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The relaxation theorem
A relaxation is an alternative version of a given problem that
presents exploitable properties.

Let f : Rn → R and S ⊆ Rn. Consider the following problem:

(P ) : min. {f(x) : x ∈ S}

A relaxation of P can be stated as:

(PR) : min. {fR(x) : x ∈ SR}

where fR : Rn → R and SR ⊆ Rn and that the following holds.

Definition 1 (Relaxation)

PR is a relaxation of P if and only if:

1. fR(x) ≤ f(x), for all x ∈ S;

2. S ⊆ SR.
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The relaxation theorem
Theorem 2 presents two fundamental results for using relaxations.

Theorem 2 (Relaxation theorem)

Let us define

(P ) : min. {f(x) : x ∈ S} and (PR) : min. {fR(x) : x ∈ SR}

If PR is a relaxation of P , then the following hold:

1. if PR is infeasible, so is P ;

2. if xR is an optimal solution to PR such that xR ∈ S and
fR(xR) = f(xR), then xR is optimal to P as well.

Proof.
Result 1 follows since S ⊆ SR. To show Result 2, notice that
f(xR) = fR(xR) ≤ fR(x) ≤ f(x) for all x ∈ S.
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Lagrangian relaxation
Lagrangian duality is the body of theory supporting the use of
Lagrangian relaxations to solve (primal) problems.

Let f : Rn → R, g : Rn → Rm, h : Rn → Rl and X ⊆ Rn be an
open set. Define

(P ) : min. f(x)

subject to: g(x) ≤ 0

h(x) = 0

x ∈ X.

For a given set of dual variables (u, v) ∈ Rm+l with u ≥ 0, the
Lagrangian relaxation (or Lagrangian dual function) of P is

(D) : θ(u, v) = inf
x∈X

ϕ(x, u, v);

ϕ(x, u, v) = f(x) + u⊤g(x) + v⊤h(x) is the Lagrangian function.
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(Weak) Lagrangian duality
Theorem 3 (Weak Lagrangian duality)

Let x be a feasible solution to P , and let (u, v) with u ≥ 0 be a
feasible solution to D. Then θ(u, v) ≤ f(x).

Proof.
From feasibility, u ≥ 0, g(x) ≤ 0 and h(x) = 0. Thus we have

θ(u, v) = inf
x∈X

{
f(x) + u⊤g(x) + v⊤h(x)

}
≤ f(x) + u⊤g(x) + v⊤h(x) ≤ f(x).

The Lagrangian dual problem D seeks optimal dual variables (u, v)
such that θ(u, v) is as close as possible to f(x), that is,

(D) : sup
u,v

{θ(u, v) : u ≥ 0} .

Fernando Dias Lagrangian duality 5/27



(Weak) Lagrangian duality
Theorem 3 (Weak Lagrangian duality)

Let x be a feasible solution to P , and let (u, v) with u ≥ 0 be a
feasible solution to D. Then θ(u, v) ≤ f(x).

Proof.
From feasibility, u ≥ 0, g(x) ≤ 0 and h(x) = 0. Thus we have

θ(u, v) = inf
x∈X

{
f(x) + u⊤g(x) + v⊤h(x)

}
≤ f(x) + u⊤g(x) + v⊤h(x) ≤ f(x).

The Lagrangian dual problem D seeks optimal dual variables (u, v)
such that θ(u, v) is as close as possible to f(x), that is,

(D) : sup
u,v

{θ(u, v) : u ≥ 0} .

Fernando Dias Lagrangian duality 5/27



(Weak) Lagrangian duality
Theorem 3 (Weak Lagrangian duality)

Let x be a feasible solution to P , and let (u, v) with u ≥ 0 be a
feasible solution to D. Then θ(u, v) ≤ f(x).

Proof.
From feasibility, u ≥ 0, g(x) ≤ 0 and h(x) = 0. Thus we have

θ(u, v) = inf
x∈X

{
f(x) + u⊤g(x) + v⊤h(x)

}
≤ f(x) + u⊤g(x) + v⊤h(x) ≤ f(x).

The Lagrangian dual problem D seeks optimal dual variables (u, v)
such that θ(u, v) is as close as possible to f(x), that is,

(D) : sup
u,v

{θ(u, v) : u ≥ 0} .

Fernando Dias Lagrangian duality 5/27



(Weak) Lagrangian duality

Theorem 3 leads to two important corollaries:

Corollary 4 (Weak Lagrangian duality II)

supu,v {θ(u, v) : u ≥ 0} ≤ infx {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}

Proof.
We have θ(u, v) ≤ f(x) for any feasible x and (u, v), implying
supu,v {θ(u, v) : u ≥ 0} ≤ infx {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}.

