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Optimality for constrained problems
Now we examine how the set S affects the optimality conditions of

(P ) : min. {f(x) : x ∈ S} .

First, we define two geometric elements:

Definition 1 (cone of feasible directions)

Let S ⊆ Rn be a nonempty set, and let x ∈ clo(S). The cone of
feasible directions D at x ∈ S is given by

D = {d : d ̸= 0, and x+ λd ∈ S for all λ ∈ (0, δ) for some δ > 0}

Definition 2 (cone of descent directions)

Let S ⊆ Rn be a nonempty set, f : Rn → R, and x ∈ clo(S). The
cone of improving (i.e., descent) directions F at x ∈ S is

F = {d : f(x+ λd) < f(x) for all λ ∈ (0, δ) for some δ > 0} .
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Optimality for constrained sets
Geometrically, the necessary optimality condition is thatD ∩ F = ∅.
However, we need an algebraic representation of this condition.

For a differentiable function f : Rn → R, Recall that d is a descent
direction of f at x if ∇f(x)⊤d < 0. Let us define

F0 =
{
d : ∇f(x)⊤d < 0

}
,

which is an algebraic representation of F .

Theorem 3 (geometric necessary condition)

Let S ⊆ Rn be a nonempty set, and let f : S → R be differentiable
at x ∈ S. If x is a local optimal solution to

(P ) : min. {f(x) : x ∈ S} ,

then F0 ∩D = ∅, where F0 =
{
d : ∇f(x)⊤d < 0

}
and D is the

cone of feasible directions.
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Optimality for constrained sets

S

D

F0

x∇f(x)

Set F0 and D. Notice that D is an open set.

Remarks:

1. In presence of convexity,
these become sufficient
conditions for global
optimality;

2. If f is strictly convex, it
follows that F0 = F ;

3. If f is linear (i.e., convex and
concave), it is worth
considering F ′

0 ={
d ̸= 0 : ∇f(x)⊤d ≤ 0

}
.
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Inequality constrained problems

In mathematical programming applications, S is typically expressed
as a set of (in)equalities. That is, problem P is typically defined as

(P ) : min. f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,

where gi : Rn → R is a differentiable function for all i = 1, . . . ,m
and X ⊂ Rn is a nonempty open set.

This allows us to define a proxy G0 for D in terms of the gradients
of the binding constraints where G0 ⊆ D and defined as

G0 =
{
d : ∇gi(x)

⊤d < 0, i ∈ I
}
.
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Inequality constrained problems

Since F0 ∩D = ∅ must hold for a local optimal solution x ∈ S, it
follows that F0 ∩G0 = ∅ must also hold.

Lemma 4
Let S = {x ∈ X : gi(x) ≤ 0 for all i = 1, . . . ,m}, where X ⊂ Rn is
a nonempty open set and gi : Rn → R a differentiable function for
all i = 1, . . . ,m. For x ∈ S, let I = {i : gi(x) = 0} be the index set
of the binding (or active) constraints. Let

G0 =
{
d : ∇gi(x)

⊤d < 0, i ∈ I
}

Then G0 ⊆ D, where D is the cone of feasible directions.

Remark: for affine gi, D ⊆ G′
0 =

{
d ̸= 0 : ∇gi(x)

⊤d ≤ 0, i ∈ I
}

might be worth considering.
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Inequality constrained problems

Example:

min. (x1 − 3)2 + (x2 − 2)2

s.t. x21 + x22 ≤ 5

x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0

0 1 2 3 4
x1

0

1

2

3

4

x 2

0.50

2.004.0
0

f(x)

g1(x)
g2(x)

f(x)

g1(x)
g2(x)
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Fritz-John conditions
We will next examine how to represent F0 ∩G0 = ∅ in terms of the
gradients of the objective function and binding constraints.

Theorem 5 (Fritz-John necessary conditions)

Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and
gi : Rn → R be differentiable for all i = 1, . . . ,m. Additionally,
let x be feasible and I = {i : gi(x) = 0}. If x solves P locally,
there exist scalars ui, i ∈ {0} ∪ I, such that

u0∇f(x) +

m∑
i=1

ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m

ui ≥ 0, i = 0, . . . ,m

u = (u0, . . . , um) ̸= 0
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Fritz-John conditions

Proof.
Since x solves P locally, Theorem 3 guarantees that there is no d such
that ∇f(x)⊤d < 0 and ∇gi(x)

⊤d < 0 for each i ∈ I. Let A be the matrix
whose rows are ∇f(x)⊤ and ∇gi(x)

⊤ for i ∈ I.

Using Farkas’ theorem, we have that if Ad < 0 is inconsistent, then there
exists nonzero p ≥ 0 such that A⊤p = 0. Being I =

{
i1, . . . , i|I|

}
, we let

p = (u0, ui1 , . . . , ui|I|) and ui = 0 for i /∈ I, and the result follows.

Remarks:

▶ The corollary of Farkas’ theorem used in the proof is known as
Gordan’s theorem.

