
MSE2122 - Nonlinear Optimization
Lecture Notes X

Fernando Dias (based on previous version by
Fabricio Oliveira)

November 8, 2023

Abstract
In this lecture, we look into the class of feasible direction methods, also known as primal methods.

Contents
1 The concept of feasible directions 2

2 Conditional gradient - the Frank-Wolfe method 2

3 Sequential quadratic programming 3

4 Generalised reduced gradient 7
4.1 Wolfe’s reduced gradient . 7
4.2 Generalised reduced gradient method . 8

1

1 The concept of feasible directions
Feasible direction methods are a class of methods that incorporate both improvement and feasibility

requirements when devising search directions. As feasibility is observed throughout the solution process,
they are referred to as primal methods. However, it depends on the geometry of the feasible region, and
it might be so that the method allows for some infeasibility in the algorithm, as we will see later.

An improving feasible direction can be defined as follows.

Definition 1.1. Improving Feasible Direction

Consider the problem min. {f(x) : x ∈ S} with f : Rn → R and ∅ ≠ S ⊆ Rn. A vector d is a feasible
direction at x ∈ S if exists δ > 0 such that x + λd ∈ S for all λ ∈ (0, δ). Moreover, d is an improving
feasible direction at x ∈ S if there exists a δ > 0 such that f(x + λd) < f(x) and x + λd ∈ S for
λ ∈ (0, δ).

The key feature of feasible direction methods is deriving such directions and associated step sizes that
retain feasibility, even if approximately. Similarly to the other methods we have discussed in the past
lectures, these methods progress following two basic steps:

1. Obtain an improving feasible direction dk and a step size λk;

2. Make xk+1 = xk + λkdk.

As a general rule, for a feasible direction method to perform satisfactorily, it must be that the cal-
culation of the directions dk and step sizes λk are simple enough. Often, these steps can be reduced
to closed forms or, more frequently, solving linear or quadratic programming problems or even posing
modified Newton systems.

2 Conditional gradient - the Frank-Wolfe
method

The conditional gradient method is named as such due to the direction definition step, in which the
direction d is selected such that the angle between the gradient ∇f(x) and d is as close to 180◦ degrees
as the feasible region S allows.

Recall that, if ∇f(xk) is a descent direction, then:

∇f(xk)⊤(x − xk) < 0 for x ∈ S.
A straightforward way to obtain improving feasible directions d = (x − xk) is by solving the direction
search problem DS of the form:

(DS) : min. {∇f(xk)⊤(x − xk) : x ∈ S}.
Problem DS consists of finding the furthest feasible point in the direction of the gradient, that is,

we move in the direction of the gradient, under the condition that we stop if the line search mandates
so or that the search reaches the boundary of the feasible region. This is precisely what gives the name
conditional gradient.

By letting xk = argminx∈S{∇f(xk)⊤(x − xk)} and obtaining λk ∈ (0, 1] employing a line search, the
method iterates making:

xk+1 = xk + λk(xk − xk).
One important condition to observe is that λk has to be constrained such that λ ∈ (0, 1] to guarantee
feasibility, as xk is feasible by definition. Also, notice that the condition ∇f(xk) = 0 might never be
achieved since it might be so that the unconstrained optimum is outside the feasible region S. After two
successive iterations, we will observe that xk = xk−1 and thus that dk = 0. This eventual stall of the algo-

2

0 1 2 3 4 5
x1

0

1

2

3

4

5

x 2

x0

Feas. region
2x1 + 3x2 8
x1 + 4x2 6
Trajectory

0 1 2 3 4 5
x1

0

1

2

3

4

5

x 2

x0

Feas. region
2x1 + 3x2 8
x1 + 4x2 6
Trajectory

Figure 1: The Frank-Wolfe method applied to a problem with linear constraints. The algorithm takes 2
steps using an exact line search (left) and 15 with an Armijo line search (right).

rithm will happen at a point xk satisfying first-order (constrained) optimality conditions. Therefore, the
term ∇f(x)⊤dk will become zero regardless of whether the minimum of them function belongs to S and is
hence used as the stopping condition of the algorithm. Algorithm 1 summarises the Frank-Wolfe method.