Corollary 5 (one-way strong Lagrangian duality)

If f(x) = θ(u, v), u ≥ 0, and x ∈ {x ∈ X : g(x) ≤ 0, h(x) = 0}, then
x and (u, v) are optimal solutions to P and D, respectively.

Proof.
Use part 2 of Theorem 2 with D being a Lagrangian relaxation.
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Geometric interpretation of Lagrangian duality
Lagrangian duality has a geometric interpretation that helps
understanding when strong duality can hold.

Consider (P ) : min. {f(x) : g(x) ≤ 0, x ∈ X} with one constraint.

Let G = {(y, z) : y = g(x),
z = f(x), x ∈ X} be defined
in the (y, z)-plane.

▶ G is the image of X
under the mapping
(g, f).

▶ Solving P consists of
finding (y, z) in G with
y ≤ 0 with minimum
ordinate z.

x ∈ X

(g(x), f(x))

G

(y, z) = (g(x), f(x))

y = g(x)

z = f(x)

G is formed by all x ∈ X under mapping
(g(x), f(x)). (y, z) lowermost point on the
z-axis.
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Geometric interpretation of Lagrangian duality
Assume that u ≥ 0 is given. θ(u) = minx {f(x) + ug(x) : x ∈ X}
is given by the lowermost (y, z) in G attained at z + uy = α.

z = f(x)

y = g(x)

G

z + uy = α

z + uy = α

θ(u)

(y, z) = (g(x), f(x) = θ(u)

Optimal u such that z = α− uy is a supporting hyperplane of G with the
uppermost intercept α; z = α− uy supports G at (y, z).

Thus, solving D corresponds to finding the slope −u for which the
intercept α = θ(u) on the z-axis is maximal.
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Geometric interpretation of Lagrangian duality
An important analytical tool in this context is the perturbation
function v(y) = min. {f(x) : g(x) ≤ y, x ∈ X}.

z = f(x)

y = g(x)

G

z + uy = α
z + uy = α

θ(u)

(y, z) = (g(x), f(x) = θ(u)

v(y) is the greatest monotone nonincreasing lower envelope of G.

The fact that v(y) ≥ v(0)− uy for all y ∈ R is why f(x) = θ(u)
match in this case, i.e., the optimal solutions of P and D coincide.
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Duality gaps
There will be a duality gap if for some y ∈ R there is no u for which
v(y) ≥ v(0)− uy holds.

z = f(x)

y = g(x)

G

z + uy = α

θ(u)

(y, z) = (g(x), f(x)

v(y) is not convex; the intercept of z = α− uy and (y, z) do not match

Clearly, the minimum ordinate of (y, z) in G and the maximal z-axis
intercept for slope −u cannot match. Thus f(x) > θ(u).
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Duality gaps
Example 1: consider the problem:

min. x21 + x22

x1 + x2 ≥ 4

x1, x2 ≥ 0.

▶ The optimal point is
(x1, x2) = (2, 2).

▶ f(x) = x21 + x22,
g(x) = −x1 − x2 + 4,
X = {(x1, x2) : x1, x2 ≥ 0}

The Lagrangian dual function is given by:

θ(u) = inf
{
x21 + x22 + u(−x1 − x2 + 4) : x1, x2 ≥ 0

}
= inf

{
x21 − ux1 : x1 ≥ 0

}
+ inf

{
x22 − ux2 : x2 ≥ 0

}
+ 4u

=

{
−1/2u2 + 4u, if u ≥ 0

−4u, 1 + 4u2 if u < 0.

Solution of the Lagrangian dual problem supu≥0 {θ(u)} is u = 4.
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Duality gaps
Example 1: notice that f(x1, x2) = θ(u) = 8.

0 1 2 3 4
x1

0

1

2

3

4

x 2

4
6

8
10

12

14
16

18

20

22

2 0 2 4 6 8 10
u

4

2

0

2

4

6

8

10

(u
)

Primal (left) and dual (right) problem representation
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Duality gaps
If we draw the (g, f) map of X, we notice that v(y) = (4− y)2/2.
Note that v(y) ≥ v(0)− uy holds for all y ∈ R.

2 1 0 1 2 3 4
y

0

8

16

24

32

40
z

G
v(y)
z + uy =

G mapping for Example 1, with z = 8− 4y and (0, 8) matching at the primal
and dual optimaFernando Dias Lagrangian duality 13/27



Duality gaps
Example 2:

Let X = {(0, 0), (0, 4), (4, 4), (4, 0), (1, 2), (2, 1)} and P be:

(P ) : min. − 2x1 + x2

subject to: x1 + x2 = 3

x1, x2 ∈ X.

