk + Ck, with Ck being such that it only uses the information in pk and qk and that, after n updates,
Dn converges to H−1.

For that to be the case, we require that pj , j = 1, . . . , k are eigenvectors of Dk+1H with unit eigen-
value, that is:

Dk+1Hpj = pj , for j = 1, . . . , k. (4)

This condition guarantees that, at the last iteration, Dn = H−1. To see that, first, notice the following
from (4).

Dk+1Hpj = pj , j = 1, . . . , k

Dk+1qj = pj , j = 1, . . . , k

Dkqj + Ckqj = pj j = 1, . . . , k

pj = DkHpj + Ckqj = pj + Ckqj , j = 1, . . . , k − 1,

which implies that Ckqj = 0 for j = 1, . . . , k − 1.

Now, for j = k, we require that:

6

Dk+1qk = pk

Dkqk + Ckqk = pk

(Dk + Ck)qk = pk

This last condition allows, after n iterations, to recover:

Dn = [p0, . . . , pn−1][q0, . . . , qn−1]−1 = H(xn) (5)

Condition (5) is called the secant condition as a reference to the approximation to the second-order
derivative. Another way of understanding the role this condition has is by noticing the following.

Dk+1qk = pk

Dk+1(∇f(xk+1) − ∇f(xk)) = xk+1 − xk

∇f(xk+1) = ∇f(xk) + D−1
k+1(xk+1 − xk), (6)

where D−1
k+1 can be seen as an approximation to the Hessian H, just as Dk+1 is an approximation to

H−1. Now, consider the second-order approximation of f at xk:

q(x) = f(xk) + ∇f(xk)⊤(x − xk) + 1
2(x − xk)⊤H(xk)(x − xk).

We can now notice the resemblance the condition (6) holds with:

∇q(x) = ∇f(xk) + H(xk)⊤(x − xk) = 0.

In other words, at each iteration, the updates are made such that the optimality conditions in terms of
the quadratic expansion remains valid.

The Davidon-Fletcher-Powell (DFP) is one classical quasi-Newton method available. It employs up-
dates of the form:

Dk+1 = Dk + CDF P = Dk + pkp⊤
k

p⊤
k qk

− Dkqkq⊤
k Dk

q⊤
k Dkqk

We can verify that CDF P satisfies conditions (4) and (5). For that, notice that:

(1) CDF P qj = CDF P Hpj

= pkp⊤
k Hpj

p⊤
k

qk
− Dkqkp⊤

k HDkHpj

q⊤
k

Dkqk
= 0, for j = 1, . . . , k − 1;

(2) CDF P qk = pkp⊤
k qk

p⊤
k

qk
− Dkqkq⊤

k Dkqk

q⊤
k

Dkqk
= pk − Dkqk.

The main difference between available quasi-Newton methods is the nature of the matrix C employed
in the updates. Over the years, several ideas emerged in terms of generating updates that satisfied the
above properties. The most widely used quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS), which has been widely shown to have remarkable practical performance. BFGS is part of the
Broyden family of updates, given by:

CB = CDF P + ϕ
τjvkv⊤

k

p⊤
k qk

,

where vk = pk −
(

1
τk

)
Dkqk, τk = q⊤

j Dkqk

p⊤
k

qk
, and ϕ ∈ (0, 1). The extra term in the Broyden family of

updates is designed to help with mitigating numerical difficulties from near-singular approximations.

7

5 0 5 10 15
x1

5.0

2.5

0.0

2.5

5.0

x 2

4.0
5.0

6.0

8.0

10.0

15.0

20.0

30.0

BFGS (exact)
BFGS (Armijo)

Figure 4: BFGS method applied to f . Convergence is observed in 11 steps using exact line search and
36 using Armijo’s rule (ϵ = 10−6)

It can be shown that all updates from the Broyden family also satisfy the quasi-Newton conditions
(4) and (5). The BFGS update is obtained for ϕ = 1, which renders:

CBF GS
k = pkp⊤

k

p⊤
k qk

(
1 + q⊤

k Dkqk

p⊤
k qk

)
− Dkqkp⊤

k + pkq⊤
k Dk

p⊤
k qk

.

The BFGS method is often presented explicitly approximating the Hessian H instead of its in-
verse, which is useful when using specialised linear algebra packages that rely on the “backslash”
operator to solve linear systems of equations. Let Bk be the current approximation of H. Then
Dk+1 = B−1

k+1 = (Bk + C
BF GS

k)−1, with:

C
BF GS

k = qkq⊤
k

q⊤
k pk

− Bkpkp⊤
k Bk

p⊤
k Bkpk

.

The update for the inverse Hessian H−1 can then be obtained using the Sherman-Morrison formula.

Figure 4 illustrates the behaviour of the BFGS method when applied to solve:

f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

using both exact and inexact line searches. Notice how the combination of imprecisions both in the
calculation of H−1 and in the line search turns the search noisy. This combination (BFGS combined
with Armijo rule) is, however, widely used in efficient implementations of several nonlinear optimisation
methods.