Algorithm 1 Franke-Wolfe method
1: initialise. ϵ > 0, x0 ∈ S, k = 0.
2: while ∇|f(x)⊤dk| > ϵ do
3: xk = argmin{∇f(xk)⊤d : x ∈ S}
4: dk = xk − xk

5: λk = argminλ{f(xk + λdk) : 0 ≤ λ ≤ λ}
6: xk+1 = xk + λkdk

7: k = k + 1
8: end while
9: return xk

Notice that the subproblems for a polyhedral feasibility set are linear programming problems, mean-
ing that the Frank-Wolfe method can be restarted fairly efficiently using dual simplex at each iteration.

Figure 1 shows the employment of the FW method for optimising a nonlinear function within a poly-
hedral feasibility set. We consider the problem:

min. e−(x1−3)/2 + e(4x2+x1−20)/10 + e(−4x2+x1)/10

subject to: 2x1 + 3x2 ≤ 8
x1 + 4x2 ≤ 6, x1, x2 ≥ 0

starting from (0, 0) and using an exact line search to set step sizes λ ∈ [0, 1]. Notice that the method
can be utilised with inexact line searches as well.

3 Sequential quadratic programming
Sequential quadratic programming (SQP) is a method inspired by the idea that the KKT system of a

nonlinear problem can be solved using Newton’s method. It consists perhaps of the most general method
for considering both nonlinear constraints and objective functions.

3

To see how that works, let us first consider an equality constraint problem P as:
P = min. {f(x) : h(x) = 0, i = 1, . . . , l}.

The KKT conditions for P are given by the system W (x, v) where:

W (x, v) =
{

∇f(x) +
∑l

i=1 vi∇hi(x) = 0
hi(x) = 0, i = 1, . . . , l

Using the Newton(-Raphson) method, we can solve W (x, v). Starting from (xk, vk), we can solve W (x, v)
by successively employing Newton steps of the form:

W (xk, vk) + ∇W (xk, vk)
[
x − xk

v − vk

]
= 0. (1)

Upon closer inspection, one can notice that the term ∇W (x, v) is given by:

∇W (xk, vk) =
[
∇2L(xk, vk) ∇h(xk)⊤

∇h(xk) 0

]
,

where:

∇2L(xk, vk) = ∇2f(xk) +
l∑

i=1
vk

i ∇2hi(xk)

is the Hessian of the Lagrangian function:

L(x, v) = f(x) + v⊤h(x)
at xk. Now, setting d = (x − xk), we can rewrite (1) as:

∇2L(xk, vk)d + ∇h(xk)⊤v = −∇f(xk) (2)
∇h(xk)d = −h(xk), (3)

which can be repeatedly solved until:

||(xk, vk)⊤ − (xk−1, vk−1)⊤|| = 0,
i.e., convergence is observed. Then, (xk, vk) is a KKT point by definition.

This is fundamentally the underlying idea of SQP. However, the approach is taken under a more
specialised setting. Instead of relying on Newton steps, we resort to successively solving quadratic sub-
problems of the form:

QP (xk, vk) : min. f(xk) + ∇f(xk)⊤d + 1
2d⊤∇2L(xk, vk)d (4)

subject to: hi(xk) + ∇hi(xk)⊤d = 0, i = 1, . . . , l. (5)

Notice that QP is a linearly constrained quadratic programming problem, for which we have seen several
solution approaches. Moreover, notice that the optimality conditions of QP are given by (2) and (3),
where v is the dual variable associated with the constraints in (5), which, in turn, represent first-order
approximations of the original constraints.

The objective function in QP can be interpreted as being a second-order approximation of f(x) en-
hanced with the term (1/2)

∑l
i=1 vk

i d⊤∇2hi(xk)d that captures constraint curvature information.

An alternative interpretation for the objective function of QP is to notice that it consists of the
second-order approximation of the Lagrangian function L(x, v) = f(x) +

∑l
i=1 vihi(x) at (xk, vk), which

is given by:

L(x, v) ≈ L(xk, vk) + ∇xL(xk, vk)⊤d + 1
2d⊤∇2L(xk, vk)d

= f(xk) + vk⊤
h(xk) + (∇f(xk) + vk⊤∇h(xk))⊤d + 1

2d⊤(∇2f(xk) +
l∑

i=1
vk

i ∇2hi(xk))d

To see this, notice that terms f(xk), vk⊤h(xk) are constants and that ∇h(xk)⊤(x − xk) = 0 (from (5),
as h(xk) = 0).

