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Abstract
In this lecture, we discuss the optimality conditions for constrained optimisation problems. We

show how geometrical optimality can be converted into an algebraic representation using the Fritz-
John optimality conditions. Next, we discuss the Karush-Kuhn-Tucker optimality condition, which
require further regularity conditions on the constraints to hold as necessary conditions for optimality.
We show that these regularity conditions can be translated into constraint qualification conditions,
and discuss the main constraint qualification conditions one could use in practice.

Contents
1 Optimality for constrained problems 2

1.1 Inequality constrained problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fritz-John conditions 3

3 Karush-Kuhn-Tucker conditions 4

4 Constraint qualification 6

1



1 Optimality for constrained problems
We now investigate how to derive optimality conditions for the problem:

(P ) : min. f(x) : x ∈ S.

In particular, we are interested in understanding the role of the feasibility set S on the optimality
conditions of constrained optimisation problems in the form of P . Let us first define two geometric
elements that we will use to derive the optimality conditions for P .

Definition 1.1. Cone of feasible directions
et S ⊆ Rn be a nonempty set, and let x ∈ clo(S). The cone of feasible directions D at x ∈ S is given by:

D = {d : d ̸= 0, and x + λd ∈ S for all λ ∈ (0, δ) for some δ > 0}.

Definition 1.2. Cone of descent directions
et S ⊆ Rn be a nonempty set, f : Rn → R, and x ∈ clo(S). The cone of improving (i.e., descent)
directions F at x ∈ S is:

F = {d : f(x + λd) < f(x) for all λ ∈ (0, δ) for some δ > 0}.

These cones are geometrical descriptions of the regions that, from a given point x, one can obtain
feasible (D) and improving (F ) solutions. This is useful because it allows us to express the optimality
conditions for x as it observes that F ∩ D = ∅ holds. In other words, x is optimal if no feasible direction
can improve the objective function value.

Although having a geometrical representation of such sets can be useful in solidifying the conditions
for which a feasible solution is also optimal, we need to derive an algebraic representation of such sets
that can be used in computations. Let us define an algebraic representation for F to reach that objec-
tive. Let us assume that f : S ⊂ Rn 7→ R is differentiable. Recall that d is a descent direction at x if
∇f(x)⊤d < 0. Thus, we can define the set F0.

F0 = {d : ∇f(x)⊤d < 0}

As an algebraic representation for F , notice that F0 is an open half-space formed by the hyperplane with
normal ∇f(x). Figure 1 illustrates the condition F0 ∩ D = ∅.

Theorem 1.3 establishes that the condition F0 ∩ D = ∅ is necessary for optimality in constrained
optimisation problems.

Theorem 1.3. Geometric necessary condition
Let S ⊆ Rn be a nonempty set, and let f : S → R be differentiable at x ∈ S. If x is a local optimal
solution to

(P ) : min. {f(x) : x ∈ S},
then F0 ∩ D = ∅, where F0 = {d : ∇f(x)⊤d < 0} and D is the cone of feasible directions.

The proof for this theorem consists of using the separation theorem to show that F0 ∩ D = ∅ implies
that the first-order optimality condition ∇f(x)⊤d ≥ 0 holds.

As discussed earlier (in Lecture 4), these conditions become sufficient for optimality in the presence
of convex. Moreover, if f is strictly convex, then F = F0. If f is linear, it might be worth considering
F ′

0 = {d ̸= 0 : ∇f(x)⊤d ≤ 0} to allow for considering orthogonal directions.
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Figure 1: Illustration of the cones F0 and D for the optimal point x. Notice that D is an open set.

1.1 Inequality constrained problems
In mathematical programming applications, a set of inequalities typically expresses the feasibility set

S. Let us redefine P as:

(P ) : min. f(x)
subject to: gi(x) ≤ 0, i = 1, . . . , m

x ∈ X,

where gi : Rn 7→ R, are differentiable functions for i = 1, . . . , m and X ⊂ R is an nonempty open set.
The differentiability of gi, i = 1, . . . , m, allows for the definition of a proxy for D using the gradients of
the binding constraints i ∈ I = {i : gi(x) = 0} at x. This set, denoted by G0, is defined as:

G0 = {d : ∇gi(x)⊤d < 0, i ∈ I}.

