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Abstract
In this lecture, we consider a class of methods known as the barrier methods. We describe

the behaviour of such methods in terms of finding optimal solutions for constrained optimisation
problems, and provide a general convergence result. Then, we describe the most widespread barrier
method, generally known as the interior point method for solving LPs. We develop the main settings
of the algorithm and discuss some implementation aspects.
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1 Barrier functions
In essence, barrier methods also use proxies for the constraints in the objective function so that an

unconstrained optimisation problem can be solved instead. However, the concept of barrier functions
differs from penalty functions in that they are defined to prevent the solution search method from leaving
the feasible region, which is why some of these methods are also called interior point methods.

Consider the primal problem P being defined as:

(P ) : min. f(x)
subject to: g(x) ≤ 0

x ∈ X.

We define the barrier problem BP as:

(BP ) : inf
µ

θ(µ)

subject to: µ > 0

where θ(µ) = infx{f(x) + µB(x) : g(x) < 0, x ∈ X} and B(x) is a barrier function. The barrier
function is such that its value approaches +∞ as the boundary of the region {x : g(x) ≤ 0} is ap-
proached from its interior. In practice, the constraint g(x) < 0 can be dropped, as the barrier function
automatically enforces them.

The barrier function B : Rm → R is such that:

B(x) =
m∑

i=1
ϕ(gi(x)), where

{
ϕ(y) ≥ 0, if y < 0;
ϕ(y) = +∞, when y → 0−.

(1)

Examples of barrier functions that impose this behaviour are:

• B(x) = −
∑m

i=1
1

gi(x)

• B(x) = −
∑m

i=1 ln(min{1, −gi(x)}) .

Perhaps the most important barrier function is the Frisch’s log barrier function, used in the highly
successful primal-dual interior point methods. We will describe its use later. The log barrier is defined as:

B(x) = −
m∑

i=1
ln(−gi(x)).

Figure 1 illustrates the behaviour of the barrier function. Ideally, the barrier function B(x) has the
role of an indicator function, which is zero for all feasible solutions x ∈ {x : g(x) < 0} but assume infinite
value if a solution is at the boundary g(x) = 0 or outside the feasible region. This is illustrated in the
dashed line in Figure 1. The barrier functions for different values of barrier term µ illustrate how the
log barrier mimics this behaviour, becoming more and more pronounced as µ decreases.

2 The barrier method
Similar to what was developed for penalty methods, we can devise a solution method that successively

solves the barrier problem θ(µ) for decreasing the barrier term µ.

We start by stating the result that guarantees convergence of the barrier method.
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Figure 1: The barrier function for different values of µ

Theorem 2.1. Convergence of barrier methods
Let f : Rn → R and g : Rn → R be continuous functions and X ∈ Rn a nonempty closed set in
problem P . Suppose {x ∈ Rn : g(x) < 0, x ∈ X} is not empty. Let x be the optimal solution of
P such that, for any neighbourhood Nϵ(x) = x : ||x − x|| ≤ ϵ, there exists x ∈ X ∩ Nϵ for which
g(x) < 0. Then:

min{f(x) : g(x) ≤ 0, x ∈ X} = lim
µ→0+

θ(µ) = inf
µ>0

θ(µ).

Letting θ(µ) = f(xµ) + µB(xµ), where B(x) is a barrier function as described in (1), xµ ∈ X and
g(xµ) < 0, the limit of {xµ} is optimal to P and µB(xµ) → 0 as µ → 0+.

Proof. First, we show that θ(µ) is a nondecreasing function in µ. For µ > λ > 0 and x such that
g(x) < 0 and x ∈ X, we have:

f(x) + µB(x) ≥ f(x) + λB(x)
inf
x

{f(x) + µB(x)} ≥ inf
x

{f(x) + λB(x)}

θ(µ) ≥ θ(λ).
From these, we conclude that limµ→0+ θ(µ) = inf{θ(µ) : µ > 0}. Now, let ϵ > 0. As x is optimal, by
assumption there exists some x̂ ∈ X with g(x̂) < 0 such that f(x)+ϵ > f(x̂). Then, for µ > 0 we have:

f(x) + ϵ + µB(x̂) > f(x̂) + µB(x̂) ≥ θ(µ).

Letting µ → 0+, it follows that f(x) + ϵ ≥ limµ→0+ θ(µ), which implies f(x) ≥ limµ→0+ θ(µ) =
inf{θ(µ) : µ > 0}. Conversely, since B(x) ≥ 0 and g(x) < 0 for some µ > 0, we have:

θ(µ) = inf{f(x) + µB(x) : g(x) < 0, x ∈ X}
≥ inf{f(x) : g(x) < 0, x ∈ X}
≥ inf{f(x) : g(x) ≤ 0, x ∈ X} = f(x).