4

The general subproblem in the SQP method can be stated as:

QP (xk, uk, vk) : min. ∇f(xk)⊤d + 1
2d⊤∇2L(xk, uk, vk)d

subject to: gi(xk) + ∇gi(xk)⊤d ≤ 0, i = 1, . . . , m

hi(xk) + ∇hi(xk)⊤d = 0, i = 1, . . . , l,

which includes inequality constraints gi(x) ≤ 0 for i = 1, . . . , m in a linearised from and their respective
associated Lagrangian multipliers ui, for i = 1, . . . , m. This is possible since we use an optimisation
setting rather than a Newton system that only allows for equality constraints, even though the latter can
be obtained by introducing slack variables. Several options could be considered to handle this quadratic
problem, including employing a primal/dual interior point method.

A pseudocode for the standard SQP method is presented in Algorithm 2.

Algorithm 2 SQP method

1: initialise. ϵ > 0, x0 ∈ S, u0 ≥ 0, v0, k = 0.
2: while ||dk|| > ϵ do
3: dk = argminQP (xk, uk, vk)
4: obtain uk+1, vk+1 from QP (xk, uk, vk)
5: xk+1 = xk + dk, k = k + 1.
6: end while
7: return xk.

Notice that in Line 4, dual variable values are retrieved from the constraints in QP (xk, uk, vk). There-
fore, QP (xk, uk, vk) needs to be solved by an algorithm that can return these dual variables, such as the
(dual) simplex method.

Figure 2 illustrates the behaviour of the SQP method on the problem. Notice how the trajectory
might eventually become infeasible due to the consideration of linear approximations of the nonlinear
constraint.

min. {2x2
1 + 2x2

2 − 2x1x2 − 4x1 − 6x2 : x2
1 − x2 ≤ 0, x1 + 5x2 ≤ 5, x1 ≥ 0, x2 ≥ 0}

One important feature of the SQP method is that it closely mimics Newton’s method’s convergence
properties; therefore, under appropriate conditions, superlinear convergence can be observed. Moreover,
the BFGS method can be used to approximate ∇2L(xk, vk), which can turn the method dependent only
on first-order derivatives.

Notice that because the constraints are considered implicitly in the subproblem QP (xk, uk, vk), one
cannot devise a line search for the method, which, in turn, being based on successive quadratic approxi-
mations, presents a risk for divergence.

The l1-SQP is a modern variant of SQP that addresses divergence issues arising in the SQP method
when considering solutions that are far away from the optimum while presenting superior computational
performance.

In essence, l1-SQP relies on a similar principle to penalty methods, encoding penalisation for infea-
sibility in the objective function of the quadratic subproblem. In the context of SQP algorithms, these
functions are called “merit” functions. This not only allows for considering line searches (since feasibility
becomes encoded in the objective function with feasibility guaranteed at a minimum. cf. penalty meth-
ods) or relying on a trust region approach, ultimately preventing divergence issues.

Let us consider the trust-region based l1-penalty QP subproblem, which can be formulated as:

5

0.0 0.5 1.0 1.5 2.0
x1

0.0

0.5

1.0

1.5

2.0

x 2

x0

x1 + 5x2 5
x2

1 x2 0
Trajectory
g(x0) + g(x0) x

Figure 2: The SQP method converges in 6 iterations with ϵ = 10−6

l1 − QP (xk, vk) :

min. ∇f(xk)⊤d + 1
2d⊤∇2L(xk, vk)d

+ µ

[
m∑

i=1
[gi(xk) + ∇gi(xk)⊤d]+ +

l∑
i=1

|hi(xk) + ∇hi(xk)⊤d|

]
subject to: − ∆k ≤ d ≤ ∆k,

where µ is a penalty term, [·] = max{0, ·}, and ∆k is a trust region term. This variant is of particu-
lar interest because the subproblem l1−QP (xk, vk) can be recast as a QP problem with linear constraints:

l1 − QP (xk, vk) :

min. ∇f(xk)⊤d + 1
2d⊤∇2L(xk, vk)d + µ

[
m∑

i=1
yi +

l∑
i=1

(z+
i − z−

i)
]

subject to: − ∆k ≤ d ≤ ∆k

yi ≥ gi(xk) + ∇gi(xk)⊤d, i = 1 . . . , m

z+
i − z−

i = hi(xk) + ∇hi(xk)⊤d, i = 1, . . . , l

y, z+, z− ≥ 0.

The subproblem l1 − QP (xk, vk) enjoys the same benefits as the original form, meaning it can be solved
with efficient simplex-method-based solvers.

The trust-region variant of l1-SQP is globally convergent (does not diverge) and enjoys a superlinear
convergence rate, as the original SQP. The l1-penalty term is often called a merit function in the litera-
ture. Alternatively, one can disregard the trust region and employ a line search (exact or inexact), which
would also enjoy globally convergent properties.

6

4 Generalised reduced gradient
The generalised reduced gradient method resembles, in many aspects, the simplex method for linear

optimisation problems. It derives from Wolfe’s reduced gradient. The term “reduced” refers to consid-
ering a reduced variable space formed by a subset of the decision variables.

4.1 Wolfe’s reduced gradient
Let us consider the linearly constrained problem:

(P) : min. f(x)
subject to: Ax = b

Ax ≥ 0,

where f : Rn → R is differentiable, A is m × n and b ∈ Rm.

To ease the illustration, we assume linear programming nondegeneracy, i.e., that any m columns of
A are linearly independent and every extreme point of the feasible region has at least m positive com-
ponents and at most n − m zero components.

Being so, let us define a partition of A as A = (B, N), x⊤ = (x⊤
B , x⊤

N), where B is an invertible m×m
matrix with xB > 0 as a basic vector and xN ≥ 0 as a nonbasic vector. This implies that ∇f(x)⊤ can
also be partitioned as ∇f(x)⊤ = (∇Bf(x)⊤, ∇N f(x)⊤).

In this context, for d to be an improving feasible direction, we must observe that:

1. ∇f(x)⊤d < 0
2. Ad = 0, with dj ≥ 0 if xj = 0 to retain feasibility.
We will show how to obtain a direction d that satisfies conditions 1 and 2. For that, let d⊤ = (d⊤

B , d⊤
N).

We have that 0 = Ad = BdB + Ndn for any dN , implying that dB = −B−1NdN . Moreover:

∇f(x)⊤d = ∇Bf(x)⊤dB + ∇N f(x)⊤dN

= (∇N f(x)⊤ − ∇Bf(x)⊤B−1N)dN (6)
The term r⊤

N = (∇N f(x)⊤ − ∇Bf(x)⊤B−1N) is referred to as the reduced gradient as it expresses
the gradient of the function in terms of the nonbasic directions only. Notice that the reduced gradient r
resembles the reduced costs from the simplex method. In fact:

r⊤ = (r⊤
B , r⊤

N) = ∇f(x) − ∇Bf(x)⊤B−1A

= (∇Bf(x) − ∇Bf(x)⊤B−1B, ∇N f(x) − ∇Bf(x)⊤B−1N)
= (0, ∇N f(x) − ∇Bf(x)⊤B−1N),

and thus ∇f(x) = r⊤d.

Therefore, dN must be chosen such that r⊤
N dN < 0 and dj ≥ 0 if xj = 0. One way of achieving so is

employing the classic Wolfe’s rule, which states that:

dj =
{

−rj , if rj ≤ 0,

−xjrj , if rj > 0.

Notice that the rule is related to the direction of the optimisation. For rj ≤ 0, one wants to increase
the value of xj in that coordinate direction, making dj non-negative. On the other hand, if the reduced
gradient is positive (rj > 0), one wants to reduce the value of xj , unless it is already zero, a safeguard
created by multiplying xj in the definition of the direction d.

The following result guarantees the convergence of Wolfe’s reduced gradient to a KKT point.