▶ (u0, . . . , um) are called Lagrangian multipliers.

▶ Notice that, for i ̸∈ I, ui = 0.
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Fritz-John conditions

The Fritz-John (FJ) conditions:

x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m (primal feasibility - PF)

u0∇f(x) +

m∑
i=1

ui∇gi(x) = 0 (dual feasibility 1 - DF)

uigi(x) = 0, i = 1, . . . ,m (complementary slackness - CS)

ui ≥ 0, i = 0, . . . ,m (dual feasibility 2)

u = (u0, . . . , um) ̸= 0i (dual feasibility 3)

Remark: If f if convex and gi strictly convex for all i = 1, . . . ,m,
the FJ conditions become also sufficient for global optimality.
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Fritz-John conditions
Example:

min. (x1 − 3)2 + (x2 − 2)2

subject to: x21 + x22 ≤ 5

x1 + 2x2 ≤ 4

x1, x2 ≥ 0

FJ conditions at x = (2, 1): ∇f(x) = (−2,−2)⊤ ,∇g1(x) = (4, 2)⊤,
and ∇g2(x) = (1, 2)⊤. We need a nonzero (u0, u1, u2) ≥ 0 such that

u0

(
−2

−2

)
+ u1

(
4

2

)
+ u2

(
1

2

)
=

(
0

0

)
.

Take u1 = u0/3 and u2 = 2u0/3. FJ conditions are then satisfied
for any u0 > 0. In fact, (2, 1) is the global minimum.
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Fritz-John conditions

0 1 2 3 4
x1

0

1

2

3

4

x 2

0.50
2.004.0

0

f(x)

g1(x)

g2(x)
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The issue with Fritz-John conditions

Fritz-John conditions are too weak in general settings; they hold for
too many points to be useful.

This arises because x is a FJ solution if and only if F0 ∩G0 = ∅,
which is trivially satisfied for any feasible x at which G0 = ∅.

Examples where G0 = ∅ (making x a FJ solution):

▶ Gradients that vanish at x:

– ∇f(x) = 0 or ∇gi(x) = 0 for some i ∈ I;
– problems with equality constraints: replace g(x) = 0 with

g1(x) ≤ 0 and −g2(x) ≤ 0;

▶ Feasible region has no interior in the immediate vicinity of x.
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The issue with Fritz-John conditions

min. f(x) = −x2

g1(x) ≤ 0

h(x) = 0 ⇒{
g2(x) = −h(x) ≤ 0

g3(x) = h(x) ≤ 0

x1

x2

∇f(x)

∇f(x)

∇g1(x)

∇g2(x)

∇g2(x)

∇g3(x)

∇g3(x)

g1(x) ≤ 0

g3(x) ≤ 0g2(x) ≤ 0

All points in the blue segment satisfy FJ
conditions, including the minimum x.
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Karush-Kuhn-Tucker conditions

KKT solutions are FJ solutions at which G0 ̸= ∅. Note that G0 ̸= ∅
requires u0 > 0 for dual feasibility. This requirement is an example
of constraint qualification.

Several conditions imply G0 ̸= ∅. For example: if ∇gi(x) = 0 are
linearly independent for all i ∈ I, then u0 > 0 is required and thus
implies constraint qualification. This is called the LICQ condition.

We will later see more examples of conditions that imply constraint
qualifications. For now, we will use the LICQ condition to express
the KKT conditions. Once again, we focus on solving

(P ) : {min. f(x) : gi(x) ≤ 0, i = 1, . . . ,m, x ∈ X} .
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Karush-Kuhn-Tucker conditions

Theorem 6 (Karush-Kuhn-Tucker necessary conditions)

Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and
gi : Rn → R be differentiable for all i = 1, . . . ,m. Additionally,
for a feasible x, let I = {i : gi(x) = 0} and suppose that ∇gi(x) are
linearly independent for all i ∈ I. If x solves P locally, there
exist scalars ui for i ∈ I such that

∇f(x) +

m∑
i=1

ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m

ui ≥ 0 i = 1, . . . ,m
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Karush-Kuhn-Tucker conditions

Proof.
By Theorem 5, there exists nonzero (ûi) for i ∈ {0} ∪ I such that

û0∇f(x) +

m∑
i=1

ûi∇gi(x) = 0

ûi ≥ 0, i = 0, . . . ,m

Note that û0 > 0, as the linear independence of ∇gi(x) for all i ∈ I
implies that

∑m
i=1 ûi∇gi(x) ̸= 0. Now, let ui = ûi/u0 for each

i ∈ I and ui = 0 for all i ̸∈ I.