A variant of BFGS, called the limited memory BFGS (l-BFGS) utilises efficient implementations that
do not require storing the whole approximation for the Hessian, but only a few most recent pk and qk

vectors.

2 Complexity, convergence and condition-
ing

Several aspects must be considered when analysing the performance of algorithms under a given
setting and, in each, a multitude of theoretical results that can be used to understand, even if to some

8

extent, the performance of a given optimisation method

We focus on three key properties that one should be aware when employing the methods we have
seen to solve optimisation problems. The first two, complexity and convergence refer to the algorithm
itself, but often involve considerations related to the function being optimised. Conditioning, on the
other hand, is a characteristic exclusively related to the problem at hand. Knowing how the “three C’s”
can influence the performance of an optimisation problem is central in making good choices in terms of
which optimisation method to employ.

2.1 Complexity
Algorithm complexity analysis is a discipline from computer science that focus on deriving worst-case

guarantees in terms of the number of computational steps required for an algorithm to converge, given
an input of known size. For that, we use the following definition to identify efficient, generally referred
to as polynomial, algorithms.

Definition 2.1. Polynomial algorithms

Given a problem P , a problem instance X ∈ P with length L(X) in binary representation, and an
algorithm A that solves X, let fA(X) be the number of elementary calculations required to run A on
X. Then, the running time of A on X is proportional to

f∗
A(n) = sup

X
{fA(X) : L(X) = n}.

Algorithm A is polynomial for a problem P if f∗
A(n) = O(np) for some integer p.

Notice that this sort of analysis only render bounds on the worst-case performance. Though it can be
informative under a general setting, there are several well known examples in that experimental practice
does not correlate with the complexity analysis. One famous example is the simplex method for linear
optimisation problems, which despite not being a polynomial algorithm, presents widely-demonstrated
reliable (polynomial-like) performance.

2.2 Convergence
In the context of optimisation, local analysis is typically more informative regarding to the behaviour

of optimisation methods. This analysis tend to disregard initial steps further from the initial points and
concentrate on the behaviour of the sequence {xk} to a unique point x.

The convergence is analysed by means of rates of convergence associated with error functions e :
Rn 7→ R such that e(x) ≥ 0. Typical choices for e include:

• e(x) = ||x − x||;
• e(x) = |f(x) − f(x)|.
The sequence {e(xk)} is then compared to the geometric progression βk, with k = 1, 2, . . . , and

β ∈ (0, 1). We say that a method presents linear convergence if exists q > 0 and β ∈ (0, 1) such that
e(x) ≤ qβk for all k. An alternative way of posing this result is stating that:

lim
k→∞

sup e(xk+1)
e(xk) ≤ β.

We say that an optimisation method converges superlinearly if the rate of convergence tends to zero.
That is, if exists β ∈ (0, 1), q > 0 and p > 1 such that e(xk) ≤ qβpk for all k. For k = 2, we say that the
method presents quadratic convergence. Any p-order convergence is obtained if:

lim
k→∞

sup e(xk+1)
e(xk)p

< ∞, which is true if lim
k→∞

sup e(xk+1)
e(xk) = 0.

Linear convergence is the most typical convergence rate for nonlinear optimisation methods, which is
satisfactory if β is not too close to one. Certain methods are capable of achieving superlinear convergence
for certain problems, being Newton’s method an important example.

In light of what we discussed, let us analyse the convergence rate of some of the methods earlier

9

discussed. We start by posing the convergence of gradient methods.

Theorem 2.2. Convergence of the gradient method
Let f(x) = 1

2 x⊤Hx where H is a positive definite symmetric matrix. Suppose f(x) is minimised with
the gradient method using an exact line search. Let λ = mini=1,...,n λi and λ = maxi=1,...,n λi, where
λi are eigenvalues of H. Then, for all k,

f(xk+1)
f(xk) ≤

(
λ − λ

λ + λ

)2

Theorem 2.2 implies that, under certain assumptions, the gradient methods present linear conver-
gence. Moreover, this result shows that the convergence rate is dependent on the scaling of the function,
since it depends on the ratio of eigenvalues of H, which in turn can be modified by scaling f . This results
exposes an important shortcoming that gradient methods present: the dependence on the conditioning
of the problem, which we will discuss shortly. Moreover, this result can be extended to incorporate
functions other than quadratic and also inexact line searches.

The convergence of Newton’s method is also of interest since, under specific circumstances, it presents
a quadratic convergence rate. Theorem 2.3 summarises these conditions.

Theorem 2.3. Convergence of Newton’s method - general case
Let g : Rn → Rn be differentiable, x such that g(x) = 0, and let {e(xk)} = {||xk − x||}. Moreover, let
Nδ(x) = {x : ||x − x|| ≤ δ} for some δ > 0. Then

1. There exists δ > 0 such that if x0 ∈ Nδ(x), the sequence {xk} with xk+1 = xk −
(∇g(xk)⊤)−1g(xk) belongs to Nδ(x) and converges to x, while {e(xk)} converges superlinearly.

