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The concept of conjugacy
Definition 1
Let H be an n× n symmetric matrix. Vectors d1, . . . , dn are called
(H-)conjugate if they are linearly independent and d⊤i Hdj = 0,
for all i, j = 1, . . . , n : i ̸= j.
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d1 and d2 are H-conjugates; on the left, H = I.
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The concept of conjugacy
The motivation to use conjugates comes from quadratic problems,
in particular their use as approximations for general functions.

Let f(x) = c⊤x+ 1
2x

⊤Hx with H symmetric and let d1, . . . , dn be
H-conjugate directions.

Given x0, any point x can be described as
x0 +

∑n
j=1 λjdj . Thus

f(x) = F (λ) = c⊤(x0 +
n∑

j=1

λjdj) +
1

2
(x0 +

n∑
j=1

λjdj)
⊤H(x0 +

n∑
j=1

λjdj)

=

n∑
j=1

[
c⊤(x0 + λjdj) +

1

2
(x0 + λjdj)

⊤H(x0 + λjdj)
]
.

Notice that F (λ) =
∑n

j=1 Fj(λj) is separable. Assuming that H is

positive definite (d⊤j Hdj > 0), the optimal λ is given by

λj = −c⊤dj + x⊤0 Hdj

d⊤j Hdj
, for all j = 1, . . . , n.
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The concept of conjugacy

Example: min.
{
f(x) = −12x2 + 4x21 + 4x22 + 4x1x2

}
1. Notice that H =

[
8 4
4 8

]
. Letting d1 = (1, 0), d2 = (a, b) must

satisfy d⊤1 Hd2 = 0 ⇒ 8a+ 4b = 0. Pick d2 = (−1, 2).

2. Calculate optimal λ = (λ1, λ2). For λ1, we have

λ1 = −

([
0

−12

]⊤[
1
0

]
+

[
x1

x2

]⊤[
8 4
4 8

] [
1
0

])([
1
0

]⊤[
8 4
4 8

] [
1
0

])−1

λ2 = −

([
0

−12

]⊤[−1
−2

]
+

[
x1

x2

]⊤[
8 4
4 8

] [
−1
−2

])([
−1
−2

]⊤[
8 4
4 8

] [
−1
2

])−1
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The concept of conjugacy
Example: Forx0 = (12 , 1), λ1 = −1 and x1= x0 + d1λ1 = (−1

2 , 1).
Then λ2 =

1
2 and x2 = x1 +

1
2d2 = (−1, 2), which is optimal.
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Optimising f with the conjugate method and coordinate descent (left). For
H = I, both methods coincide (right).
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Generating conjugate directions
The Gram-Schmidt method is used to obtain H-conjugate vectors.

1. Assume that ξ0, . . . , ξk linearly independent vectors are known.
Set d0 = ξ0.

2. Set coefficients αi
k+1 such that dk+1 is H-conjugate to

d0, . . . , dk

dk+1 = ξk+1 +
k∑

l=0

αl
k+1dl.

3. H-conjugacy will be obtained if, for each i = 0, . . . , k,

dk+1
⊤Hdi = ξk+1

⊤Hdi +

(
k∑

l=0

αl
k+1dl

)⊤

Hdi = 0.

Due to the H-conjugacy, d⊤l Hdk = 0 for all l ̸= k. Thus

αi
k+1 =

−ξ⊤k+1Hdi

d⊤i Hdi
, for i = 0, . . . , k. (1)
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The concept of conjugacy
The following are key properties of conjugate directions.

Theorem 2
Let f(x) = c⊤x+ 1

2x
⊤Hx, where H is an n× n symmetric matrix.

Let d1, . . . , dn be H-conjugate, and let x0 be an arbitrary starting
point. Let λj be the optimal solution to Fj(λj) = f(x0 + λjdj) for
all j = 1, . . . , n. Then, for k = 1, . . . , n we must have:

1. xk+1 is optimal to min. {f(x) : x− x0 ∈ L(d1, . . . , dk)} where

L(d1, . . . , dk) =
{∑k

j=1 µjdj : µj ∈ R, j = 1, . . . , k
}
;

2. ∇f(xk+1)
⊤dj = 0, for all j = 1, . . . , k;

Proof reasoning: ∇f(xk+1) is orthogonal to L(d1, . . . , dk) since
F ′
j(λj) = d⊤j ∇f(x0 + λjdj) = 0 is the optimality condition for λj .