The use of G0 is a convenient algebraic representation since it can be shown that G0 ⊆ D, which is
stated in Lemma 1.4. As F0 ∩ D = ∅ must hold for a locally optimal solution x ∈ S, F0 ∩ G0 = ∅ must
also hold.

Lemma 1.4 Let S = {x ∈ X : gi(x) ≤ 0 for all i = 1, . . . , m}, where X ⊂ Rn is a nonempty open
set and gi : Rn → R a differentiable function for all i = 1, . . . , m. For a feasible point x ∈ S, let
I = {i : gi(x) = 0} be the index set of the binding (or active) constraints. Let

G0 = {d : ∇gi(x)⊤d < 0, i ∈ I}
Then G0 ⊆ D, where D is the cone of feasible directions.

In settings in which gi is affine for some i ∈ I, it might be worth considering lG′
0 = {d ̸= 0 :

∇gi(x)⊤d ≤ 0, i ∈ I} so those orthogonal feasible directions can also be represented. Notice that in this
case, D ⊆ G′

0.

2 Fritz-John conditions
The Fritz-John conditions are the algebraic conditions that must be met for F0 ∩ G0 = ∅ to hold.

These algebraic conditions are convenient as they only involve the gradients of the binding constraints,
and they can be verified computationally.

Theorem 2.1. Fritz-John necessary conditions
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for all
i = 1, . . . , m. Additionally, let x be feasible and I = {i : gi(x) = 0}. If x solves P locally, there exist
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scalars ui, i ∈ {0} ∪ I, such that:

u0∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . , m

ui ≥ 0, i = 0, . . . , m

u = (u0, . . . , um) ̸= 0

Proof. Since x solves P locally, Theorem 1.3 guarantees that there is no d such that ∇f(x)⊤d < 0
and ∇gi(x)⊤d < 0 for each i ∈ I. Let A be the matrix whose rows are ∇f(x)⊤ and ∇gi(x)⊤ for i ∈ I.

We can use Farkas’ theorem to show that if Ad < 0 is inconsistent, there is nonzero p ≥ 0 such that
A⊤p = 0. Letting p = (u0, ui1 , . . . , ui|I|) for I = {i1, . . . , i|I|} and making ui = 0 for i ̸= I, the result
follows.

The proof considers that, if x is optimal, then f(x)⊤d ≥ 0 holds and a matrix A formed by:

A =


∇f(x)

∇gi1(x)
...

∇gi|I|(x)


with I = {i1, . . . , i|I|}, will violate Ad < 0. This is used with a variant of Farkas’ theorem (known as
Gordan’s theorem) to show that the alternative system A⊤p = 0, with p ≥ 0 holds, which, by setting
p = [u0, ui1 , . . . , ui|I|] and enforcing that the remainder of the gradients ∇gi(x), for i /∈ I, are removed
by setting ui = 0, which leads precisely to the Fritz-John conditions.

The multipliers ui, for i = 0, . . . , m, are named Lagrangian multipliers due to the connection with
Lagrangian duality, as we will see later. Also, notice that for nonbinding constraints (gi(x) < 0 for i /∈ I),
ui must be zero to form the Fritz-John conditions. This condition is called complementary slackness.

Unfortunately, The Fritz-John conditions are too weak, which is problematic in some rather common
settings. A point x satisfies the Fritz-John conditions only if F0 ∩ G0 = ∅, which is trivially satisfied
when G0 = ∅.

For example, the Fritz-John conditions are trivially satisfied for points where some of the gradient
vanishes (i.e., ∇f(x) = 0 or ∇gi(x) = 0 for some i = 1, . . . , m). Sets with no relative interior near x also
satisfy Fritz-John conditions.

An interesting case is for problems with equality constraints, as illustrated in Figure 2. In general, if
the additional regularity condition that the gradients ∇gi(x) are linearly independent does not hold, x
trivially satisfies the Fritz-John conditions.

3 Karush-Kuhn-Tucker conditions
The Karush-Kuhn-Tucker (KKT) conditions are the Frizt-John conditions with an extra regularity

requirement for x ∈ S. This regularity requirement is called constraint qualification and, in a general
sense, is meant to prevent the trivial case G0 = ∅, thus making the optimality conditions stronger (i.e.,
more stringent).