7

Theorem 4.1
Let x be a feasible solution to P such that x = (x⊤

B , x⊤
N) and xB > 0. Consider that A is decomposed

into (B, N). Let r⊤ = ∇f(x)⊤ − ∇Bf(x)⊤B−1A and let d be formed using Wolfe’s rule. Then:

1. if d ̸= 0, then d is an improving direction;

2. if d = 0, then x is a KKT point.

Proof. d is a feasible direction by construction. Now, notice that:

∇f(x)⊤d = ∇Bf(x)⊤dB + ∇N f(x)⊤dN

= [∇N f(x)⊤ − ∇Bf(x)⊤B−1N]dN =
∑

j /∈IB

rjdj

where IB is the index set of basic variables. By construction (using Wolfe’s rule), either d = 0 or
∇f(x)⊤d < 0, being thus an improvement direction.

x is a KKT point if and only if there exists (u⊤
B , u⊤

N) ≥ (0, 0) and v such that:

(∇Bf(x)⊤, ∇N f(x)⊤) + v⊤(B, N) − (u⊤
B , u⊤

N) = (0, 0) (7)
u⊤

BxB = 0, u⊤
N xN = 0. (8)

Since xB > 0 and uB ≥ 0, u⊤
BxB = 0 if and only if uB = 0. From top row in (7), v⊤ = −∇Bf(x)B−1.

Substituting in the bottom row of (7), we obtain u⊤
N = ∇N f(x)⊤ − ∇Bf(x)⊤B−1N = rN .

Thus, the KKT conditions reduce to rN ≥ 0 and r⊤
N xN = 0, only observed when d = 0 by definition.

Algorithm 3 presents a pseudocode for Wolfe’s reduced gradient. A few implementation details stand
out. First, notice that the basis is selected by choosing the largest components in value, which differs from
the simplex method by allowing nonbasic variables to assume nonzero values. Moreover, notice that a line
search is employed conditioned on bounds on the step size λ to guarantee that feasibility x ≥ 0 is retained.

Algorithm 3 Wolfe’s reduced gradient method

1: initialise. ϵ > 0, x0 with Axk = b, k = 0, columns aj , j = 1, . . . , n of A
2: while ||dk|| > ϵ do
3: Ik = index set for m largest components of xk

4: Let A = (B, N), where B = {aj : j ∈ Ik}, and N = {aj : j /∈ Ik}
5: rk⊤ = ∇f(xk)⊤ − ∇Bf(xk)⊤B−1A

6: dk
j =

{
−rk

j , if j /∈ Ik and rj ≤ 0;
−rjxj , if j /∈ Ikandrj > 0.

7: dB = −B−1NdN

8: if d = 0 then
9: return xk

10: end if

11: λ =
{

+∞, if dk ≥ 0;
min{xk

j /dk
j : dk

j < 0}, if dk < 0.

12: λk = argmin{f(xk + λdk) : 0 ≤ λ ≤ λ}.
13: xk+1 = xk + λkdk; k = k + 1.
14: end while
15: return xk.

4.2 Generalised reduced gradient method
The generalised reduced gradient extends Wolfe’s method by:

8

1. Nonlinear constraints are considered via first-order approximation at xk

h(xk) + ∇h(xk)⊤(x − xk) = 0 ⇒ h(xk)⊤x = h(xk)⊤xk.

With an additional restoration phase that aims to recover feasibility via projection or Newton’s
method.

2. Consideration of superbasic variables. In that, xN is further partitioned into x⊤
N = (x⊤

S , x⊤
N ′).

The superbasic variables xS (with index set JS , 0 ≤ |JS | ≤ n − m), are allowed change value, while
xN ′ are kept at their current value. Hence, d⊤ = (d⊤

B , d⊤
S , d⊤

N ′), with dN ′ = 0. From Ad = 0, we obtain
dB = −B−1SdS . Thus d becomes:

d =

 dB

dS

dN ′

 =

−B−1S
I
0

 dS .

9

	The concept of feasible directions
	Conditional gradient - the Frank-Wolfe method
	Sequential quadratic programming
	Generalised reduced gradient
	Wolfe's reduced gradient
	Generalised reduced gradient method