Remark: Theorem 2 guarantees that one can use ∇f(xk) to
generate conjugate directions.
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Conjugate gradient method
The conjugate gradient method generates sequence of iterates

xk+1 = xk + λkdk,

where d0 = −∇f(x0). Given xk+1 with ∇f(xk+1) ̸= 0 we use (1)
to generate dk+1 by making ξk+1 = −∇f(xk+1). Thus

dk+1 = −∇f(xk+1) + αkdk, with αk =
∇f(xk+1)

⊤Hdk

d⊤k Hdk
.

Noticing that ∇f(xk+1)−∇f(xk) = H(xk+1 − xk) = λkHdk and
that dk = −∇f(xk) + αk−1dk−1, the step update becomes

dk+1 = −∇f(xk+1) + αkdk, with αk =
||∇f(xk+1)||2

||∇f(xk)||2
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Conjugate gradient method

Algorithm Conjugate gradient method

1: initialise. tolerance ϵ > 0, initial point x0, direction d0 = −∇f(x0), k = 1
2: while ||∇f(xk)|| > ϵ do
3: y0 = xk−1

4: d0 = −∇f(y0)
5: for j = 1, . . . , n do
6: λj = argminλ≥0 {f(yj−1 + λdj−1)}
7: yj = yj−1 + λjdj−1

8: dj = −∇f(yj) + αjdj−1, where αj =
||∇f(yj)||2

||∇f(yj−1)||2
.

9: end for
10: xk = yn, k = k + 1
11: end while
12: return xk.
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Conjugate gradient method
Remarks:

1. The conjugate gradient method with αk =
||∇f(xk+1)||2
||∇f(xk)||2

is due

to Fletcher and Reevers.

2. Nonquadratic problems can also be solved, tipically taking more
than n steps;

3. Using αk =
∇f(xk+1)

⊤(∇f(xk+1)−∇f(xk))
||∇f(xk)||2

has better numerical

performance for nonquadratic problems;

4. Notice that the algorithm is restarted every n iterations to
recover conjugacy;

5. Notice that

dj+1 =
1

µ
[µ(−∇f(xj+1)) + (1− µ)dj ]

where µ = 1
(1+αj)

. That is, dj+1 is a convex combination

between steepest descent and conjugate direction.
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Conjugate gradient method
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)
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Conj. grad. (exact)
Conj. grad. (Armijo)

Conjugate gradient method applied to f . Convergence is observed in 24 steps
using exact line search and 28 using Armijo’s rule (ϵ = 10−4)
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Conjugate gradient method
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Comparing the gradient method and the conjugate gradient with different
starting point. The gradient method takes 20 steps while the conjugate gradient
takes 8 steps to converge (ϵ = 10−4)
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Outline of this lecture

Conjugate gradient method

Quasi-Newton method

Complexity, convergence and conditioning
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Quasi-Newton methods

Can be seen as approximations of Newton’s method that do not
utilise Hessians or their inverses.

Instead, they rely on search directions dk = −Dk∇f(xk), where Dk

approximates the inverse Hessian H(xk)
−1 using only gradient

information.

Dk is computed using local curvature information at x. Let

pk = λkdk = xk+1 − xk

qk = ∇f(xk+1)−∇f(xk) = H(xk+1 − xk) = Hpk.

When f(x) is quadratic, these methods approximate H−1 by
updating Dk using pk and qk such that Dn converges to H−1.
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Quasi-Newton methods
From an initial guess D0, we make Dk+1 = Dk + Ck such that at
k = n, we observe Dn = H−1.

This holds when pj , for all j = 1, . . . , k, are eigenvectors of Dk+1H
with unit eigenvalues, i.e.,

Dk+1Hpj = pj ⇒ Dk+1qj = pj , j = 1, . . . , k

pj = Dkqj + Ckqj = DkHpj + Ckqj = pj + Ckqj , j = 1, . . . , k − 1,

which implies that Ckqj = 0, for j = 1, . . . , k − 1.

