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The concept of feasible direction

Algorithms of this type progress taking into account two aspects:

1. xk + λd is feasible

2. f(xk + λdk) ≤ f(xk).

Since primal feasibility is observed, these methods are also called
primal methods.

However, some variants do not necessarily retain feasibility during
the iterations.

We will discuss 2 main types:

1. Conditional gradient: Frank-Wolfe method;

2. Sequential quadratic programming - SQP.
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Obtaining improving feasible directions

Let us first revisit the definition of an improving feasible direction.

Definition 1
Consider the problem min. {f(x) : x ∈ S} with f : Rn → R and
∅ ≠ S ⊆ Rn. A vector d is a feasible direction at x ∈ S if exists
δ > 0 such that x+ λd ∈ S for all λ ∈ (0, δ). Moreover, d is an
improving feasible direction at x ∈ S if there exists a δ > 0 such
that f(x+ λd) < f(x) and x+ λd ∈ S for λ ∈ (0, δ).

Feasible direction methods work as follows. Given xk ∈ S

1. Obtain an improving feasible direction dk and a step size λk;

2. Make xk+1 = xk + λkdk.

Remark: Obtaining dk and λk have to be easier to solve than the
original problem for the method to make sense.
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The Frank-Wolfe method

Recall that, if ∇f(xk) is a feasible descent direction, then

∇f(xk)⊤(x− xk) < 0 for x ∈ S.

A straightforward way to obtain improving feasible directions
d = (x− xk) is by solving the direction search problem DS.

(DS) : min.
{
∇f(xk)⊤(x− xk) : x ∈ S

}
.

Letting xk = argminx∈S
{
∇f(xk)⊤(x− xk)

}
and obtaining

λ
k ∈ (0, 1], the method iterates making

xk+1 = xk + λk(xk − xk).

Remark: for convex S, λk ∈ (0, 1] guarantees feasibility.
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The Frank-Wolfe method

Algorithm Frank-Wolfe method

1: initialise. ϵ > 0, x0 ∈ S, k = 0.
2: while |∇f(x)⊤dk| > ϵ do
3: xk = argmin

{
∇f(xk)⊤d : x ∈ S

}
.

4: dk = xk − xk

5: λk = argminλ

{
f(xk + λdk) : 0 ≤ λ ≤ λ

}
.

6: xk+1 = xk + λkdk; k = k + 1.
7: end while
8: return xk.

Remarks:

1. For f(x) nonlinear and a polyhedral feasible region S, the
subproblems DS are linear programming problems.

2. Can be employed with Armijo to ease the line search for
challenging f(x).
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The Frank-Wolfe method
Example: min. {e−(x1−3)/2 + e(4x2+x1−20)/10 + e(−4x2+x1)/10 :
2x1 + 3x2 ≤ 8, x1 + 4x2 ≤ 6}. The first iteration...
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Figure: The FW method with exact line search.
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The Frank-Wolfe method
Example: min. {e−(x1−3)/2 + e(4x2+x1−20)/10 + e(−4x2+x1)/10 :
2x1 + 3x2 ≤ 8, x1 + 4x2 ≤ 6}. All iterations.
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Figure: Total of 2 iterations are required for e = 10−4.

Fernando Dias Methods of feasible directions 7/17



The Frank-Wolfe method
Example: min. {e−(x1−3)/2 + e(4x2+x1−20)/10 + e(−4x2+x1)/10 :
2x1 + 3x2 ≤ 8, x1 + 4x2 ≤ 6}. All iterations with Armijo.
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Figure: Total of 15 iterations are required for e = 10−4.
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Sequential quadratic programming - SQP

SQP is inspired on the idea of employing Newton’s method to solve
the KKT system directly.

Let P = min. {f(x) : hi(x) = 0, i = 1, . . . , l}. The KKT conditions
for P are

W (x, v) =

{
∇f(x) +

∑l
i=1 vi∇hi(x) = 0

hi(x) = 0, i = 1, . . . , l.

Using Newton(-Raphson) to solve W (x, v) at (xk, vk), we obtain

W (xk, vk) +∇W (xk, vk)

[
x− xk

v − vk

]
= 0. (1)
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Sequential quadratic programming - SQP
Let L(x, v) = f(x) + v⊤h(x) be the Lagrangian function and

∇2L(xk, vk) = ∇2f(xk) +

l∑
i=1

vki ∇2hi(x
k)

its Hessian at xk. Thus

∇W (xk, vk) =

[
∇2L(xk, vk) ∇h(xk)⊤

∇h(xk) 0

]
.

Setting d = (x− xk), we can rewrite (1) as

∇2L(xk, vk)d+∇h(xk)⊤v = −∇f(xk) (2)

∇h(xk)d = −h(xk), (3)

which can be repeatedly solved until ||(xk, vk)− (xk−1, vk−1)|| = 0,
i.e., convergence, is observed. Then, (xk, vk) is a KKT point.
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Sequential quadratic programming - SQP
Instead of solving a Newton system, SQP relies on successively
solving the problem:

QP (xk, vk) : min. f(xk) +∇f(xk)⊤d+
1

2
d⊤∇2L(xk, vk)d (4)

subject to: hi(x
k) +∇hi(x

k)⊤d = 0, i = 1, . . . , l, (5)

to which optimality conditions are given by (2) and (3).