Thus f(x) ≤ limµ→0+ θ(µ) = inf{θ(µ) : µ > 0}. Therefore, f(x) = limµ→0+ θ(µ) = inf{θ(µ) : µ >
0 ≥}.
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The proof has three main steps. First, we show that θ(µ) is a nondecreasing function in µ, which
implies that limµ→0+ θ(µ) = inf{θ(µ) : µ > 0}. This can be trivially shown as only feasible solutions x
must be considered.

Next, we show the convergence of the barrier method by showing that infµ>0 θ(µ) = f(x), where
x = argmin{f(x) : g(x) ≤ 0, x ∈ X} = limµ→0+ θ(µ) = infµ>0 θ(µ). The optimality of x implies that
f(x̂)−f(x) < ϵ for feasible x̂ and ϵ > 0. Moreover, B(x̂) ≥ 0 by definition. In the last part, we argue that
including the boundary can only improve the objective function value, leading to the last inequality. It
is worth highlighting that, to simplify the proof, we have assumed that the barrier function has the form
described in (1). However, a proof in the veins of Theorem 2.1 can still be developed for the Frisch log
barrier (for which B(x) is not necessarily nonnegative) since, essentially, (1) only needs to be observed
in a neighbourhood of g(x) = 0.

The result in Theorem 2.1 allows the design of an optimisation method that, starting from a strictly
feasible (interior) solution, is based on successively reducing the barrier term until a solution with an
arbitrarily small barrier term is obtained. Algorithm 1 present a pseudo code for such a method.

Algorithm 1 Barrier method
1: initialise. ϵ > 0, x0 ∈ X with g(xk) < 0, µk, β ∈ (0, 1), k = 0.
2: while µkB(xk) > ϵ do
3: xk+1 = argmin{f(x) + µkB(x) : x ∈ X}
4: µk+1 = βµk, k = k + 1
5: end while
6: return xk.

One important aspect to notice is that starting the algorithm requires a strictly feasible point, which,
in some applications, might be challenging to obtain. This characteristic renders the name interior point
methods for this class of algorithms.

Consider the following example. Let P = {(x + 1)2 : x ≥ 0}. Let us assume we use the barrier
function B(x) = − ln(x). Then, the unconstrained barrier problem becomes:

(BP ) : min.
x

(x + 1)2 − µ ln(x). (2)
Since this is a convex function, the first-order condition f ′(x) = 0 is necessary and sufficient for opti-

mality. Thus, solving 2(x+1)− µ
x = 0 we obtain the positive root and unique solution xµ = −1

2 +
√

4+8µ
4 .

Figure X shows the behaviour of the problem as µ converges to zero. As can be seen, as µ → 0, the
optimal solution xµ converges to the constrained optimum x = 0.

We now consider a more involved example. Let us consider the problem:

P = min. {(x1 − 2)4 + (x1 − 2x2)2 : x2
1 − x2 ≤ 0}

with B(x) = − 1
x2

1−x2
. We implemented Algorithm 1 and solved it with two distinct values for the penalty

term µ and reduction term β. Figure 2 illustrates the trajectory of the algorithm with each parameteri-
sation, exemplifying how these can affect the convergence of the method.

3 Interior point method for LP/QP prob-
lems

Perhaps ironically, the most successful applications of barrier methods in terms of efficient imple-
mentations are devoted to solving linear and quadratic programming (LP/QP) problems. In the last
decade, the primal-dual interior point method has become the algorithm of choice for many applications
involving large-scale LP/QP problems.

To see how barrier methods can be applied to LP problems, consider the following primal/dual pair

4



2 1 0 1 2 3 4
x

10

0

10

20

30

f(x
)+

B(
x)

=
(x

+
1)

2
ln

(x
)

(x + 1)2 ( = 0)
x

= 10
x10

= 5
x5

= 2
x2

= 1
x1

Figure 2: Example 1: solving a one-dimensional problem with the barrier method

formed by an LP primal P :

(P ) : min. c⊤x

subject to: Ax = b : v

x ≥ 0 : u

and its respective dual formulation D:

(D) : max. b⊤v

subject to: A⊤v + u = c

u ≥ 0, v ∈ Rm.

The optimal solution (x, v, u) = w is such that it satisfies KKT conditions of P , given by:

Ax = b, x ≥ 0
A⊤v + u = c, u ≥ 0, v ∈ Rm

u⊤x = 0.