Now, for j = k, we require

Dk+1qk = pk = Dkqk + Ckqk or Ckqk = pk −Dkqk.

These two conditions form the Quasi-Newton conditions, which
guarantee that Dn = H−1.
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Quasi-Newton methods

The Davidon-Fletcher-Powell (DFP) update is:

Dk+1 = Dk +
pkp

⊤
k

p⊤k qk
−

Dkqkq
⊤
k Dk

q⊤k Dkqk
= Dk + CDFP

k

It can be shown that the following hold for CDFP :

▶ CDFP
k qj = CDFP

k Hpj

=
pkp

⊤
k Hpj

p⊤k qk
− Dkqkp

⊤
k HDkHpj

q⊤k Dkqk
= 0, for j = 1, . . . , k− 1;

▶ CDFP
k qk=

pkp
⊤
k qk

p⊤k qk
− Dkqkq

⊤
k Dkqk

q⊤k Dkqk
= pk −Dkqk.

The most important Quasi-Newton method is Broyden-Fletcher-
Goldfarb-Shanno (BFGS). BFGS augments CDFP to mitigate
numerical difficulties from near-singular approximations.
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Quasi-Newton methods
BFGS is part of the Broyden family of updates:

CB = CDFP + ϕ
τjvkv

⊤
k

p⊤k qk
, with ϕ ∈ (0, 1),

where vk = pk −
(

1
τk

)
Dkqk, τk =

q⊤j Dkqk

p⊤
k qk

. Using ϕ = 1, we obtain

CBFGS
k =

pkp
⊤
k

p⊤k qk

(
1 +

q⊤k Dkqk
p⊤k qk

)
− Dkqkp

⊤
k + pkq

⊤
k Dk

p⊤k qk
.

Remarks:

1. BFGS is often presented approximating the Hessian directly (Bk).

Then Dk+1 = B−1
k+1 = (Bk + C

BFGS

k )−1, with

C
BFGS

k =
qkq

⊤
k

q⊤k pk
− Bkpkp

⊤
k Bk

p⊤k Bkpk
.

2. The limited memory BFGS (l-BFGS) is a computationally efficient
implementation with minimum information storage.
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Quasi-Newton methods
f(x) = e(−(x1−3)/2) + e((4x2+x1)/10) + e((−4x2+x1)/10)

5 0 5 10 15
x1
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5.0
x 2

4.0
5.0

6.0

8.0

10.0

15.0

20.0

30.0

BFGS (exact)
BFGS (Armijo)

BFGS method applied to f . Convergence is observed in 6 steps using exact line
search and 30 using Armijo’s rule (ϵ = 10−4)
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BFGS (exact)
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Comparing the BFGS method with the Newton’s method. Convergence is
observed in 4 steps with the Newton’s method and 6 with BFGS (ϵ = 10−4)
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Outline of this lecture

Conjugate gradient method

Quasi-Newton method

Complexity, convergence and conditioning
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Complexity, convergence and conditioning
Complexity: we use the Big-O notation (link) to bound the
maximum number of iterations of algorithms.

Definition 3 (Polynomial (efficient) algorithms)

Given a problem P , a problem instance X ∈ P with length L(X) in
binary representation, and an algorithm A that solves X, let fA(X)
be the number of elementary calculations required to run A on X.
Then, the running time of A on X is proportional to

f∗
A(n) = sup

X
{fA(X) : L(X) = n} .

Algorithm A is polynomial for a problem P if f∗
A(n) = O(np) for

some integer p.

Remark: complexity bounds consider the performance of algorithms
from a worst-case performance perspective.
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Complexity, convergence and conditioning

Figure: Comparing functions bounds (source link)
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Complexity, convergence and conditioning
Local analysis often provides practical information by focusing on
the behaviour of a sequence {xk} converging to a unique point x.

Rate of convergence considers an error function e : Rn → R such
that e(x) ≥ 0 for x ∈ Rn. Typical choices are:

1. e(x) = ||x− x||
2. e(x) = |f(x)− f(x)|

The sequence {e(x)} is then compared with the geometric
progression βk, with k = 1, 2, . . . and β ∈ (0, 1).