Two alternative ways of interpreting this objective function:

1. a second-order approximation of f(x), also considering a term
(1/2)

∑l
i=1 v

k
i d

⊤∇2hi(x
k)d representing constraint curvature;

2. Let L(x, v) = f(x) +
∑l

i=1 vihi(x). Then, (4) can be seen as
the second-order approximation of L(x, v),

L(xk, vk) +∇xL(x
k, vk)⊤d+

1

2
d⊤∇2L(xk, vk)d

which explains its alternative name: projected Lagrangian.
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Sequential quadratic programming - SQP
To see (2), notice that

L(x, v) ≈ L(xk, vk) +∇xL(x
k, vk)⊤d+

1

2
d⊤∇2L(xk, vk)d =

f(xk) + vk
⊤
h(xk) + (∇f(xk) + vk

⊤∇h(xk))⊤d

+
1

2
d⊤(∇2f(xk) +

l∑
i=1

vki ∇2hi(x
k))d

and that ∇h(xk)⊤(x− xk) = 0 (from (5), as h(xk) = 0).

For the
general case, we have

QP (xk, uk, vk) : min. ∇f(xk)⊤d+
1

2
d⊤∇2L(xk, uk, vk)d

subject to: gi(x
k) +∇gi(x

k)⊤d ≤ 0, i = 1, . . . ,m

hi(x
k) +∇hi(x

k)⊤d = 0, i = 1, . . . , l,

where L(x, u, v) = f(x) +
∑m

i=1 uigi(x) +
∑l

i=1 vihi(x).
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Sequential quadratic programming - SQP

A pseudocode for the standard SQP method is presented below.

Algorithm SQP method

1: initialise. ϵ > 0, x0 ∈ S, u0 ≥ 0, v0, k = 0.
2: while ||dk|| > ϵ do
3: dk = argminQP (xk, uk, vk)
4: obtain uk+1, vk+1 from QP (xk, uk, vk)
5: xk+1 = xk + dk, k = k + 1.
6: end while
7: return xk.

Remark: notice that the step in Line 5 requires dual variable values,
which can be trivially recovered from simplex-based solvers.
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Sequential quadratic programming - SQP
Some relevant aspects:

1. Can be used in conjunction with quasi-Newton (BFGS) to
approximate ∇2L(xk, vk).

2. Closely mimics convergence properties of Newton’s method,
i.e., under appropriate conditions, quadratic (superlinear)
convergence is observed.

3. Can exploit efficient (dual) simplex solvers.

4. Can consider general nonlinear constraints, using first-order
approximations.

5. Line searches cannot be easily performed, because feasibility is
only implicitly considered in QP (xk, vk)

6. Might present divergence, in a similar way than Newton’s
method, if started too far from the optimum.
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Sequential quadratic programming - SQP
Example: min.{2x21 + 2x22 − 2x1x2 − 4x1 − 6x2 : x

2
1 − x2 ≤ 0,

x1 + 5x2 ≤ 5, x1 ≥ 0, x2 ≥ 0}
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g(x0) + g(x0) x
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Sequential quadratic programming - SQP
The l1-SQP is a variant that addresses divergence issues while
presenting superior computational performance.

▶ Relies on a similar principle of penalty methods, encoding
penalisation for infeasibility in the objective function.

▶ This allows for considering line searches or trust regions, which
in turn can guarantee convergence.

Let us consider the trust-region l1-penalty QP subproblem:

min. ∇f(xk)⊤d+
1

2
d⊤∇2L(xk, vk)d

+ µ

[
m∑
i=1

[gi(x
k) +∇gi(x

k)⊤d]+ +

l∑
i=1

|hi(x
k) +∇hi(x

k)⊤d|

]
subject to: −∆k ≤ d ≤ ∆k,

where µ is a penalty term, [ · ] = max {0, ·}, and ∆k is a trust
region term.
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Sequential quadratic programming - SQP
l1 −QP (xk, vk) can be recast as a QP with linear constraints:

l1 −QP (xk, vk) :

min. ∇f(xk)⊤d+
1

2
d⊤∇2L(xk, vk)d+ µ

[
m∑
i=1

yi +

l∑
i=1

(z+i − z−i )

]
subject to: −∆k ≤ d ≤ ∆k

yi ≥ gi(x
k) +∇gi(x

k)⊤d, i = 1 . . . ,m

z+i − z−i = hi(x
k) +∇hi(x

k)⊤d, i = 1, . . . , l

y, z+, z− ≥ 0

Remarks:

1. l1-SQP is globally convergent (does not diverge) and enjoys
superlinear convergence rate.

2. the l1 term is often called a merit function in the literature.
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