These are going to be useful as a reference for the next developments. We start by considering the barrier
problem for P by using the logarithmic barrier function to represent the condition x ≥ 0. Thus, the
barrier problem BP can be defined as:

(BP ) : min. c⊤x − µ

n∑
i=1

ln(xj)

subject to: Ax = b.

Notice that this problem is a strictly equality-constrained problem that can be solved using the con-
strained variant of Newton’s method (which simply consists of employing Newton’s method to solve the
KKT conditions of equality-constrained problems). Moreover, observe that the KKT conditions of BP
are:

Ax = b, x > 0

A⊤v = c − µ

(
1
x1

, . . . ,
1

xn

)
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Figure 3: The trajectory of the barrier method for problem P . Notice how the parameters influence the
trajectory and number of iterations. The parameters on the left require 27 iterations, while those on the
right require 40 for convergence.

Notice that, since µ > 0 and x > 0, u = µ
(

1
x1

, . . . , 1
xn

)
serves as an estimate for the Lagrangian dual

variables. To further understand the relationship between the optimality conditions of BP and P , let us
define X ∈ Rn×n and U ∈ Rn×n as:

X = diag(x) =


. . .

xi

. . .

 and U = diag(u) =


. . .

ui

. . .


and let e = [1, . . . , 1]⊤ be a vector of ones of suitable dimension. We can rewrite the KKT conditions of
BP as:

Ax = b, x > 0 (3)
A⊤v + u = c (4)
u = µX−1e ⇒ XUe = µe. (5)

Notice how the condition (5) resembles the complementary slackness from P , but relaxed to be µ instead
of zero. This system is often called the perturbed KKT system.

Theorem 2.11 guarantees that wµ = (xµ, vµ, uµ) approaches the optimal primal-dual solution of P
as µ → 0+. The trajectory formed by successive solutions {wµ} is called the central path due to the
interiority enforced by the barrier function. When the barrier term µ is large enough, the solution of the
barrier problem is close to the analytic centre of the feasibility set. The analytic centre of a polyhedral
set S = {x ∈ Rn : Ax ≤ b} is given by:

max.
x

m∏
i=1

(bi − a⊤
i x)

subject to: x ∈ X,

Which corresponds to finding the point of maximum distance to each of the hyperplanes forming the
polyhedral set. This is equivalent to the convex problem:

1In fact, we require a slight variant of Theorem 1 that allows for B(x) ≥ 0 only being required in a neighbourhood of
g(x) = 0.
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min.
x

m∑
i=1

− ln
(
bi − a⊤

i x
)

subject to: x ∈ X,

And thus justifying the nomenclature.

One aspect should be observed for defining the stopping criterion. Notice that the term u⊤x is such
that it measures the duality gap at a given solution. That is, notice that:

c⊤x = (A⊤v + u)⊤x

= (A⊤v)⊤x + u⊤x

= v⊤(Ax) + u⊤x

c⊤x − b⊤v = u⊤x =
n∑

i=1
uixi =

n∑
i=1

(
µ

xi

)
xi = nµ.

This gives the total slack violation that can be used to determine the algorithm’s convergence.

3.1 Primal/dual path-following interior point method
The primal/dual path-following interior point method (IPM) is the specialised version of the setting

described earlier for solving LP/QP problems.

It consists of building upon employing logarithmic barriers to LP/QP problems and solving the sys-
tem (3) - (5) using Newton’s method. However, instead of solving the problem to optimality for each µ,
only a single Newton step is taken before the barrier term µ is reduced.

Suppose we start with a µ > 0 and a wk = (xk, vk, uk) sufficiently close to wµ. Then, for a sufficiently
small β ∈ (0, 1), βµ will lead to a wk+1 sufficiently close to wβµ. Figure 4 illustrates this effect, showing
how a suboptimal solution xk does not necessarily need to be in the central path (denoted by the dashed
line) to guarantee convergence, as long as they are guaranteed to remain within the same neighbourhood
Nµ(θ) of the central path.

x+∞

xµ2

xµ1

xk

xk+1 c

Nµ2(θ)

Nµ1(θ)

Figure 4: an illustrative representation of the central path and approximately how the IPM follows it.

For example, let Nµ(θ) = ||Xµ Uµe − µe|| ≤ θµ. Then, by selecting β = 1 − σ√
n

, σ = θ = 0.1, and
µ0 = (x⊤u)/n, successive Newton steps are guaranteed to remain within Nµ(θ).

To see how the setting works, let the perturbed KKT system (3) – (5) for each µ̂ be denoted as
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H(w) = 0. Let J(w) be the Jacobian of H(w) at w.