▶ The optimal point is
(x1, x2) = (2, 1).

▶ f(x) = −2x1 + x2,
h(x) = x1 + x2 − 3.

The Lagrangian dual function is:

θ(v) = min {(−2x1 + x2) + v(x1 + x2 − 3) : (x1, x2) ∈ X}

=


−4 + 5v, if v ≤ −1

−8 + v, 5 if − 1 ≤ v ≤ 2

−3v,+p1 if v ≥ 2.

The solution of the Lagrangian dual problem sup {θ(v)} is v = 2.
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Duality gaps
Example 2:

Notice that now −3 = f(x) > θ(v) = −6.

0 1 2 3 4
x1

0

1

2

3

4

x 2

x1 + x2 = 3
2x1 + x2 = 3

X

2 0 2 4
v

14

12

10

8

6

4

(v
)

Primal (left) and dual (right) problem representation
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Duality gaps
Also, note that v(y) ≥ v(0)− uy for all y ∈ R does not hold.

3 2 1 0 1 2 3 4 5
y = h(x)

8
7
6
5
4
3
2
1
0
1
2
3
4

z
=

f(x
)

z + uy =
v(y)
v(y) G

G mapping for Example 2, with z = −6− 2y and (0,−3), not matching at the
optima
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Strong duality

Under convexity assumptions and constraint qualification, strong
duality holds.

Theorem 6
Let X ⊆ Rn be a nonempty convex set. Moreover, let f : Rn → R
and g : Rn → Rm be convex functions, and let h : Rn → Rl be an
affine function: h(x) = Ax− b. Suppose that Slater’s constraint
qualification holds true. Then

inf {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} = sup {θ(u, v) : u ≥ 0} .

Furthermore, if inf {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} is finite and
achieved at x, then sup {θ(u, v) : u ≥ 0} is achieved at (u, v) with
u ≥ 0 and u⊤g(x) = 0.
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Furthermore, if inf {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X} is finite and
achieved at x, then sup {θ(u, v) : u ≥ 0} is achieved at (u, v) with
u ≥ 0 and u⊤g(x) = 0.
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Strong duality
Proof outline.

1. Let γ = inf {f(x) : g(x) ≤ 0, h(x) = 0, x ∈ X}. Suppose that
−∞ < γ < ∞, hence finite (left-hand side trivial, right-hand
side by assumption).

2. Formulate the inconsistent system:

f(x)− γ < 0, g(x) ≤ 0, h(x) = 0, x ∈ X.

3. Use the separation theorem (or a form of Farkas’ theorem) to
show that (u0, u, v) with u0 > 0 and u ≥ 0 exists such that,
after scaling u0 = 1: f(x) + u⊤g(x) + v⊤h(x) ≥ γ, x ∈ X.

4. From weak duality (Theorem 3), we have θ(u, v) = γ.

5. Finally, an optimal x solving the primal problem implies that
g(x) ≤ 0, h(x) = 0, x ∈ X, and f(x) = γ. From 3, we have
u⊤g(x) ≥ 0. As g(x) ≤ 0 and u ≥ 0, u⊤g(x) ≥ 0 = 0.
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Strong duality and convergence

Weak duality provides a stopping criterion of solution methods that
can generate both primal and dual feasible solutions (primal-dual
pairs).

For feasible x and (u, v), one can bound how suboptimal f(x) is, as

f(x)− f(x) ≤ f(x)− θ(u, v)

This establishes that x is ϵ-optimal, with ϵ = f(x)− θ(u, v).

▶ That is, (u, v) is a certificate of (sub-)optimality of x, as (u, v)
proves that x is ϵ-optimal.

▶ In case strong duality holds, under the conditions of Theorem
6, one can expect ϵ converge to zero.
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Strong duality and KKT conditions
Assume that strong duality holds. Observe the following:

1. Theorem 6 shows that, the complementarity conditions
u⊤g(x) ≥ 0 = 0 hold for an optimal primal-dual pair (x, (u, v)).

2. By definition, x and (u, v) are primal and dual feasible,
respectively.

3. Finally, notice that, if x is a minimiser for
ϕ(x, u, v) = f(x) + u⊤g(x) + v⊤h(x), then we must have

∇f(x) +
m∑
i=1

ui∇gi(x) +
l∑

i=1

vi∇hi(x) = 0

Combining (1)–(3), we notice that (x, (u, v)) satisfies the KKT
conditions (Lecture 8), which are necessary and sufficient optimality
conditions under the assumptions of Theorem 6.
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Properties of Lagrangian dual function

Strong duality motivates the use of Lagrangian duals to solve (often
harder) primal optimisation problems.

This is partially related to the two main properties of Lagrangian
functions: concavity and subdifferentiability.