This is achieved by making u0 = 1 in Theorem 2.1, which ultimately implies that the gradients
∇gi(x) for i ∈ I must be linearly independent. This condition is called linearly independent constraint
qualification (LICQ) and is one of several known constraint qualifications that can be used to guarantee
regularity of x ∈ S.

Theorem 3.1 establishes the KKT conditions as necessary for local optimality of x assuming that
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Figure 2: All points in the blue segment satisfy FJ conditions, including the minimum x.

LICQ holds. For notational simplicity, let us assume for now that:

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . , m, x ∈ X}.

Theorem 3.1. Karush-Kuhn-Tucker necessary conditions
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for
all i = 1, . . . , m. Additionally, for a feasible x, let I = {i : gi(x) = 0} and suppose that ∇gi(x) are
linearly independent for all i ∈ I. If x solves P locally, there exist scalars ui for i ∈ I such that:

∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . , m

ui ≥ 0, i = 1, . . . , m

Proof. By Theorem 2.1, there exists nonzero (ûi) for i ∈ {0} ∪ I such that:

û0∇f(x) +
m∑

i=1
ûi∇gi(x) = 0

ûi ≥ 0, i = 0, . . . , m

Note that û0 > 0, as the linear independence of ∇gi(x) for all i ∈ I implies that
∑m

i=1 ûi∇gi(x) ̸= 0.
Now, let ui = ûi/u0 for each i ∈ I and ui = 0 for all i ̸∈ I.

The proof builds upon the Fritz-John conditions, which under the assumption that the gradients of
the active constraints ∇gi(x) for i ∈ I are independent, the multipliers ûi can be rescaled so that u0 = 1.

The general conditions, including inequality and equality constraints, are posed as follows. Notice
that the Lagrange multipliers vi associated with the equality constraints h(x) = 0 for i = 1, . . . , l are
not restricted in sign, and the complementary slackness condition is not explicitly stated since it holds
redundantly. These can be obtained by replacing equality constraints h(x) = 0 with two equivalent
inequalities h−(x) ≤ 0 and −h+(x) ≤ 0 and writing the conditions in Theorem 3.1. Also, notice that,
without constraints, the KKT conditions reduce to the unconstrained first-order condition ∇f(x) = 0.

∇f(x) +
m∑

i=1
ui∇gi(x) +

l∑
i=1

vi∇hi(x) = 0 (dual feasibility 1)

uigi(x) = 0, i = 1, . . . , m (complementary slackness)
x ∈ X, gi(x) ≤ 0, i = 1, . . . , m (primal feasibility)
hi(x) = 0, i = 1, . . . , l

ui ≥ 0, i = 1, . . . , m (dual feasibility 2)
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Figure 3: Graphical illustration of the KKT conditions at the optimal point x

The KKT conditions can be interpreted geometrically as follows. Consider the cone spanned by the
active constraints at x, defined as N(x) = {

∑
i∈I ui∇gi(x) : ui ≥ 0}. A solution x will then satisfy

the KKT conditions if −∇f(x) ∈ N(x), which is equivalent to −∇f(x) =
∑m

i=1 ui∇gi(x). Figure 3
illustrates this condition.

4 Constraint qualification
Constraint qualification is a technical condition that needs to be assessed in the context of nonlinear

optimisation problems. As we rely on an algebraic description of the set of directions G0 that serves as
a proxy for D, it is important to be sure that the former is a reliable description of the latter.

Specifically, constraint qualification can be seen as a certification that the geometry of the feasible
region and gradient information obtained from the constraints that form it are related to an optimal
solution. Remind that gradients can only provide a first-order approximation of the feasible region,
which might lead to mismatches. This is typically when the feasible region has cusps or a single feasible
point.

Constraint qualification can be seen as certificates for proper relationships between the set of feasible
directions:

G′
0 = {d ̸= 0 : ∇gi(x)⊤d ≤ 0, i ∈ I}

and the cone of tangents (or tangent cone):

T = {d : d = lim
k→∞

λk(xk − x), lim
k→∞

xk = x, xk ∈ S, λk > 0, ∀k} (1)

with S = {gi(x) ≤ 0, i = 1, . . . , m; h(x) = 0, i = 1, . . . , l; x ∈ X}.