Remark: KKT conditions enforce u0 > 0, which can be turned
into u0 = 1 with proper scaling. This forces ∇f(x) to have a role in
the optimality conditions.
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the optimality conditions.
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Karush-Kuhn-Tucker conditions
The Karush-Kuhn-Tucker (KKT) conditions for a general P:

(P ) : {min. f(x) : gi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , l, x ∈ X}

∇f(x) +

m∑
i=1

ui∇gi(x) +

l∑
i=1

vi∇hi(x) = 0 (dual feasibility 1)

uigi(x) = 0, i = 1, . . . ,m (complementary slackness)

x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m (primal feasibility)

hi(x) = 0, i = 1, . . . , l

ui ≥ 0, i = 1, . . . ,m. (dual feasibility 2)

Remarks:

1. Multipliers vi, i = 1, . . . , l are not restricted in sign.

2. For unconstrained problems, KKT conditions are equivalent to
the optimality condition ∇f(x) = 0.
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Geometric interpretation of KKT conditions
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N(x)

Graphical illustration of the KKT conditions at
the optimal point

KKT conditions have a
geometric interpretation.
Let N(x) ={∑

i∈I ui∇gi(x) : ui ≥ 0
}

be the cone spanned by the
gradient of the active
constraints at x.

−∇f(x) =
∑m

i=1 ui∇gi(x)
is the same as requiring that
−∇f(x) ∈ N(x).
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Constraint qualification

We will next examine cases where constraint qualification is
guaranteed to hold.

▶ Can be seen as a certification that the geometry of the feasible
space and gradient information from the binding constraints are
related at an optimal solution.

▶ Gradients provide a first-order approximation of feasible region.

▶ Often an issue for regions with cusps or those consisting
of single points, for example.

There are several conditions that imply constraint qualification. We
will focus on those most often used in practice.
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Constraint qualification (CQ)
Constraint qualifications can be seen as certificates for proper
relationships between the set of feasible directions

G′
0 =

{
d ̸= 0 : ∇gi(x)

⊤d ≤ 0, i ∈ I
}

and the cone of tangents (or tangent cone)

T = {d : d = lim
k→∞

λk(xk − x), lim
k→∞

xk = x, xk ∈ S, λk > 0,∀k},

with S = {gi(x) ≤ 0, i = 1, . . . ,m;h(x) = 0, i = 1, . . . , l;x ∈ X}.

Definition 7 (Abadie constraint qualification)

Abadie constraint qualification holds at x if T = G′
0.

Remark: with equality constraints, Abadie CQ may be rewritten as
T = G′

0 ∩H0, with H0 =
{
d : ∇hi(x)

⊤d = 0, i = 1, . . . , l
}
.
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Constraint qualification (CQ)

T = G′
0

S

x

∇g1(x)

∇g2(x)

(a)

T = G′
0

S

x

∇g1(x)

(b)

∅ = T ̸= G′
0 x

∇g1(x)

∇g2(x)

(c)

CQ holds for 1a and 1b, but not for 1c.
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Constraint qualification (CQ)
KKT conditions can be expressed more generally, assuming that
Abadie CQ holds.

Theorem 8 (Karush-Kuhn-Tucker necessary conditions II)

Consider the problem

(P ) : {min. f(x) : gi(x) ≤ 0, i = 1, . . . ,m, x ∈ X} .
Let X ⊆ Rn be a nonempty open set, and let f : Rn → R and
gi : Rn → R be differentiable for all i = 1, . . . ,m. Additionally, for a
feasible x, let I = {i : gi(x) = 0} and suppose that Abadie CQ holds
at x. If x solves P locally, there exist scalars ui for i ∈ I such that

∇f(x) +
m∑
i=1

ui∇gi(x) = 0

uigi(x) = 0, i = 1, . . . ,m

ui ≥ 0, i = 1, . . . ,m.
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Constraint qualification

Verifying if Abadie CQ holds is not practical. Typically, we look for
other conditions that imply Abadie CQ. Most useful are:

1. Linear independence (LI)CQ: holds at x if ∇gi(x), for i ∈ I,
as well as ∇hi(x), i = 1, . . . , l are linearly independent.

2. Affine CQ: holds for all x ∈ S if gi, for all i = 1, . . . ,m, and
hi, for all i = 1, . . . , l, are affine.

3. Slater’s CQ: holds for all x ∈ S if gi is a convex function for
all i = 1, . . . ,m, hi is an affine function for all i = 1, . . . , l, and
there exists x ∈ S such that gi(x) < 0 for all i = 1, . . . ,m.

Remark: Slater’s CQ is by far the most frequently used.
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KKT as necessary and sufficient conditions
Under convexity, KKT conditions are only sufficient for (global)
optimality, which highlights the importance of Slater’s CQ.

Consider, for example: P =
{
min. x1 : x

2
1 + x2 ≤ 0, x2 ≥ 0

}
. The

KKT system for P is(
1

0

)
+

(
0 0
1 −1

)(
u1
u2

)
= 0;u1, u2 ≥ 0,

which has no solution. Thus, KKT are not necessary for the global
optimal (0, 0). This is due to the lack of CQ.

Corollary 9 (Necessary and sufficient KKT conditions)

Suppose that Slater’s CQ holds. Then, if f is convex, the conditions
of Theorem 8 are necessary and sufficient for x to be a global
optimal solution.
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