Linear convergence: e(x) converges linearly if exists q > 0 and
β ∈ (0, 1) such that e(xk) ≤ qβk for all k, which implies that

lim
k→∞

sup
e(xk+1)

e(xk)
≤ β.
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Complexity, convergence and conditioning
Order p convergence: e(x) converges superlinearly if there exists

β ∈ (0, 1), q > 0, and p > 1 such that e(xk) ≤ qβpk for all k.

p = 2 is the quadratic convergence case. Any p-order convergence
with p > 1 is obtained if:

lim
k→∞

sup
e(xk+1)

e(xk)p
< ∞, which is true if lim

k→∞
sup

e(xk+1)

e(xk)
= 0.

Remarks:

1. Nonlinear optimisation methods often converge linearly. This
may be satisfactory if β is not close to 1.

2. Several algorithms attain superlinear convergence for particular
problems. Newton’s method is an important example.
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Complexity, convergence and conditioning

Theorem 4 (Convergence of the gradient method)

Let f(x) = 1
2x

⊤Hx whereH is a positive definite symmetric matrix.
Suppose f(x) is minimised with the gradient method using an exact
line search. Let λ = mini=1,...,n λi and λ = maxi=1,...,n λi, where λi

are eigenvalues of H. Then, for all k,

f(xk+1)

f(xk)
≤
(
λ− λ

λ+ λ

)2

Remarks:

1. Notice the effect of scaling due to dependence on eigenvalues;

2. The same result applies to general functions, as well as using
Armijo’s rule instead of exact line search.
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Complexity, convergence and conditioning
Theorem 5 (Convergence of Newton’s method - general case)

Let g : Rn → Rn be differentiable, x such that g(x) = 0, and let
{e(xk)} = {||xk − x||}. Moreover, let Nδ(x) = {x : ||x− x|| ≤ δ}
for some δ > 0. Then

1. There exists δ > 0 such that if x0 ∈Nδ(x), the sequence {xk}
with xk+1 = xk − (∇g(xk)

⊤)−1g(xk) belongs to Nδ(x) and
converges to x, while {e(xk)} converges superlinearly.

2. If for some L > 0, M > 0, and for all x, y ∈ Nδ(x), λ ∈ (0, δ]

∇g(x)−∇g(y) ≤ L||x− y|| and ||(∇g(xk)
⊤)−1|| ≤ M,

then, if x0 ∈ Nδ(x), we have for k = 0, 1, . . .

||xk+1 − x|| ≤ LM

2
||xk − x||2.

If LMδ
2 < 1 and x0 ∈ Nδ(x), {e(xk)} converges quadratically.
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Complexity, convergence and conditioning

Remarks:

1. Parts 1. and 2. are denoted as linear (damped) and quadratic
phases (respectively) in the Newton’s method progress.

2. Notice that convergence is established without dependency on
the ratio of the matrix eigenvalues. Thus, progress is
independent of problem scaling. This affine invariance of
Newton’s method is one of its most important feature.

3. Modern convex analysis using self-concordance provides fairly
tight bounds in terms of convergence rate and complexity.
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Complexity, convergence and conditioning
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Convergence rate for ϵ = 10−6 using exact search
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Complexity, convergence and conditioning
Conditioning: the condition number for a symmetric matrix A is

κ = ||A||2||A−1||2 =
maxi=1,...,n {λi}
mini=1,...,n {λi}

=
λ

λ

Large κ implies that numerical errors will be amplified after repeated
iterations (i.e., matrix inversions).

Remarks:

1. Examining the κ of Hessian matrices is important, since most
algorithms rely on first- or second- order approximations.

2. Larger κ implies that the level curves of the quadratic
approximations are ”stretched” ellipsoids, which compromises
the convergence of first-order methods (cf. Theorem 4).

3. Good values depend on the problem. κ ≥ 10k (very) roughly
means losing k digits of accuracy per iteration.
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Complexity, convergence and conditioning
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The gradient method with exact line search for different κ.
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