2. If for some L > 0, M > 0, and for all x, y ∈ Nδ(x), λ ∈ (0, δ]
||∇g(x) − ∇g(y)|| ≤ L||x − y|| and ||(∇g(xk)⊤)−1|| ≤ M,

then, if x0 ∈ Nδ(x), we have for k = 0, 1, . . .

||xk+1 − x|| ≤ LM

2 ||xk − x||2.

If LMδ
2 < 1 and x0 ∈ Nδ(x), {e(xk)} converges quadratically.

Notice that the convergence of the method is analysed in two distinct phases. In the first phase,
referred to as ’damped’ phase, superlinear convergence is observed within the neighbourhood Nδ(x) de-
fined by δ. The second phase is where quadratic convergence is observed and it happens when δ < 2

LM ,
which in practice can only be interpreted as small enough, as the constants L (the Lipschitz constant)
and M (a finite bound for the norm of the Hessian) cannot be easily estimated in practical applications.

However, it is interesting to notice that the convergence result for Newton’s method do not depend
on the scaling of the problem, like the gradient method. This property, called affine invariance is one of
the greatest features that Newton’s method possess.

Figure 5 compare the convergence of four methods presented considering f(x) = e(−(x1−3)/2) +
e((4x2+x1)/10) + e((−4x2+x1)/10), employing exact line search and using e(x) = ||xk − x||. Notice how the
quadratic convergence of Newton’s method compare with the linear convergence of the gradients method.
The other two, conjugate gradients and BFGS, present superlinear convergence.

2.3 Conditioning
The condition number of a symmetric matrix is given by

κ = ||A||2||A−1||2 = maxi=1,...,n{λi

}
min

i=1,...,n
{λi} = λ

λ

The condition number κ is an important measure in optimisation, since it can be used to predict
how badly scaled a problem might be. Large κ values mean that numerical errors will be amplified after
repeated iterations, in particular matrix inversions.

Roughly speaking, having κ ≥ 10k means that at each iteration, k digits of accuracy are lost. As
general rule, one would prefer smaller κ numbers, but good values are entirely problem dependent.

10

2 4 6 8 10 12 14
iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

101

||x
k

x |
|

Gradient
Newton
Conjugate
BFGS

Figure 5: Convergence comparison for the four methods

One way of understanding the role that the conditioning number κ has is to think the role that the
eigenvalues of the Hessian have in the shape of the level curves of quadratic approximations of a general
function f : Rn 7→ R. First, let us consider the Hessian H(x) at a given point x ∈ Rn is the identity
matrix I, for which all eigenvalues are 1 and eigenvectors are ei, i = 1, . . . , n, where ei is the vector
with component 1 in the position i and zero everywhere else. This means that in the direction of the
n-eigenvectors, the ellipsoid formed by the level curves (specifically, the lower level sets) of f stretch
by the same magnitude and, therefore, the level curves of the quadratic approximation are in fact a
circle. Now, suppose that for one of the dimensions i of the matrix H(x), we have one of the eigenvalues
greater than 1. What we would see is that the level curves of the quadratic approximation will be more
stretched in that dimension i than in the others. The reason for that is because the Hessian plays a
role akin to that of a characteristic matrix in an ellipsoid (specifically due to the second order term
1
2 (x − xk)⊤H(xk)(x − xk) in the quadratic approximation).

Thus, larger κ will mean that the ratio between the eigenvalues is larger, which in turn implies that
there is eccentricity in the lower level sets (i.e., the lower level sets are far wider in one direction than in
others), which ultimately implies that first-order methods struggle since often the gradients often point
to directions that only show descent for small step sizes.

Figure 6 illustrates the effect of different condition numbers on the performance of the gradient
method. As can be seen, the method require more iterations for higher conditioning numbers, in accor-
dance to the convergence result presented in Theorem 2.2.

11

10 5 0 5 10
x1

4

2

0

2

4

x 2 0.5
2.0

6.0
10.0

15.0

25.0

40.0

60.0

f(x) = (1/2)(x2
1 + 10x2

2), = 2.0

10 5 0 5 10
x1

4

2

0

2

4

x 2 0.5
2.0 6.0

10.0

15.0

25.0

40.0

60.0

f(x) = (1/2)(x2
1 + 10x2

2), = 10.0

Figure 6: The gradient method with exact line search for different κ.

12

	Unconstrained optimisation methods
	Conjugate gradient method
	The concept of conjugacy
	Generating conjugate directions
	Gradients and conjugate directions
	Conjugate gradient method

	Quasi Newton: BFGS method

	Complexity, convergence and conditioning
	Complexity
	Convergence
	Conditioning