Theorem 7 (Concavity of Lagrangian dual functions)

Let X ⊆ Rn be a nonempty compact set, and let f : Rn → R and

β : Rn → Rm+l, with w⊤β(x) =
(
u
v

)⊤(g(x)
h(x)

)
be continuous. Then

θ(w) = inf
{
f(x) + w⊤β(x) : x ∈ X

}
is concave in Rm+l.

Remarks:

1. Global optimality conditions hold for θ(w).

2. The dual function θ(w) is not explicitly available.

3. Concavity implies that θ(w) has subgradients everywhere.
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Properties of Lagrangian dual function
Subgradients of Lagrangian dual functions are easily available. Let
X(w) =

{
x ∈ X : x = argmin

{
f(x) + w⊤β(x)

}}
.

Theorem 8
Let X ⊆ Rn be a nonempty compact set, and let f : Rn → R and

β : Rn → Rm+l, with w⊤β(x) =
(
u
v

)⊤(g(x)
h(x)

)
be continuous.

If x ∈ X(w), then β(x) is a subgradient of θ(w) at w.

Proof.
Since f and β are continuous and X is compact, X(w) ̸= ∅ for any
w ∈ Rm+l. Now, let w ∈ Rm+l and x ∈ X(w). Then

θ(w) = inf
{
f(x) + w⊤β(x) : x ∈ X

}
≤ f(x) + w⊤β(x)

= f(x) + (w − w)⊤β(x) + w⊤β(x)

= θ(w) + (w − w)⊤β(x).
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Solving Lagrangian duals
Solving Lagrangian dual is challenging since θ(w) is typically
nonsmooth, requiring an adaptation of the gradient method.

The subgradient method uses
subgradients β(x) to solve
max. {θ(x) : w ∈ W}, where
W = {w = (u, v) : u ≥ 0}.

▶ Subgradients are not
necessarily ascent directions
for nonsmooth concave
functions.

▶ However, for sufficiently
small steps size, the distance
|w − w| to a maximiser w
decreases.

w1

w2

∂θ(wk)
β(xk)

w

Level curves of a nonsmooth
θ(wk) and a subgradient β(xk) at
(wk).
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The subgradient method
Algorithm Subgradient method

1: initialise. tolerance ϵ > 0, initial point w0, iteration count k = 0.
2: while ||β(xk)||2 > ϵ do
3: xk ← argminx

{
θ(wk) = inf

{
f(x) + w⊤

k β(x)
}}

4: LBk = max {LBk, θ(wk)}
5: update λk

6: wk+1 = wk + λkβ(xk).
7: k ← k + 1.
8: end while
9: return LBk = θ(wk).

Remarks:
1. The stop condition ||β(xk)||2 > ϵ emulates 0 ∈ ∂θ(wk)
2. Theoretical convergence is guaranteed if Step 5 generates a

sequence {λk} such that
∑∞

k=0 λk → ∞ and limk→∞ λk = 0.
3. To guarantee that w ∈ W , one can use the projection

wi
k = max

{
0, wi

k

}
, i = 1, . . . ,m.
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The subgradient method
A common rule for step size updates is the Polyak rule:

λk+1 =
αk(LBk − θ(wk))

||β(xk)||2

with αk ∈ (0, 2) and LBk being a lower bound on θ(w).

This rule is
inspired by the following result.

Proposition 8.1 (Improving step size)

If wk is not optimal, then, for all optimal dual solutions w, we have

||wk+1 − w|| < ||wk − w||

for all step sizes λk such that

0 < λk <
2(θ(w)− θ(wk))

||β(xk)||2
.

Remark: θ(w) is replaced by an approximation LBk and αk acts as
a correction term for the difference θ(w)− θ(wk).
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The subgradient method
Proof.
We have that ||wk+1 − w||2 = ||wk + λkβ(xk)− w||2 =

||wk − w||2 − 2λk(w − wk)
⊤β(xk) + (λk)

2||β(xk)||2.

By the subgradient inequality: θ(w)− θ(wk) ≤ (w−wk)
⊤β(xk). Thus

||wk+1−w||2 ≤ ||wk−w||2−2λk(θ(w)−θ(wk))
⊤β(xk)+(λk)

2||β(xk)||2.

Parametrising the last two terms by γk = λk||ξ||2
θ(w)−θ(wk)

leads to

||wk+1 − w||2 ≤ ||wk − w||2 − γk(2− γk)(θ(w)− θ(wk))
2

||ξk||2
.

Notice that if 0 < λk < 2(θ(w)−θ(wk))
||β(xk)||2

then 0 < γk < 2 and, thus,

||wk+1 − w|| < ||wk − w||.
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