The cone of tangents represents all directions in which the feasible region allows for an arbitrarily
small movement from the point x while retaining feasibility. As the name suggests, it is normally formed
by the tangent lines to S at x. However, if the point is in the interior of S ⊆ Rn, then T = Rn.

One way of interpreting the cone of tangents as defined in (1) is the following: consider a sequence
of feasible points x ∈ S in any trajectory you like, but in a way that the sequence converges to x. Then,
take the last (in a limit sense, since k → ∞) xk and consider this direction from which xk came onto x.
The collection of all these directions from all possible trajectories is what forms the cone of tangents.

Constraint qualification holds when T = G′
0 holds for x, a condition named Abadie’s constraint qual-
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Figure 4: CQ holds for 4a and 4b, since the tangent cone T and the cone of feasible directions G′
0

(denoted by the dashed black lines and a grey area) match; for 4c, they do not match, as T = ∅

ification. In the presence of equality constraints, the condition becomes T = G′
0 ∩ H0, with:

H0 = {d : ∇hi(x)⊤d = 0, i = 1, . . . , l}.

Figure 4 illustrates the tangent cone T and the cone of feasible directions (G′
0) for cases when constraint

qualification holds (Figures 4a and 4b) for which case T = G′
0, and a case for when it does not (Figure

4c, where T = ∅ and G′
0 is given by the dashed black line).

The importance of Abadie constraint qualification is that it allows for generalising the KKT condi-
tions by replacing the condition with the linear independence of the gradients ∇gi(x) for i ∈ I. This
allows us to state the KKT conditions as presented in Theorem 4.1.

Theorem 4.1. Karush-Kuhn-Tucker necessary conditions II
Consider the problem

(P ) : min. {f(x) : gi(x) ≤ 0, i = 1, . . . , m, x ∈ X}.

Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and gi : Rn → R be differentiable for all
i = 1, . . . , m. Additionally, for a feasible x, let I = {i : gi(x) = 0} and suppose that Abadie CQ holds
at x. If x solves P locally, there exist scalars ui for i ∈ I such that:

∇f(x) +
m∑

i=1
ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . , m

ui ≥ 0, i = 1, . . . , m.

Despite being a more general result, Theorem 4.1 is of little use, as Abadie’s constraint qualification
cannot be straightforwardly verified in practice. Alternatively, we can rely on verifiable constraint qual-
ification conditions that imply Abadie’s constraint qualification. Examples include:

1. Linear independence (LI)CQ: holds at x if ∇gi(x), for i ∈ I, as well as ∇hi(x), i = 1, . . . , l are
linearly independent.

2. Affine CQ: holds for all x ∈ S if gi, for all i = 1, . . . , m, and hi, for all i = 1, . . . , l, are affine.
3. Slater’s CQ: holds for all x ∈ S if gi is a convex function for all i = 1, . . . , m, hi is an affine

function for all i = 1, . . . , l, and there exists x ∈ S such that gi(x) < 0 for all i = 1, . . . , m.

Slater’s constraint qualification is the most frequently used, particularly in convex optimisation prob-
lems. One important point to notice is the requirement of not having an empty relative interior, which
can be a source of error.
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Consider, for example: P = {min. x1 : x2
1 + x2 ≤ 0, x2 ≥ 0}. Notice that P is convex and therefore

the KKT system for P is: (
1
0

)
+

(
0 0
1 −1

) (
u1

u2

)
= 0; u1, u2 ≥ 0,

which has no solution. Thus, the KKT conditions are not necessary for the global optimality of (0, 0).
This is due to the lack of CQ since the feasible region is the single point (0, 0) and that KKT conditions
are only sufficient (not necessary) in the presence of convexity.

Corollary 4.2 summarises the setting in which one should expect the KKT conditions to be necessary
and sufficient conditions for global optimality, i.e., convex optimisation.

Corollary 4.2 (Necessary and sufficient KKT conditions). Suppose that Slater’s CQ holds. Then, if f
is convex, the conditions of Theorem 4.1 are necessary and sufficient for x to be a globally optimal
solution.
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