Applying Newton’s method to solve H(w) = 0 for w, we obtain:

J(w)dw = −H(w) (6)
where dw = (w − w). By rewriting dw = (dx, dv, du), (6) can be equivalently stated as:A 0⊤ 0

0 A⊤ I
U 0⊤ X

 dx

dv

du

 =

 0
0

µ̂e − X Ue

 . (7)

The system (7) is often called the Newton’s system.

In practice, the updates incorporate primal and dual infeasibility, which precludes the need for ad-
ditional mechanisms to guarantee primal and dual feasibility throughout the algorithm. This can be
achieved with a simple modification in the Newton system, rendering the direction update step: A 0⊤ 0

0 A⊤ I
Uk 0⊤ Xk

 dk+1
x

dk+1
v

dk+1
u

 = −

 Axk − b
A⊤vk + uk − c

XkUke − µk+1e

 , (8)

To see how this still leads to primal and dual feasible solutions, consider the primal residuals (i.e.,
the amount of infeasibility) as rp(x, u, v) = Ax− b and the dual residuals rd(x, u, v) = A⊤v +u− c. Now,
let r(w) = r(x, u, v) = (rp(x, u, v), rd(x, u, v)), recalling that wk = (x, v, u). The optimality conditions
can be expressed as requiring that the residuals vanish, that is r(w) = 0.

Now, consider the first-order Taylor approximation for r at w for a step dw:

r(w + dw) ≈ r(w) + Dr(w)dw,

Where Dr(w) is the derivative of r evaluated at w, given by the two first rows of the Newton system
(7). The step dw for which the residue vanishes is:

Dr(w)dw = −r(w), (9)
Which is the same as (6) without the bottom equation. Now, if we consider the directional derivative of
the square of the norm of r in the direction dw, we obtain:

d

dt
||r(w + tdw)||22

∣∣∣∣
t→0+

= 2r(w)⊤Dr(w)dw = −2r(w)⊤r(w), (10)

Which is strictly decreasing. That is, the step dw is such that it will make the residual decrease and
eventually become zero. From that point onwards, the Newton system will take the form of (7).

The algorithm proceeds by iteratively solving the system (8) with µk+1 = βµk with β ∈ (0, 1) until
nµk is less than a specified tolerance. Algorithm 2 summarises a simplified form of the IPM.

Algorithm 2 Interior point method (IPM) for LP
1: initialise. primal-dual feasible wk, ϵ > 0, µk, β ∈ (0, 1), k = 0.
2: while nµ = c⊤xk − b⊤vk > ϵ do
3: compute dwk+1 = (dxk+1 , dvk+1 , duk+1) using (8) and wk.
4: wk+1 = wk + dwk+1

5: µk+1 = βµk, k = k + 1
6: end while
7: return wk.

Figure 5 illustrates the behaviour of the IPM when employed to solve the linear problem:

min. x1 + x2

subject to: 2x1 + x2 ≥ 8
x1 + 2x2 ≥ 10,

x1, x2 ≥ 0
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Considering two distinct initial penalties µ. Notice how higher penalty values enforce a more central
convergence of the method.
Some points are worth noticing concerning Algorithm 2. First, notice that a fixed step size is considered
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Figure 5: IPM applied to an LP problem with two different barrier terms

in Line 4. A line search can be incorporated to prevent infeasibility and improve numerical stability.
Typically, it is used λk

i = min{α, − xk
i

dk
i

} with α < 1 but close to 1.

Also, even though the algorithm is initialised with a feasible solution wk, this might, in practice,
not be necessary. Implementations of the infeasible IPM method can efficiently handle primal and dual
infeasibility.

Under specific conditions, the IPM can be shown to have complexity of O(
√

n ln(1/ϵ)), which is
polynomial and of much better worst-case performance than the simplex method, which makes it the al-
gorithm of choice for solving large-scale LPs. Another important advantage is that IPM can be modified
with little effort to solve a wider class of problems under the class of conic optimisation problems.

Predictor-corrector methods are variants of IPM that incorporate a two-phase direction calculation
using a predicted direction dpred

w , calculated by setting µ = 0 and a correcting direction, which is com-
puted considering the impact that dcor

w would have in the term X Ue.

Let ∆X = diag(dpred
x ) and ∆U = diag(dpred

u ).
Then:

(X + ∆X)(U + ∆U)e = XUe + (U∆X + X∆U)e + ∆X∆Ue

= XUe + (0 − XUe) + ∆X∆Ue

= ∆X∆Ue (11)
Using the last equation (11), the corrector Newton step becomes Udx + Xdu = µ̂e − ∆X∆Ue.
Finally, dk

w is set to be a combination of dpred
w and dcor

w .
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